
Thursday, November 4, 1999
1:30 PM

P R E S E N T A T I O N

DEFECT MANAGEMENT IN
DEVELOPMENT AND TEST

Ed Weller
Bull Worldwide Information Systems

T15

INTERNATIONAL CONFERENCE ON

SOFTWARE TESTING, ANALYSIS & REVIEW
NOVEMBER 1-5, 1999

SAN JOSE, CA

Presentation Notes
Paper
Bio
Return to Main Menu

1
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Defect Management in
Development and Test

Ed Weller
Fellow, Software Process

Bull Worldwide Information Systems

Phoenix, AZ
e.weller@bull.com

2
© 1999, Bull HN Information Systems Inc.

STAR’99 West

An Industry Perspective

• Few organizations use data to manage
their development and delivery process

• Fewer organizations use data to predict
events in development and test

• Those that do maintain a significant
advantage over those that do not

© 1999, Bull HN Information Systems Inc.

STAR’99 West

State of the Practice

• Do you test your product?

• Do you have a defect tracking system?

• Do you capture the cost to find and fix defects?

• Do you capture source of defect?

• Do you use this data to plan your next project?

4
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Organizational Use of Data

LCL

3σσPCE

LCLUCL SPC

5
© 1999, Bull HN Information Systems Inc.

STAR’99 West

The Test Manager’s Perspective
What Causes Heartburn?

• When will you be through with test?

• How long will it take to fix THAT bug?

Test Manager

Program
Manager

What’s wrong with this picture?

6
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Predicting Test Finish Dates

• What are the input parameters?
– Number of defects

– Defect discovery rate

– Defect closure rate

– Effort to close a defect

– Elapsed time to close a defect

7
© 1999, Bull HN Information Systems Inc.

STAR’99 West

How Many Defects Are in the Product?

• How big is the product?
– KSLOC, Function Points, Forms, Reports

• How complex is the product?
– Need your historical data

– Complexity measurement tools

• What’s the current project history for
this product?
– Defect removal before entering test

8
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Inspection Defect Data

• What is your typical defect inspection
effectiveness in code inspections?

• A first order approximation of defects
remaining uses inspection effectiveness data
– At 50%, you enter Unit Test with as many

residual defects as were found in code
inspections
(Defects found/Inspection Effectiveness)

• Modified by product history and team
capability

9
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Was the Inspection Process Controlled?

• Statistical Process Control can help
– Are the Preparation and Inspection Rates

within the Upper and Lower Control
Limits?

– Is the work product defect density within
control?

10
© 1999, Bull HN Information Systems Inc.

STAR’99 West

How Well Did You Inspect?

 Code Prep Rate

0.0

100.0

200.0

300.0

400.0

500.0

1 6 11 16 21 26 31 36 41 46 51

Prep Rate

Prep UCL

11
© 1999, Bull HN Information Systems Inc.

STAR’99 West

How Good Is the Product?

Code Defects/LOC SPC

-0.500

0.000

0.500

1.000

1.500

1 6 11 16 21 26 31 36 41 46 51

def/LOC
Def UCL
Def LCL

12
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Establishing Defect Profiles

0

100

200

300

400

500

600

700

800

Ana
HLD LLD

Code
Unit

In
te

g-P

In
te

g-R

Sys
te

m
Bet

a

Gen
 S

hip

Phase Inj Est

Phase Expected
Removal

Proj 1 Phase
Actual Removal

Proj 1 Cumul
Actual Removal

Cumul Expected
Removal

Cumul Inj Est

Current
Timeline

Data in examples has been changed, but is representative of real projects

13
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Evaluating Inspection Performance

• Expected effectiveness was 60%

• Data showed a 70% effectiveness

• Possible causes:
– Better inspection technique and results

– Lower defect injection rate

– Size estimate was low

• Count of actual code showed a 13%
increase in code size over design estimate

14
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Project Re-estimate

0

100

200

300

400

500

600

700

800

Ana HLD LL
D

Cod
e

Unit

In
te

g-
P

In
te

g-
R

Sys
te

m
Bet

a

Gen
 S

hip

Phase Inj Est

Phase Expected
Removal

Actual Removal

Proj 1 Cumul
Actual Removal

Cumul Expected
Removal

Cumul Inj Est
10-6

Cumul Inj Est

Current
Timeline

10-6 size re-estimate

15
© 1999, Bull HN Information Systems Inc.

