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Statistical Process Control for
Software Inspections

Cost of Poor Quality
« Software defects that escape the creation phase can
be very costly. These costs include:

— Rework ($8,000 to $40,000 *)

— Overhead Expenses

— Lost Customers

— Job Satisfaction (Fixing Problems, Late Nights)

* A Software Organization can Lose Millions of 2«
on Each Release |

We cannot afford to miss defects!!!

* According to Barry W. Boehm, ("Software Engineering Economics”,

Prentice Hall, October 1981) 5
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Statistical Process Control for
Software Inspections

FF Control Charts E

e The time tested effective tool to catch
defects. Keep track of:

- Preparation Effort = Prep Time/Amount
- Inspection Effort = Inspection Time/Amount
- Defect Density = (Major + Minor)/Amount

« NOTE: Effort variables are the inverse of traditional
preparation and inspection rates.
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Statistical Process Control
for Software Inspections

e But, traditional control charts cannot be
effective for inspections!

« They generate control limits by adding and
subtracting 3 standard deviations from the

mean.
— Lower Control Limit= m-3*s

— Center Line = m
— Upper Control Limit= m+ 3 *s

So ... why won't this work for inspections?
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Statistical Process Control
for Software Inspections

Inspection Control Charts - First Attempts

e First control charts used statistically sound
approaches. Unfortunately, managers
ignored them because they:

— possessed variable control limits, or

— variables lacked recognizable reference
distributions, or

— were designed for normally distributed (bell-shaped)
measures
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Statistical Process Control
for Software Inspections

Example - Charting Faults

* Faults obey a Poisson probability law:

— constant probability of discovering faults over lines in a
code module, say:
A0
— Mean faults (the Poisson parameter) for a code of size S
(say S=50 LOC) equals:
m=| *8$=0.1*50=5
— Standard deviation =square root of mean:
s=0n=0=2.24

NOTE: Mean and standard deviation change for
different sizes of code modules!
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Statistical Process Control
for Software Inspections

U-Charts Have Variable Centerlines
and Control Limits - Too Ugly!

U-Chart for Total Faults Control limits

depend on the

200 - module size, so it
Is difficult to even
150 - see the centerline
(green) and control
1007 limits (red). It’s
Impossible to
determine if there
0 ;J are any time

o> § 9 trends.

250

Faults

50 ~
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Statistical Process Control

for Software Inspections

Modified U-Charts For Fault Density Has
Variable Control Limits - Still Too Ugly!
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Modified U-Chart for Fault Density
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This chart at
least has a
constant
centerline. But
variable control
limits are still
difficult for the
user to interpret.
And it is still very
difficult to
assess trends.
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Statistical Process Control
for Software Inspections

Z-Charts - Inappropriate for Fault Density
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Z-Score Chart for Fault Density

This chart has
constant centerline
and limits, but is
designed for a
symmetric
variable. Poisson
variables are
decidedly NOT
symmetric. Far too
many “out of
control” signals.
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Statistical Process Control
for Software Inspections

Four steps to building control charts

1. Find stable data to characterize the
process when it is in control

* 2. ldentify the distribution type (Normal,
Poisson, etc.)

e 3. Establish the central value

e 4. Determine control limits based on cost
considerations

ASM 2001 - San Diego, CA
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Statistical Process Control
for Software Inspections

Distribution Fitting: Preparation Effort

Mean = k*Sigma Just Doesn’t Add Up!

