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• Software defects that escape the creation phase can
be very costly. These costs include:
– Rework ($8,000 to $40,000 * )

– Overhead Expenses

– Lost Customers

– Job Satisfaction (Fixing Problems, Late Nights)

• A Software Organization can Lose Millions of
 on Each Release

We cannot afford to miss defects!!!

Cost of Poor Quality

* According to Barry W. Boehm, ("Software Engineering Economics",
Prentice Hall, October 1981)

Statistical Process Control for
Software Inspections
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• The time tested effective tool to catch
defects. Keep track of:
• Preparation Effort = Prep Time/Amount
• Inspection Effort   = Inspection Time/Amount
• Defect Density      = (Major + Minor)/Amount

• NOTE: Effort variables are the inverse of traditional
preparation and inspection rates.

FF  Control Charts  EE

Statistical Process Control for
Software Inspections
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Statistical Process Control
for Software Inspections

• But, traditional control charts cannot be
effective for inspections!

• They generate control limits by adding and
subtracting 3 standard deviations from the
mean.
– Lower Control Limit =  µµ - 3 * σσ
– Center Line =  µµ
– Upper Control Limit =  µµ + 3 * σσ

So ... why won’t this work for inspections?
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Statistical Process Control
for Software Inspections

• First control charts used statistically sound
approaches. Unfortunately, managers
ignored them because they:
– possessed variable control limits, or

– variables lacked recognizable reference
distributions, or

– were designed for normally distributed (bell-shaped)
measures

Inspection Control Charts - First Attempts
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Statistical Process Control
for Software Inspections

• Faults obey a Poisson probability law:
– constant probability of discovering faults over lines in a

code module, say:   
λλ = 0.1

– Mean faults (the Poisson parameter) for a code of size S
(say S=50 LOC) equals:  

µµ = λλ * S = 0.1 * 50 = 5
– Standard deviation =square root of mean:

σσ = √µ√µ = √√5 = 2.24

NOTE: Mean and standard deviation change for
different sizes of code modules!

Example - Charting Faults
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Statistical Process Control
for Software Inspections

U-Charts Have Variable Centerlines
and Control Limits - Too Ugly!

U-Chart for Total Faults
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Control limits
depend on the
module size, so it
is difficult to even
see the centerline
(green) and control
limits (red). It’s
impossible to
determine if there
are any time
trends.
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Statistical Process Control
for Software Inspections

Modified U-Charts For Fault Density Has
Variable Control Limits - Still Too Ugly!

Modified U-Chart for Fault Density
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This chart at
least has a
constant
centerline. But
variable control
limits are still
difficult for the
user to interpret.
And it is still very
difficult to
assess trends.
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Statistical Process Control
for Software Inspections

Z-Charts - Inappropriate for Fault Density
Z-Score Chart for Fault Density
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This chart has
constant centerline
and limits, but is
designed for a
symmetric
variable. Poisson
variables are
decidedly NOT
symmetric. Far too
many “out of
control” signals.
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Statistical Process Control
for Software Inspections

• 1. Find stable data to characterize the
process when it is in control

• 2. Identify the distribution type (Normal,
Poisson, etc.)

• 3. Establish the central value

• 4. Determine control limits based on cost
considerations

Four steps to building control charts
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Statistical Process Control
for Software Inspections

Mean ±± k*Sigma Just Doesn’t Add Up!
Table 1. Control Variable Statistics

Percentiles
Control
Variable Mean

Standard
Deviation Skewness 1st 5th

50th
(Median) 95th 99th

Preparation
Effort 2.94 1.88 1.51 0.39 0.83 2.40 6.75 9.00

Inspection
Effort 2.78 1.58 0.72 0.64 0.76 2.40 6.00 6.52

Fault
Density 0.094 0.080 0.82 0.000 0.000 0.088 0.251 0.320

Distribution Fitting: Preparation Effort



ASM 2001 - San Diego, CA
12

Statistical Process Control
for Software Inspections

Control Variable is Skewed to the Right

Which Distribution Would You Use, Normal or Lognormal?