STAR’99 West

What Changed?

• To “preserve” the original estimate, only
the new cumulative total was changed

• A defect injection rate of 20% of the fixes
was used for each test phase (Folklore is
that this value is as high as 50%!)
– Measured this at 10%

– All fixes are inspected

16
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Defect Discovery Rate

• Problem rate is easy to measure

• Defect rate is harder to measure
– Problem must be closed to count it

– Defect fixing takes time, so current defect
counts don’t tell the whole story

• Estimated injection rate is needed for
evaluation of test progress

One View of Test Progress

© 1999, Bull HN Information Systems Inc.

18
© 1999, Bull HN Information Systems Inc.

STAR’99 West

What’s Missing?

• Problems are not closed immediately
– What is your “average” time to close a

problem?
– What’s your real time to close a defect?

• Backlogs hide the true status of test
efforts - current defect counts don’t tell
the whole story

• Do you know your “First-Time-Fix” ratio
(Percent of problem reports that are
product defects?)

19
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Problem-Defect Resolution

• Until problems reports are closed, the
true defect discovery rate is hidden
– Backlog

– Duplicate problems

– Tester errors

• Apply “first-time-fix” ratio to open
problem reports (“potential defects”) to
get a clearer picture of test progress

A More Complete Picture of Test Progress

© 1999, Bull HN Information Systems Inc.

21
© 1999, Bull HN Information Systems Inc.

STAR’99 West

When Can You Ship?

Ship Quality Level

22
© 1999, Bull HN Information Systems Inc.

STAR’99 West
The Tester’s Perspective

What Helps You?

• What am I missing?
– Defects found later in test
– Post ship defects
– Same defect as in the last release

• Tests run and test failures
– Product defects
– Testware defects

• Test escapes
Counting (measuring) all these will help you

become a better tester

23
© 1999, Bull HN Information Systems Inc.

STAR’99 West

The Test Manager’s Perspective
Answering the Questions

• When will YOU be done?
– How many defects are in the product?

– How many defects have you removed?

– How many defects do you need to find?

– Where do you need to find them?

24
© 1999, Bull HN Information Systems Inc.

STAR’99 West

The Test Manager’s Perspective
Answering the Questions

• When are you finding the defects?
– Functional defects in System Test?

– Are you finding any defects in Unit Test?

• Are you finding the right defects?
– How many problem reports are closed with

fixes?

– How many problem reports are ignored?

– How many “user error” closures are there?

25
© 1999, Bull HN Information Systems Inc.

STAR’99 West Developer
What Did I Fail To Detect?

• What leaked into Integration and System
Test?
– Should I have found it in Unit Test?

– Should I have found it by Inspection?

– What is the cost tradeoff?

• How can I do better the next time?
– Defect prevention

– “Awareness”

26
© 1999, Bull HN Information Systems Inc.

STAR’99 West

Summary

• Defect measurement helps you understand
the dynamics of development and test

• Defect measurement provides data for cost
tradeoffs

• Defect measurement is necessary to predict
product quality

Defect measurement can provide a
competitive edge

 Bull, 1999

Defect Management in Development and Test

Edward F. Weller
Fellow, Software Process

Bull HN Information Systems
13430 N. Black Canyon

Phoenix, AZ 85029

Tele: (602) 862-4563
Fax: (602) 862-4288
e-Mail: e.weller@bull.com

Bio:
Edward F. Weller is a Fellow at Bull HN Information Systems in Phoenix, AZ,
where he is responsible for the software processes used by the GCOS8 operating
systems group.

He received the IEEE Software "Best Article of the Year" award for his
September 1993, "Lessons From Three Years of Inspection Data", and was
awarded the Best Track Presentation at the 1994 Applications of Software
Measurement conference for "Using Metrics to Manage Software Projects". He is
a member of the SEI's Software Measurements Steering Committee, the Embry
Riddle University Computing and Mathematics Industrial Advisory Board, and
was the first Co-Chair of the Software Inspection and Review Organization, a
special interest group promoting the use of inspection process.