Table 1. Control Variable Statistics

Percentiles
Control Standard 50th
Variable Mean Deviation Skewness| I1st 5th (Median) 95th  99th
Preparation
Effort 294 1.88 151 039 083 240 6.75 900
Inspection
Effort 2.78 158 0.72 064 076 240 600 652
Fault
Density 0.094 0.080 0.82 0000 0000 0088 0251 0320

ASM 2001 - San Diego, CA
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Statistical Process Control
for Software Inspections

Distribution Fitting: Preparation Effort
Control Variable is Skewed to the Right

Normal Fit to Preparation Effort Lognormal Fit to Preparation Effort

Capability Analysis of Preparation Effort

Capability Analysis of Preparation Effort
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Curve: —— Normal{Mu=2.942 Sigma=18767)

Curve: Lognormal{Theta— 0 Shape— .66 Scale— _88)

Which Distribution Would You Use, Normal or Lognormal?
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Statistical Process Control
for Software Inspections

Distribution Fitting: Preparation Effort

Find the probability distribution that best fits the control variable

Table 2A. Distribution Fit Statistics for Preparation Effort

StatEt?és Percentile Actual Exponential Gamma No:_ragj
Exponential i 0.399 0.030 0.373 0.517
C*=1550 25 0.444 0.074 0.544 0.660
p =.0084 5 0.825 0.151 0.735 0.813
Gamma 25 1.656 0.846 1.632 1.548
C*=8.79 50 2.400 2.039 2591 2.422
p = .0665 75 3.620 4.078 3.873 3.790
Log Normal 95 6.750 8.813 6.348 7.215
C’=491 97.5 8.400 10.85 7.322 8.893
p = .2964 99 9.000 13.55 8.565 11.34

13
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Statistical Process Control
for Software Inspections

Setting Control Limits

How “tight” should control limits be?

— Wide limits:
* increase risk of passing a bad product
» decrease risk of unnecessary re-inspection.

— Narrow limits:
» decrease risk of passing a bad product
e increase risk of unnecessary re-inspection.

Q. Which is the most costly error?
 A. Allowing bad product to pass inspection!

14
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Statistical Process Control
for Software Inspections

Setting Control Limits
95% Control Chart for Preparation Effort
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Statistical Process Control
for Software Inspections

Control Charts
95% Control Chart for Preparation Effort (min/Page)
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Statistical Process Control
for Software Inspections

Control Charts
95% Control Chart for Inspection Effort (min/Page)
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Statistical Process Control

for Software Inspections

Control Charts

95% Control Chart for Fault Density (Faults/Page)
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Statistical Process Control
for Software Inspections

Control Charts - Overlay Chart

Fault Density versus Effort Measures
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Statistical Process Control
for Software Inspections

Control Chart Report

Control Variables

Humber| Prep Insp. Fault Faults Inspection
Feature Release Product |Index Attend | Effort  Effort Density | Amount Major Minor| 1D Date
0000: HON_FEATURE 1150 ISH_LR 46 3 1500 1500 2.00 1 0 2 | 3965 030900
0000: HON_FEATURE 1150 ISH_LR 50 1 0.00 1260 0.1 38 4 0 | 3974 0406100
3402: SMS - Traffic 1150 ISH_LR 48 4 510 1090 2.82 22 16 46 | 3984 03M500
4068: Anonymous Call 1150 ISH_LR 47 1 0.00 1.50 0.00 K1]] 0 0 | 3966 031000
4375: Roamer Profile 1150 ISH1_LR 43 4 140  11.40 1.29 M 3 M | 3978 030800
4375: Roamer Profile 1150 ISH_LR 4 4 6.40 8.60 1.29 14 2 16 | 3979 030900
4375: Roamer Profile 1150 ISH_LR 45 4 2.00 3.00 1.20 K1]] 5 ¥ | 3980 030900
4383: ANSI-41 MRS 1150 ISH1_LR H 3 1330 400 1.00 3 0 3 | 3862 030300
44M1: Increase RPMem 1150 ISH_LR 42 4 15.00  30.00 4.00 2 4 4 | 3963 030700
T448: Circuit Switch 1150 ISH_LR 49 6 640 1740 3.93 14 T 48 | 3982 040300

Red indicates control limit violation. Especially troubling
are inspections with inadequate preparation effort.

20
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Statistical Process Control
for Software Inspections

Concluding Remarks

What should we “take home” from this presentation?
1. Missing defects is EXTREMELY costly.