Normal Fit to Preparation Effort Lognormal Fit to Preparation Effort

Distribution Fitting: Preparation Effort
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Statistical Process Control
for Software Inspections

Find the probability distribution that best fits the control variable

Table 2A. Distribution Fit Statistics for Preparation Effort
Test

Statistics
Percentile Actual Exponential Gamma

Log
Normal

1 0.399 0.030 0.373 0.517
2.5 0.444 0.074 0.544 0.660

Exponential
ΧΧ2 = 15.50
p = .0084 5 0.825 0.151 0.735 0.813

25 1.656 0.846 1.632 1.548
50 2.400 2.039 2.591 2.422

Gamma
ΧΧ2 = 8.79
p = .0665 75 3.620 4.078 3.873 3.790

95 6.750 8.813 6.348 7.215
97.5 8.400 10.85 7.322 8.893

Log Normal
ΧΧ2 = 4.91
p = .2964 99 9.000 13.55 8.565 11.34

Distribution Fitting: Preparation Effort
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Statistical Process Control
for Software Inspections

How “tight” should control limits be?
– Wide limits:

• increase risk of passing a bad product
• decrease risk of unnecessary re-inspection.

– Narrow limits:
• decrease risk of passing a bad product
• increase risk of unnecessary re-inspection.

• Q. Which is the most costly error?
• A. Allowing bad product to pass inspection!

Setting Control Limits
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Statistical Process Control
for Software Inspections

95% Control Chart for Preparation Effort
97.5th Percentile

50th Percentile

 2.5th Percentile

Setting Control Limits
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Statistical Process Control
for Software Inspections

95% Control Chart for Preparation Effort (min/Page)

Control Charts
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Statistical Process Control
for Software Inspections

Control Charts
95% Control Chart for Inspection Effort (min/Page)
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Statistical Process Control
for Software Inspections

Control Charts
95% Control Chart for Fault Density (Faults/Page)
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Statistical Process Control
for Software Inspections

Fault Density versus Effort Measures

 Prep Effort Lower
Control Limit

P = Prep Effort

I = Insp Effort

o = Fault Density

Control Charts - Overlay Chart
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Statistical Process Control
for Software Inspections

Control Chart Report

Red indicates control limit violation. Especially troubling
are inspections with inadequate preparation effort.
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Statistical Process Control
for Software Inspections

• What should we “take home” from this presentation?

• 1. Missing defects is EXTREMELY costly.
• 2. Control charts that ignore distribution shape are:

– Difficult to understand
– Lead to erroneous conclusions

• 3. The four basic steps to building control charts.
• 4. The high cost of escaped defects require setting

narrow control limits.

Concluding Remarks
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Statistical Process Control for Software Inspections

Don Porter

ABSTRACT
Attempts to create user-friendly statistical process control (SPC) charts for software inspections often have
failed. A principle cause of these problems is the failure to recognize the asymmetric distributions of the
critical control variables, and to incorporate this fact into control chart design.

This paper provides innovative guidelines for inspections SPC. The innovations include:
• Tracking fault density = faults/(amount inspected) rather than the number of faults. Since the

number of faults follows a Poisson probability law, the fault density obeys a related exponential
distribution.

• Tracking preparation and inspection efficiencies rather than rates. These are defined as (preparation
time)/(amount inspected) and (inspection time)/(amount inspected). These variables fit gamma or
lognormal distributions quite well.

The fault density chart is easy to read because the control limits remain constant for products of varying
sizes. This helps the user compare inspections over time. The effort measures provide many advantages
over their more familiar inverses. They are defined when time is zero, and their probability distributions
are recognizable.