Ed has been the Program Chair for ASM 96 and ASM 99, and will again be
Program Chair for ASM 2000. He is also affiliated with Software Technology
Transition, providing consulting in the area of Inspections, metrics, and the
Capability Maturity Model. He has 30 years experience in hardware, test,
software, and systems engineering of large scale hardware and software projects
and is a Senior Member of IEEE.

Mr. Weller received his BSE in Electrical Engineering from the University of
Michigan, and MSEE from the Florida Institute of Technology.

CMM, and Capability Maturity Model are registered in the U.S. Patent and Trademark Office

 Bull, 1999

Defect Management in Development and Test

A simple survey I have been conducting at conferences since 1994 demonstrates
few organizations use defect data to manage their product development. I have
asked the series of questions below, with the typical responses following the
questions:

Do you test your product?
No one admits they do not.

Do you have a defect tracking system?
Most organizations do this in 1999 (considerably better than 1994).

Do you capture the cost to find and fix defects?
About ½ do this.

Do you capture source of defect?
About ½ of the remainder do this (Down to about 1/8th at this point).

Do you use this data to plan your next project?
Typically only 2-3% do all of the above.

What is amazing to me is that of those who have collected all the data, only
about 1/4th of them actually use the data to plan their next projects. The
troublesome aspect of the lack of measurement is that organizations do not
understand where as much as one-half their development resources are being
spent, and what they might do to improve their development productivity.

Specifically, defect data from test data can be used to answer the age-old
questions “When will you be finished with test?” and “How long will it take to fix
that bug?” I’ve always maintained the development team should answer both
these questions, since the length of test is a function of the number of defects in
the product (at least until the defect discovery rate becomes relatively low). How
long it takes to fix a problem can be predicted based on past data, but this is one
of those “on average” answers that never seems to satisfy the person asking the
question unless they understand the problem, in which case they probably
wouldn’t have asked the question!

Predicting Test Finish Dates
In order to predict the end of test, you need the following data:

 - Number of defects
 - Defect discovery rate
 - Defect closure rate
 - Effort to close a defect
 - Elapsed time to close a defect

To predict the number of defects, the product size and defect injection rate per
unit of size are needed. Defect discovery and closure rates should be for defects,
not problem reports. As we shall see later, the ratio of defects to problem reports
is an important metric. The effort and elapsed time to close defects and problem
reports can be used to evaluate the effort needed to complete test. If resources

 Bull, 1999

are fixed (and when do we ever have unlimited resource?), the effort and elapsed
time relationship can be checked against the schedule.

Defect injection predictions require some knowledge of past history and a
comparison or value judgement of how well that history can be used to predict
today’s project. For an organization that counts defects with reasonable1

accuracy, the following table has worked for me as a rough starting point2:

Phase Requirements Analysis HLD LLD Code
Defects/KLOC 1 3 6 20 30

Two to three iterations through this process can provide enough experience and
data to make these predictions fairly accurate. Don’t be confused into thinking
this analysis requires you to follow a waterfall model. Think about the type of
work being done, and the defect removal related to that work. Your profile will
also develop its own distinctive shape as you tailor it to your product, project, and
personnel capability. “Defects/KLOC” is the measured defect density against the
measured size when the project ships the product. Until you have actual size
data, the number is based on the size estimate. I use KLOC in this example, but
other size measures can be used.

Phase and cumulative injection rates are shown in Figure 1.

0

100

200

300

400

500

600

700

Ana HLD LLD Code

D
ef

ec
ts

Phase Phase Inj
Est

Phase Expected
Removal

Cumul Inj Est

Cumul Expected
Removal

Figure 1 – Initial Defect Injection and Removal Estimate

1 “Reasonable accuracy” means they know what a major defect is in an inspection, and they

collect unit test data
2 These numbers have been reported anywhere from 4-5 to 200 defects per KLOC so some

care is needed when selecting values for your organization.

 Bull, 1999

We are looking for the number of defects in the product as test starts. We have
an estimate if defects injected, so it would be useful to estimate the development
stage removal rate. This example assumes a review or inspection process is
used during development.

In Figure 1, the gap between the two dashed lines is an estimate of the number
of defects in the product when test starts. A more complete analysis would
include ranges for defect injection rates and removal rates. I show this analysis to
the project teams, but usually leave the ranges off the charts used in project
reviews to avoid clutter. The $64 question is obviously how accurate are the
injection and removal estimates. This is where a detailed analysis of the
inspection data using SPC proved useful.