2. Control charts that ignore distribution shape are:
— Difficult to understand

— Lead to erroneous conclusions

3. The four basic steps to building control charts.

4. The high cost of escaped defects require setting
narrow control limits.

ASM 2001 - San Diego, CA
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Statistical Process Control for Softwar e | nspections

Don Porter

ABSTRACT
Attempts to create user-friendly statistical process control (SPC) charts for software inspections often have
failed. A principle cause of these problemsiis the failure to recognize the asymmetric distributions of the
critical control variables, and to incorporate this fact into control chart design.

This paper provides innovative guidelines for inspections SPC. The innovations include:

- Tracking fault density = faults/(amount inspected) rather than the number of faults. Since the
number of faults follows a Poisson probability law, the fault density obeys a related exponential
distribution.

Tracking preparation and inspection efficiencies rather than rates. These are defined as (preparation
time)/(amount inspected) and (inspection time)/(amount inspected). These variables fit gamma or
lognormal distributions quite well.

The fault density chart is easy to read because the control limits remain constant for products of varying
sizes. This helps the user compare inspections over time. The effort measures provide many advantages
over their more familiar inverses. They are defined when time is zero, and their probability distributions
are recognizable.

Analysisis facilitated because all control variables are consistently normalized by amount inspected.
Thus, plot overlays help pinpoint inspections that fail to find faults, and indicate the reasons. These
benefits have overcome the disdain that some in the development community have shown for the unwieldy
chartsin the past, and has increased the stature of SPC in their eyes.
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1. Introduction

The estimated cost to fix a software defect found
after release is 100 times greater than a defect found in
the phase of origination. In software organizations, this
repair cost has been estimated to range from $8,000 to
$40,000, depending on the severity and size of the
defect.! In addition to these direct costs, there is the
cost in lost customers.

If defects can be detected at an early phase of the
software life cycle, our customers will benefit from
more timely delivery of a higher quality product.
Obvioudly, the benefits to Motorola extend beyond
improved customer satisfaction, and include large
reductionsin internal costs.

In order to improve the efficiency of the
development and inspection processes, key associated
variables must be measured. When abnorma values of
these variables are detected, a re-inspection may be
required. Further investigation may reved and remove
an assignable cause for the out of control signal.
Statistical process control (SPC) methods have been
used for decades to improve quality and processes.
Implementing SPC for the inspection process will
provide a substantial payoff.

The target audiences are the metrics and quality
anadysts who implement SPC and the decision-makers
that investigate mafunctions of the development or
inspection processes. It is hoped that a thorough
application of SPC will provide both cost savings and
insght into potential avenues for improving our
processes.

2. Moadifying Standard SPC for Code and
Document I nspections

The basic ideas behind SPC can be applied to the
inspection process. However, software products are
much different from the manufacturing products used in
most SPC applications, which are mass-produced by
machines. Instead of a uniform product, our software
engineers write and inspect products with widely
varying purposes and levels of sophistication. While the
inspection process remains the same, each observation
isunique.

1. »Software Engineering Economics’, Barry
W. Boehm, Prentice Hall, October 1981.

SPC was developed for environments where
measurements are at least approximately normaly
distributed. But the inspection variables that we monitor
will not, in genera, have such nice, bell shaped
distributions. Can SPC be modified to produce control
charts for other situations? Yes. Methods have been
developed for:

¢ Binomia, Hypergeometric, Poisson,
and other probability distributions.

e Saidly correlated variables.
¢ Cumulative measurements.

¢ Measurements that do not obey any
particular probability law.

2.1 TheTraditional Control Chart Approach

In our organization, traditional control charts for
inspections were very difficult for the end users to
understand. This traditional approach relied on a
modified "u-chart" approach, based on the Poisson
distribution for software faults. U-charts use control
limits based on a center-line = 3 standard deviations.
The standard deviation of a Poisson random variable is
the square root of the expected value. The expected
value, or number of faults found in inspection, depends
on the size of the module being inspected. The u-charts
are obtained by multiplying module size by historic fault
density to obtain the expected number of faults.
Therefore, the traditional approach yields control charts
with variable limits. While there is nothing wrong with
variable limits in principle, it makes for a very messy
control chart. Such achart is shown in Figure 1A.