Analysis is facilitated because all control variables are consistently normalized by amount inspected.
Thus, plot overlays help pinpoint inspections that fail to find faults, and indicate the reasons. These
benefits have overcome the disdain that some in the development community have shown for the unwieldy
charts in the past, and has increased the stature of SPC in their eyes.
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1. Introduction

The estimated cost to fix a software defect found
after release is 100 times greater than a defect found in
the phase of origination. In software organizations, this
repair cost has been estimated to range from $8,000 to
$40,000, depending on the severity and size of the
defect.1 In addition to these direct costs, there is the
cost in lost customers.

If defects can be detected at an early phase of the
software life cycle, our customers will benefit from
more timely delivery of a higher quality product.
Obviously, the benefits to Motorola extend beyond
improved customer satisfaction, and include large
reductions in internal costs.

In order to improve the efficiency of the
development and inspection processes, key associated
variables must be measured. When abnormal values of
these variables are detected, a re-inspection may be
required. Further investigation may reveal and remove
an assignable cause for the out of control signal.
Statistical process control (SPC) methods have been
used for decades to improve quality and processes.
Implementing SPC for the inspection process will
provide a substantial payoff.

The target audiences are the metrics and quality
analysts who implement SPC and the decision-makers
that investigate malfunctions of the development or
inspection processes. It is hoped that a thorough
application of SPC will provide both cost savings and
insight into potential avenues for improving our
processes.

2. Modifying Standard SPC for Code and
Document Inspections

The basic ideas behind SPC can be applied to the
inspection process. However, software products are
much different from the manufacturing products used in
most SPC applications, which are mass-produced by
machines. Instead of a uniform product, our software
engineers write and inspect products with widely
varying purposes and levels of sophistication. While the
inspection process remains the same, each observation
is unique.

1. "Software Engineering Economics", Barry
W. Boehm, Prentice Hall, October 1981.

SPC was developed for environments where
measurements are at least approximately normally
distributed. But the inspection variables that we monitor
will not, in general, have such nice, bell shaped
distributions. Can SPC be modified to produce control
charts for other situations? Yes. Methods have been
developed for:

• Binomial, Hypergeometric, Poisson,
and other probability distributions.

• Serially correlated variables.

• Cumulative measurements.

• Measurements that do not obey any
particular probability law.

2.1 The Traditional Control Chart Approach

In our organization, traditional control charts for
inspections were very difficult for the end users to
understand. This traditional approach relied on a
modified "u-chart" approach, based on the Poisson
distribution for software faults. U-charts use control
limits based on a center-line ± 3 standard deviations.
The standard deviation of a Poisson random variable is
the square root of the expected value. The expected
value, or number of faults found in inspection, depends
on the size of the module being inspected. The u-charts
are obtained by multiplying module size by historic fault
density to obtain the expected number of faults.
Therefore, the traditional approach yields control charts
with variable limits. While there is nothing wrong with
variable limits in principle, it makes for a very messy
control chart.  Such a chart is shown in Figure 1A.

Figure 1A. Variable Limits Control Chart for
Total Faults

U-Chart for Total Faults
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In the chart the red lines are the control limits, the
green line is a target value, and the black line and dots
are the data values. The wider control limits apply to
inspections of more lines of code, hence a greater
expected value and standard deviation. End users of the
charts found the logic of variable limits charts difficult
to grasp. Also, these charts made it very difficult for
them to assess progress over time. Does the chart in
figure 1A show that things are getting better or worse?

One attempt to improve the readability of the u-chart
was to divide faults by module size to get fault density.
The standard deviation of this variable is obtained by
dividing the standard deviation of faults by module size
as well. This modified u-chart helped somewhat. At
least the center-line was now constant. The control
limits were still variable, however. Unlike chart 1A, the
modified u-chart in figure 1B has wider limits for smaller
sized modules, reflecting the fact that smaller modules
could result in much higher fault densities. For example,
five errors in a module with 20 lines of code would
result in a fault density of .25. But given an historical
fault density of about .1, it would be extremely unlikely
to find 50 errors in a module of size 250.