Inspection Data Analysis
On these two projects the first opportunity to apply SPC was during code
inspections. When analyzing data, I generally look at all the data to see if any
patterns are present. On one project, the work was divided into two parts; the
creation of a product feature, and the revision of existing code. A histogram of
preparation rates in lines of code per hour is shown in Figure 2.

0
2
4
6
8

10
12
14
16

50 100 150 200 250 300 350 400 More

Figure 2 – Preparation Rates for 30 inspections
This group of inspections seems to fall into the 250-350 range3 with a few
possible outliers. Three of the rates below 150 lines per hour were for small
amounts of code, and of the 3 above 400 lines per hour, two were due to small
size and the other was a very large chunk of code. I did investigate the high
preparation rate inspections and found only the one with large size and high rate
to be a problem. This inspection occurred near the end of the coding phase,
when familiarity with the product and time pressure typically causes higher
preparation rates. I also compared the preparation rate distribution to the
inspection rate, shown in Figure 3.

3 This project counted source and comment lines of code – Source LOC rates were 40%

lower.

 Bull, 1999

0
1
2
3
4
5
6
7

50 100 150 200 250 300 350 400 More

Figure 3 – Inspection Rates for 30 inspections
There is an appearance of a bi-modal distribution in Figure 3. Since the data
was from inspection of “new” code (the new modules developed specifically for
this product) as well as changes to the existing base, I divided the preparation
rates into two classes, with the results of Figure 4.

New

0
1
2

3
4
5

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

M
or

e

Changed

0

1

2

3

4

5

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

M
or

e

Figure 4 – New vs Changed Inspection Rates
I expect new code inspections to be “better behaved’ than changes to existing
code. (Many inspections of modified code are small in size, causing preparation
and inspection rates to have a larger variance. Knowledge of the changed (old)
code inspected may also have a wider variance than the new code). The
separate views in Figure 4 are typical of much of the inspection data I
investigate. The new code approximates a normal distribution as closely as you
may see with real data.

 Bull, 1999

0.0
200.0
400.0
600.0

800.0
1000.0
1200.0

1 3 5 7 9 11 13 15 17

Prep Rate

Prep UCL

X-bar

0.0

200.0

400.0

600.0

800.0

1 3 5 7 9 11 13 15 17

Moving Prep

UCLr

R-Bar

Figure 5 – XmR Chart for Preparation Rate of New Code4

There are several indications this inspection process was not in control –
Inspections 13 caused an out of control point for both the Preparation rate and
Moving Range chart. Also, the first 7 points on the Preparation rate chart are
below the mean5. When inspection 13 was investigated, the high preparation rate
was due to one of the three inspectors not preparing for the inspection. When
Inspection 13 was removed from the dataset, inspection 8 then fell outside the
Upper Control Limit. Inspection 8 had a high preparation rate due to sections of
“cut & paste” code. With Inspections 8 and 13 treated as “special causes of
variation”, the recalculated XmR charts in Figure 6 show the process is a
controlled process. There are several points to consider when performing this
analysis;

• The variation in rates may be due to either a process violation or a
work product that is unusual (in this case - no preparation by one
inspector and a work product with repeated code)

• Is there truly a special cause of variation? Look at the remaining data
critically to see if poor preparation is a problem, even if the data is
within the control limits. When the decision is made to remove a data
point from the analysis, it really has to be a “special cause”. Figure 6
shows the remaining data to be well behaved, suggesting the removal
of the 2 data points is justified.

• If the inspection or preparation rates are out of control, is the product a
possible cause of the out of limit condition (lack of time might not be a
cause of high preparation or inspection rates). A poorly written

4 A.Burr and M.Owen, Statistical Methods for Software Quality, International Thompson Computer
Press, pp114-128 explain the derivation of XmR charts
5 8 or 9 points on the same side of the mean is another test for a controlled process

 Bull, 1999

document, or ‘cut and paste” code could cause the preparation rate to
be outside the limits.

0.0

200.0

400.0

600.0

1 3 5 7 9 11 13 15

Prep Rate

Prep UCL

Ave

Figure 6 – Preparation Rate with Outliers Removed

The next step is to look at the control charts for defect density. When the
inspection process is under control, I view the defect density as an indicator of
the product quality, rather than a process indicator. All inspections (both new and
changed code) were included in Figure 7. Although not shown, the data for the
new code inspections were “better behaved” than that for inspections of changes,
since the sample sizes were more uniform and larger for the new code.