Figure 1A. Variable Limits Control Chart for
Total Faults

U-Chart for Total Faults
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In the chart the red lines are the control limits, the
green line is a target vaue, and the black line and dots
are the data values. The wider control limits apply to
inspections of more lines of code, hence a greater
expected value and standard deviation. End users of the
charts found the logic of variable limits charts difficult
to grasp. Also, these charts made it very difficult for
them to assess progress over time. Does the chart in
figure 1A show that things are getting better or worse?

One attempt to improve the readability of the u-chart
was to divide faults by module size to get fault density.
The standard deviation of this variable is obtained by
dividing the standard deviation of faults by module size
as well. This modified u-chart helped somewhat. At
least the center-line was now constant. The control
limits were ill variable, however. Unlike chart 1A, the
modified u-chart in figure 1B has wider limits for smaller
sized modules, reflecting the fact that smaller modules
could result in much higher fault densities. For example,
five errors in a module with 20 lines of code would
result in a fault density of .25. But given an historica
fault density of about .1, it would be extremely unlikely
to find 50 errorsin amodule of size 250.

Figure 1B. Modified U-Chart for Fault Density

Modified U-Chart for Fault Density
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The chart in figure 1B is easer to read, but the
variable control limits are ill difficult for the end user
to relate to. One ingpection could have a fault density
that was outside the upper limit, yet be lower than other
fault dengities. Chart 1B is till not intuitive.

Another attempt to ameliorate the problem was to
use a "z-chart". This type of chart standardizes the
vaues by subtracting the mean and dividing by the
standard deviation. The result is shown in Figure 1C.

Figure 1C. A Z-Chart for Fault Density

Z-Score Chart for Fault Density
90
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i O A AT PVl v
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T N o m o o N ®
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Index

The contral limits are now stabilized, but problems
remain. Fird, the user has little intuitive fed for data
vaues in the range -3 to +3. Second, z-charts are
designed for variables that have norma (bell-shaped)
distributions. For such distributions over 99% of the
data should lie between -3 and +3. The fault densities in
figure 1C obvioudy have a highly skewed nature.
Therefore, neither this z-chart nor any other chart that
assumes a norma distribution will be adequate for the
task of dtisticaly controlling faults or fault density.
What the end users needed were accurate control charts
in the originad data units with control limits that they
could relate to.
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2.2 New I nspection Control Chart Approach

Clearly, a new approach was needed. No matter
what the distribution of the measurement, constructing
and applying control charts involves the same concepts:

1. What isthe distribution of in-control vaues?

2. What isthe centra or target value?

3. How tight should the control limits be? What is
the cost trade-off between risking intervention
when the process is in control versus not
intervening when it is out of control?

4. How can accumulated historica data be used to
improve the process and perhaps recalculate
tighter control limits?

Three new control variables were chosen, each one
normalized by the amount inspected. They are:

1. Preparation Effort = (Total Preparation Time) /
(Amount Inspected)

2. Inspection Effort = [(Total Meeting
Duration)* (Total Number of Inspectors)] /
(Amount Inspected)

3. Fault Density = (Total Number of Mgjor Faults
+ Tota Number of Minor Faults) / (Amount
Inspected)

Time is measured in minutes, amount ingpected in
pages for document inspections and non-comment lines
of code for code inspections. Mgjor and minor faults
are included in the fault density caculation. There are
two reasons for this:

¢ All faultsimpact the customers.

¢ Thedistinction between major and minor
is often obscure, and is at times abused
for convenience.