Defects/SLOC Control Chart

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

1 5 9 13 17 21 25 29

D
ef

/S
L

O
C def/LOC

Def UCL

Def LCL

Figure 7 – Defect Density Control Chart6

In preparing this chart, I used a u-chart since the sample size (area or
opportunity, in this case lines of source code) varied considerably. The U-chart
equations are:
U-bar = ΣΣui/ΣΣaI , or the total number of defects divided by the total size.
UCLu = U-bar + 3 * U bar ai− /

UCLL = U-bar - 3 * U bar ai− /
where ai is the sample size.

6 The lower control limits cannot be less than zero, although for convenience the LCL was plotted
on this chart as calculated. Once you verify the data is above the LCL, for possible values of LCL,
it is probably better to delete this line from the chart.

 Bull, 1999

What have we learned about this product and its contribution to the system
release? With two exceptions, the inspection process seems to be well
controlled. The two outliers were investigated (as were other inspection
meetings) to understand how well the inspection process was performed. The
defect data was within control limits.

The first project in the release contributed the following data:

0.0

100.0

200.0

300.0

400.0

500.0

1 5 9 13 17 21 25 29 33 37 41 45 49

Prep Rate
Prep UCL

Figure 8 – Preparation Rate – First Project
Other than the ubiquitous last inspection, this series of 51 inspections had only
one meeting here the preparation rate was out of control. Defect data was all
within control.

This data was periodically discussed with the project teams at their weekly team
meetings for several reasons. First, it sent a message that the data was being
used to make decisions on the project. Second, keeping the estimates and data
in front of the team kept them aware of the progress toward the quality targets.
Third, it was a deliberate attempt to avoid the “metrics are going into a black
hole” problem that causes metrics programs to fail.

 We now had two sets of data showing inspections were reasonably well
performed. Inspection data was then used to refine the prediction for the number
of defects remaining to be found for these products in the release. Based on the
differences in inspection process data from the second project, the inspection
effectiveness estimates for the two parts of the project were changed; higher for
the new code, and lower for the changed code. In the absence of data, this would
seem a likely thing to do, but basing the change on data rather than assumption
adds credibility to the prediction process7, as well as a baseline for future
predictions.

7 Credibility is important if you ever get into the situation where a slip in the release date is being
discussed – sometimes having data to help with the decision process will help win the discussion.

 Bull, 1999

The defect depletion chart with defects removed is shown in Figure 9. Note that
more defects were found than estimated, however we now had an actual count of
size, and replotted the estimate as shown in Figure 10.

0

100

200

300

400

500

600

700

Ana HLD LLD Code

D
ef

ec
ts

Phase Phase Inj Est

Phase Phase Expected
Removal

Phase Phase Actual
Removal

Cumul Actual Removal

Cumul Expected Removal

Cumul Inj Est

Figure 9 – Defect Depletion at End of Code Inspection

0

100

200

300

400

500

600

700

Ana HLD LLD Code

D
ef

ec
ts

Phase Phase Inj Est

Phase Phase Expected
Removal

Phase Phase Actual
Removal

Cumul Actual Removal

Cumul Expected Removal

Cumul Inj Est

Figure 10 – Replotted Defect Depletion with New Size Estimate

Defect Prediction
At this point the defect predictions can be verified. Originally based on an
estimated injection rate and size, you can apply the estimate of inspection
effectiveness to the size and injection estimates to check their reasonableness.
In the table below, I constructed three sets of data to illustrate how to verify initial
estimates with inspection data. The calculated and estimated effectiveness for
product 1 agree within 10%. Note that this “small” difference for product 1 (only
10%) translates into a 100 defect difference when entering test, which can have
a significant impact on test elapsed time and total effort estimates. This is where

 Bull, 1999

the inspection process data is important in determining which estimate to believe
– size, defect injection rate, or inspection removal effectiveness. If the inspection
process was under control, with rates that were reasonable and with the right
people in the inspections, then look to the size and injection estimates for
correction. If on the other hand, the data suggests the inspection process was
sloppy (out of control), then the effectiveness should be lowered. The amount to
lower would be based on an understanding of the inspection process