Traditiondly, preparation and inspection rates have
been expressed as amount / time, the inverse of the
"efficiencies’ presented here. The problems with the
traditional representation are:

1 A time vaiable may be zero, yielding an

undefined control varigble.

2. Time is the random variable, while amount
inspected is a fixed, normalizing variable. The
inverse of a random variable is inevitably more
difficult to andyze, especidly if it's range
includes zero. Indeed, the time rates above will
be shown to obey wel-known probability
digtributions. This is not the case with their

inverses.

The first two varisbles are measures of the
inspection process itself. The third control variable may
measure either the development or the inspection
process. That is, alow fault density may be the result of
very good development. But it could indicate an
inspection so cursory that it fails to detect faults present
in the code or document. As an inspection process
becomes more repestable the variability of the effort
variables will be reduced, which would be reflected in
tighter control limits.

The contral variables are al normalized by amount
inspected. Thus, control charts have limits based on
time (or faults) per-unit inspected. Large modules
require more time, and have more faults, than small
ones. If control charts used non-normalized values, the
central values and limits would depend on module size
and vary widely.

Since dl three varigbles are smilarly normalized,
overlay plots can provide a "poor-man's' multivariate
chart, as will be seen below.

3. Example of SPC Applied to Softwar e I nspections

The data consists of 43 observations on code
inspections for a recent software release, recorded
between April 1997 and August 1998. Only code
inspections of 20 lines or more were included, since
small code inspections can lead to absurdly high vaues
of the three control variables defined above. Output is
displayed to guide the selection of distributions. The
control charts themselves appear in figures 4-6 below.

Table 1 provides information on the three control
variables. This table gives the descriptive statistics of
mean, median, standard deviation and skewness, as well
as some selected percentile points. A symmetric
distribution has a skewness coefficient of zero. Positive
skewness indicates a distribution with a longer right tail
than left. It is important to recognize non-symmetric
distributions, since control charts based on assumed
symmetry would then produce too many false out of
control signals. Table 1 shows that the inspection
control variables do not possess the bell-shaped,
symmetric distributions used in classical control charts.

Page 4 of 12



Table 1. Control Variable Statistics

Per centiles
Control Standard 50th
Variable Mean Deviation Skewness| 1st 5th (Median)  95th 99th
Preparation
Effort 294 188 151 0.39 0.83 240 6.75 9.00
Inspection
Effort 2.78 158 0.72 0.64 0.76 240 6.00 6.52
Fault
Density 0.094  0.080 0.82 0.000 0.000 0.088 0251  0.320

Each of the control chart variables exhibits a
substantial  right skew. Note that the standard
deviation of each is much too large to dlow a
lower control limit more than 1.5 sandard
deviations below the mean. When dedling with
such non-normal data, there are two options:

¢ Transform the variable into a
normal shape and present the
transformed variablein the
control chart.

¢ Base control chart limits on the
percentiles of the original
variables, and present in the
original metric.

The latter approach benefits those interested in
the chart varisbles They have an intimate
knowledge of the data, and can relate more
intuitively to the second type of chart.

3.1 Determining the Distributions of Control
Variables

This report was prepared using a dtatistical
package that fits severa probability distributions.
The useful distributions for these control variables
are the Lognormal, Exponentiad and Gamma. Chi-
Square tests are used for statistical comparisons.

3.1.1 Preparation Effort

Table 2A gives the results of the distribution
fitting for preparation effort. The first column
provides the forma doatistica tests, including
distribution name, Chi-Square test statistic, and p-
vaues. A small p-value indicates that the data does
not fit the distribution well. Actud and fitted
percentile points fill out the rest of the table. For
example, the first row shows that 1% of
preparation efficiencies are less than or equal to
.399 minutes per line of code. The next three rows
give the fitted percentiles for each of three
distributions.