For product 1, if the inspection process were in control, I would lower the defect
or size estimate to reach a revised calculated effectiveness of 60%. This would
lower the total defects to 833. At this stage, you should have an actual code size,
so the injection rate is probably the first candidate for change. Obviously, product
3 has one or more very bad estimates. Either the injection rate is off by 2-3 to
one, the size is much smaller, or the inspections did not remove as many defects
as expected. Since at this point in the project there is an actual code size, check
to see if 1) all the code was inspected, 2) the size agrees with initial estimates, 3)
that the injection rate estimate was reasonable, or 4) the code was poorly
inspected. Product 2 seems to be on the money8.

Product Estimated
Size

Estimated
Injection Rate

Defects Removed
by Inspection9

Calculated
Effectiveness

Original
Estimated
Effectiveness

1 20 kloc 50/kloc 500 50% 60%
2 40 kloc 40/kloc 1000 62.5% 60%
3 15 kloc 40/kloc 100 16% 50%

Adjusting the Estimates
Returning to the two development projects, in the case of project one, the
adjustment caused by the size re-estimate was about 13% more defects – not a
large number, but significant as you enter the later stages of test. It may appear
that the adjustment was to make the estimates look better, however the reason
for making the pre-test data fit as well as possible is to get a better estimate of
the defects remaining in the product. The reason for the changes to the
estimates should be captured for later use in the project lessons learned, and as
input to following project estimates.

There is no hard and fast rule that I can offer when re-estimating. I look to the
data that has the most “substance”, that is, who provided it, the track record for
accuracy of previous estimates, what’s most likely to be suspect, and “estimator’s
instinct” as well as the data charts. Inspection data is the first thing I evaluate,

8 R.A. Radice, Getting to Level 4 in the CMM, a tutorial delivered at the Software Technology
Conference May 1, 1997, Salt Lake City, Utah. The case study in this tutorial relating defect
injection rates, defect removal rates, and size estimates was first presented to the author in 1991.
9 As in all cases where inspection defects are discussed, “defect” refers to a major defect, one
that could show up in test or product use if not removed.

 Bull, 1999

using both the statistical methods mentioned above, and polls of the inspection
team members to see how they think the inspections have been conducted.

Unit and Integration Test
Both projects kept accurate records of defects found during Unit and Integration
test. Both projects developed test objective matrices and developed test plans
and specifications, so we had some expectation to remove defects more
effectively than the 30-50% “norm” often quoted in the industry.

0

100

200

300

400

500

600

700

800

Ana HLD LLD Code Unit Int-1 Int-2 System Beta ES/GS

Phase Inj Est

Phase Expected
Removal

Phase Actual
Removal

Actual Removal

Expected Removal

Cumul Inj Est 10-6

Cumul Inj Est

Current
Timeline

10-6 size re-estimate

Figure 11 – Project One Defect Depletion
Figure 11 shows project one, as it was about to enter System Test (this chart is
used in our monthly project review as well as the weekly team meetings). It
shows the re-estimate for the number of defects injected, however I did not replot
the expected removal to reduce clutter on the chart. In the project reviews the
focus is on the gap between estimated injected and actual removed. More
complete charts with re-estimates of phase and cumulative data are used in
discussions with the project manager. Note the defect removal in Unit Test was
higher than estimated and that subsequently in the two phases of Integration
Test a small number of defects were removed. Without accurate defect removal
data from Unit test these low numbers would be of more concern with respect to
product quality. The Current Timeline is indicated to show the furthest stage
where the project defect removal is happening.

Evaluating Test Progress

One difficulty we all have in measuring test progress is determining how many
defects have actually been found. If a significant backlog builds up, and average

 Bull, 1999

response time lengthens, the actual number of defects removed does not give a
good picture of test progress.

Figure 12 - One View of Test Progress

Figure 12 shows one way of displaying defect removal during integration and
system test. As builds add more functionality to the release, the total estimated
defects in the product, and estimated removed, increases. The slope
continuously increases due to bad fixes (new defects are introduced) as well as
continuing corrections from previous releases. At about week 909 new
corrections are deferred until a later release to prevent unacceptable churn.