According to Table 2A, the Lognorma
distribution gives the best statistical fit, since it has
the smallest Chi-Square test statistic and largest p-
vaue. But it is aso important to check the extreme
points, since these are where the control limits will
lie. Here the results are mixed. The Gamma
distribution comes closest to the actual 1% and
2.5" percentile points, but the Lognormal comes
closest to the 97.5" and 99™ percentiles. Low
values will be flagged as "out of control” more
often with the Lognorma limits than the Gamma,
but the reverse is true for large preparation
efficiencies. Figures 2A and 2B show histograms
of preparation efficiencies with superimposed
distributions.
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Table 2A. Distribution Fit Statistics for Preparation Effort

Test . . Log
Statistics Percentile Actud Exponentia Gamma Normal
Exponential 1 0.399 0.030 0.373 0.517
C*=1550 2.5 0.444 0.074 0.544 0.660
p =.0084 5 0.825 0.151 0.735 0.813
Gamma 25 1.656 0.846 1632 1548
C’=879 50 2400 2039 2501 2422
p =.0665 75 3.620 4.078 3.873 3.790
Log Norma 95 6.750 8.813 6.348 7.215
C’=491 975 8.400 10.85 7.322 8.893
p=.2964 9 9.000 1355 8.565 1134

Figure 2A. Gamma Fit to Preparation Effort
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Figure 2B. Lognormal Fit to Preparation
Effort

At o1 BTG oy

EELLET T

- ae Ee s Fe e o
e T

S Lirggressrremi i Thesis 0 BSmpse 89 Swes S0

Figures 2A and 2B show that either the gamma
or lognormal distributions give a good fit to the
data. In fact, Lognorma and Gamma distributions
tend to be very similar in shape.

3.1.2 Inspection Effort

Table 2B gives the results of the distribution
fitting exercise for inspection effort. The Gamma
distribution gives the best fit, with the Lognormal
providing a datisticaly sound fit as well.
However, when the endpoints are compared, the
Gamma provides better control limits. The
exponential distribution is clearly poor. Figures
3A and 3B compare the Log Normal and Gamma
curves to the inspection effort histogram.

Given the tossup between the Gamma and
Lognorma distributions, two points are worth
considering:

1. The Gamma distribution can be expressed as
a sum of exponentia random variables. The
exponentia probability distribution models the
time or distance between faults, so total
preparation or inspection time should be well
approximated by a Gamma distribution.

2. On the other hand, the lognormal distribution
is easer to work with and easier to
communiceate.

Given these considerations, the author fedls that
the Lognormal would be a good choice here.
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Table 2B. Distribution Fit Statistics for Inspection Effort

Test . . Log
Statistics Percentile Actud Exponentia Gamma Normal
Exponential 1 0.638 0.028 0.405 0.537
C*=16.96 2.5 0.675 0.071 0.574 0.677
p =.0046 5 0.761 0.143 0.759 0.826
Gamma 25 1.748 0.801 1.603 1525
C’=144 50 2400 1.930 2482 2.336
p = .0061 75 3.600 3.860 3.639 3577
Log Norma 95 6.000 8.342 5.844 6.604
C’=16.06 975 6.000 10.27 6.707 8.060
p =.0029 9 6.522 12.82 7.803 10.90

Figure 3A. Gamma Fit to Inspection Effort
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3.1.3 Fault Density

Table 2C provides the satistics and
percentile points for the fault density, and
Figures 4A and 4B provide a graphica view of

the fits.

Figure 3B. Lognormal Fit to I nspection
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The table shows that the Lognorma
ditribution is clearly out of the running for fault
density. The exponentid gives the best fit
satigtically, followed by the Gamma. When the
percentile points of these two distributions are
compared, the Exponentid is a clear winner,
especidly in the endpoint regions.
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Table 2C. Distribution Fit Statistics for Fault Density