A second view of test progress factors in the backlog. To do this, you have to
know the percentage of problem reports that actually turn into defects that are
fixed. The “First-Time-Fix Ratio” can be used to provide a snapshot of the total
defects plus potential defects in test, as shown in Figure 13.

Figure 13 – A More Complete View of Test Progress

 Bull, 1999

One effect observed with this analysis is that the first-time-fix-ratio tends to lower
percentages as you get closer to the ship date, so be careful to watch the
problem to defect ratio for changes.

Figure 14 – When Can You Ship?

With the data and analysis represented by Figures 1-13, it is possible to establish
ship criteria based on defects found and predicted post ship defects10. Historical
data on the effectiveness of your test stages is necessary. The ”Quality Level” in
Figure 14 was arbitrarily set at 505, but you would want to set this based on past
history (what you can expect to do) and what your customers expect (or require).

Conclusions
You should ask two questions about any metric or analysis technique:
• Is it useful? Does it provide information that helps make decisions?
• Is it useable? Can we reasonably collect the data and do the analysis?

What we have shown in this article is that defect measurement and SPC can be
used, with minimal additional cost, to evaluate process data and product quality.
The analysis can provide useful information to project managers, release
managers, and development teams. The calculations are relatively easy to do,
and spreadsheets make the work easy (useable). The additional cost included:

• Analysis of inspection data
• Collection of unit test data
• Analysis of integration and system test data

Our inspection data is in a database, which allows extraction of the data
necessary for the inspection SPC charts by a single query. This data is inserted

10 Note post ship failure rates and defect densities are two different measures. Fenton and

Pfleeger treat this in Software Metrics, PWS Publishing Company, 1997, pp 344-348

Ship Quality Level

 Bull, 1999

into a spreadsheet template which plots preparation rate, inspection rate, and
defect density U-charts. This process takes less than 5 minutes. Unit test data
collection is not free, but the cost savings in later problem analysis and tracking
offset this cost. I estimate that on a per project basis the initial data analysis cost
is less than 1-2 hours per week. Additional cost incurred as part of specific
investigation initiated by the data analysis is not included.

Our experience in this release has been that the analysis has been useful, and
the net gain has been positive. We have focused on the process aspect of the
release as well as the normal problem resolution. The process information has
identified several “do-betters” for the next release.

As always, the numbers should be used as a guide, not as absolute rules. They
should cause you to ask questions. Knowing where to look or what to look at is
the beginning. The answers should accurately explain or resolve the process or
product quality issues.

Further Reading
In preparing this article I relied on three sources of information:
1. Statistical Methods for Software Quality, Burr and Owen
2. Understanding Statistical Process Control, Wheeler and Chambers
3. Advanced Topics in Statistical Process Control, Wheeler, SPC Press, 1995
4. Practical Software Measurement: Measuring for Process Management and

Improvement, Florac, Park, and Carleton, CMU/SEI-97-HB-003
The length of this article precluded exploring many of the details and reasoning
behind the calculations, for those interested in exploring this topic in more depth,
these references are suggested.

EDWARD F. WELLER

Edward F. Weller is a Fellow at Bull HN Information Systems in
Phoenix, Arizona, where he is responsible for the software processes
used by the GCOS8 operating systems group.

He received the IEEE Software "Best Article of the Year" award for
his September 1993, "Lessons from Three Years of Inspection Data,"
and was awarded the Best Track Presentation at the 1994
Applications of Software Measurement conference for "Using Metrics
to Manage Software Projects." He is a member of the SEI's Software
Measurements Steering Committee, the Embry Riddle University
Computing and Mathematics Industrial Advisory Board, and was the
first co-chair of the Software Inspection and Review Organization, a
special interest group promoting the use of the inspection process.

Ed has been the program chair for ASM 96 and ASM 99, and will
again be program chair for ASM 2000. He is also affiliated with
Software Technology Transition, providing consulting in the areas of
inspections, metrics, and the Capability Maturity Model. He has 30
years’ experience in hardware, test, software, and systems
engineering of large-scale hardware and software projects and is a
senior member of IEEE.

Mr. Weller received his B.S.E. in electrical engineering from the
University of Michigan, and M.S.E.E. from the Florida Institute of
Technology.

	Title Page
	Presentation Notes
	Paper
	Bio
	Return to Main Menu