Test . . Log
Statistics Percentile Actud Exponentia Gamma Normal
Exponentia 1 .00001 .00094 .00001 .00001
C*=9.13 25 .00001 .00237 .00004 .00004
p =.0580 5 .00001 .00481 .00019 .00010
Gamma 25 0.0127 0.0270 0.0073 0.0024
Cc’=173 50 0.0879 0.0650 0.0381 0.0218
p = .0006 75 0.1500 0.1299 0.1213 0.1984
Log Norma 95 0.2514 0.2807 0.3753 4.7412
C’=61.6 975 0.2857 0.3457 0.4968 13.289
p =.0001 9 0.3200 0.4315 0.6632 44.051
~Figure 4A. Exponential Fit to Fault Density Figure 4B. Gamma Fit to Fault Density
CARRETY AAElytiE OF MRl DEOeEy e Dy ATy e G Vel Dt
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The figures seem to indicate that the gamma gives a
better fit, but this is an artifice of the manner in which
the datistical software package produces histogram
intervals. There is dso a compelling theoretical reason to
accept the exponential model. Total faults in a code
module possess a Poisson probability distribution,
characterized by a constant rate of fault introduction. By
definition, the fault dendity is that rate of fault
introduction. Since the waiting time between Poisson
events has an exponentia distribution, it is not surprising
that the fault density iswell modeled by this distribution.
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3.2 Control Charts

The best fitting distributions are used to determine
the center-line and limits for the control charts. Exactly
where to set the limits is a decision made after careful
consideration of costs. For software development, there
are two possible errors one can make:

1. Deciding to re-ingpect when the code was well

written and properly inspected.

2. Concluding the code is good and the inspection

properly performed when ether rewriting the
code or re-inspection isin order.

If the first mistake is more costly than the second
control limits should be wide, making a re-write or re-
inspection less likely. In software development, the
opposite is generdly the case. As the introduction made
clear, the cost of allowing a fault to escape detection is
high compared to the cost of re-inspection. So control
limits for preparation and inspection efficiencies were
set at the estimated 2.5" and 97.5" percentile points.
This means that 5% of the good code will be re-

inspected.

In the following control charts, green lines represent
the 50th percentile, and red lines the control limits.
Notice that the vertica axes for the effort measures are
scaled logarithmically. Tables 2A, 2B and 2C provided
the control limits for the charts in figures 5, 6 and 7,

respectively.

Preparation Effort
Figure 5 shows the chart for preparation effort.

There are four unusualy low vaues, indicating
inadequate preparation time. The last section of this
paper will provide actions that the decision-maker might
wish to consider.

Inspection Effort
The chart for inspection effort aso shows some

lower out of bound signals. Some of these correspond
to the low points in the preparation effort chart.

Fault Density
The chart for fault density only has a center-line and

an upper control limit. It is not at al uncommon for code
modules to be error-free, so we do not need a lower
limit. Figure 6 shows two code modules with
exceptionally high fault densities.
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3.3 Responding to an Out-of-Control Signal

When the preparation or inspection effort variables
exceed the upper limit, the inspection process has taken
an abnormd length of time. This may indicate that:

1. The document or code module is unusualy

difficult to inspect.

2. The inspection process is not being performed

in accordance with a sandard, repeatable
process.

If #1, attention should be paid to the defect density.
If that dengity is quite high, (even if it is within its
control limit), the product may require rework. Thisis a
judgment call that requires some experience on the part
of the decision-maker.

If #2, then an investigation should be undertaken. Do
inspections facilitated by the same moderator tend to
have very high prep or inspection efficiencies? Is this
document inherently difficult to understand? Maybe the
document author tends to write in a very difficult
manner and needs to take a business writing class. The
inspections database contains a rich set of
adminigtrative variables to facilitate this type of root
cause analysis. Another option is to perform analysis of
variance to see if the control variables differ significantly
for some categories, such as coding language.

If the fault density exceeds the upper control limit
there is a clear indication of a poorly written document
or code module. Thisis especidly true if the preparation
and/or inspection efficiencies are aso low, for the
inspectors found a large number of faults without
expending a lot of time. The inspected product should
be returned to its author for rework.

If the preparation or inspection effort is too low,
there is a possibility that the inspection has not been
thorough. The decision-maker should check the fault
density. If thisis very low, it is likely that the product
needs to be re-inspected. On the other hand, the
document or code may be very straightforward, in
which case it is understandable that the control variables
would take low vaues.

Unusualy low fault densties could indicate that a
segment of code was exceptionaly well written. One
would in fact be very confident of this conclusion if the
inspection was very thorough. On the other hand, an
extremely low fault dendty will more likely indicate a
poor inspection performance when accompanied by low

preparation or inspection efficiencies. Therefore, one
must consider dl three variables before making a
decision to re-inspect

The decisions considered in this section require
smultaneous review of al control variables. Overlay
plots are especidly useful in this regard. Two such plots
are given in figures 8A and 8B. Three points stand out in
the overlay charts. These are the 39, 33, and 43 points.
They are characterized by low fault densities, and low
preparation and inspection rates. This is a warning that
the low number of faults is perhaps due more to a poor
effort than it is to a good module. The manager of the
inspection team should investigate to determine the root
cause.

Figure 8A: Overlay Chartsfor Fault Density and
Preparation Effort
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Inspection Effort
In contrast, a point such as 19 shows zero faults, but
adequate preparation and inspection efficiencies.
Therefore, the low faults can be attributed to a superior
product rather than insufficient inspection effort.
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5. Glossary

Control Chart Terminology

Assignabl A shift of the process level or an Out of A date in which a process is

e Cause increase  in  process variability Control producing  output that is
assignable to a specific reason, as inconsistent with its  expected
opposed to the random variatior distribution. This may result from a
commonly associated with  the shift of the distribution of output
process. vaues or from an increase in its

vaiability.

Center A horizontd control chart line

Line representing the average value of Outlier A number tha is inconsistent
the process. with the other valuesin asample.

Control A graphica characterization of Random A process will not produce

Chart measured process outputs (see Cause identicd  vaues every time
figure 2 on page 4 below). Control Outputs vary randomly, in
charts present limits that are based accordance with an underlying
on the current distribution of output probability  distribution. Such
values. When observed process variahility cannot be assigned to a
values fall indde these limits, the specific cause, and is accepted as
processis declared "in control". uncontrollable within the scope of

the current process.

Control A set of one or two horizonta

Limits lines on a control chart. When an Target Can refer to the desired level of
observed process vaue is either process output ("voice of the
greater than the upper control limit customer"). For control charts, it
or is less than the lower control commonly refers to the expected
limit, the process is declared "out level of the process, and provides
of control”. the centerline of the chart.

In control A date in which a process is

producing output consistent with its
expected distribution.
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Statistical Terms

M ean

Per centile

A measure of central tendency,
given by the arithmetic average of a
set of values. For a random
variable, the mean is aso caled the
expected value.

When a sample is arranged in
ascending order (order statistics)
percentiles can be determined.
For a given percentage P, the
associated percentile is a vaue
such that P% of all values are less
than or equa to that percentile.
For example, consider the set of
eight numbers {2, 5, 5, 9, 11, 15,
16, 22}. The 25th percentile (1st
Quartile) is 5. The 50th percentile
(the 2nd Quartile or Median) is 10,
and the 75th percentile is 15.5.
Note that 15.8 could also serve as
the 75th percentile. There are a
variety of methods ~ for
interpolating between vaues in a
cae like this, but they differ little.

Typel Error

Typell Error
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When testing an hypothesis of
the form HO: Population Mean = k,
a type | error occurs when one
rejects HO when, in fact, the mean is
equal to k. In terms of control
charts, a type | error occurs when
we conclude the process mean has
moved from centerline when it has
not.

When testing an hypothesis of
the form HO: Populaion Mean =
k, atype Il error occurs when one
accepts HO when, in fact, the
mean is not equal to k. In terms
of control charts, a type Il error
occurs when we conclude the
process mean has remained at the
centerline when it has actudly
drifted.
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