Figure 1B. Modified U-Chart for Fault Density

The chart in figure 1B is easier to read, but the
variable control limits are still difficult for the end user
to relate to.  One inspection could have a fault density
that was outside the upper limit, yet be lower than other
fault densities. Chart 1B is still not intuitive.

Another attempt to ameliorate the problem was to
use a "z-chart". This type of chart standardizes the
values by subtracting the mean and dividing by the
standard deviation. The result is shown in Figure 1C.

Figure 1C. A Z-Chart for Fault Density

The control limits are now stabilized, but problems
remain. First, the user has little intuitive feel for data
values in the range -3 to +3. Second, z-charts are
designed for variables that have normal (bell-shaped)
distributions. For such distributions over 99% of the
data should lie between -3 and +3. The fault densities in
figure 1C obviously have a highly skewed nature.
Therefore, neither this z-chart nor any other chart that
assumes a normal distribution will be adequate for the
task of statistically controlling faults or fault density.
What the end users needed were accurate control charts
in the original data units with control limits that they
could relate to.

Modified U-Chart for Fault Density

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Index

Fa
ul

t D
en

sit
y

Z-Score Chart for Fault Density
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2.2 New Inspection Control Chart Approach

Clearly, a new approach was needed. No matter
what the distribution of the measurement, constructing
and applying control charts involves the same concepts:

1. What is the distribution of in-control values?
2. What is the central or target value?
3. How tight should the control limits be? What is

the cost trade-off between risking intervention
when the process is in control versus not
intervening when it is out of control?

4. How can accumulated historical data be used to
improve the process and perhaps recalculate
tighter control limits?

Three new control variables were chosen, each one
normalized by the amount inspected. They are:

1. Preparation Effort = (Total Preparation Time) /
(Amount Inspected)

2. Inspection Effort = [(Total Meeting
Duration)*(Total Number of Inspectors)] /
(Amount Inspected)

3. Fault Density = (Total Number of Major Faults
+ Total Number of Minor Faults) / (Amount
Inspected)

Time is measured in minutes, amount inspected in
pages for document inspections and non-comment lines
of code for code inspections. Major and minor faults
are included in the fault density calculation.  There are
two reasons for this:

• All faults impact the customers.

• The distinction between major and minor
is often obscure, and is at times abused
for convenience.

Traditionally, preparation and inspection rates have
been expressed as amount / time, the inverse of the
"efficiencies" presented here. The problems with the
traditional representation are:

1. A time variable may be zero, yielding an
undefined control variable.

2. Time is the random variable, while amount
inspected is a fixed, normalizing variable. The
inverse of a random variable is inevitably more
difficult to analyze, especially if it's range
includes zero. Indeed, the time rates above will
be shown to obey well-known probability
distributions. This is not the case with their

inverses.

The first two variables are measures of the
inspection process itself. The third control variable may
measure either the development or the inspection
process. That is, a low fault density may be the result of
very good development. But it could indicate an
inspection so cursory that it fails to detect faults present
in the code or document. As an inspection process
becomes more repeatable the variability of the effort
variables will be reduced, which would be reflected in
tighter control limits.

The control variables are all normalized by amount
inspected. Thus, control charts have limits based on
time (or faults) per-unit inspected. Large modules
require more time, and have more faults, than small
ones. If control charts used non-normalized values, the
central values and limits would depend on module size
and vary widely.

Since all three variables are similarly normalized,
overlay plots can provide a "poor-man's" multivariate
chart, as will be seen below.

3. Example of SPC Applied to Software Inspections

The data consists of 43 observations on code
inspections for a recent software release, recorded
between April 1997 and August 1998. Only code
inspections of 20 lines or more were included, since
small code inspections can lead to absurdly high values
of the three control variables defined above. Output is
displayed to guide the selection of distributions. The
control charts themselves appear in figures 4-6 below.

Table 1 provides information on the three control
variables. This table gives the descriptive statistics of
mean, median, standard deviation and skewness, as well
as some selected percentile points. A symmetric
distribution has a skewness coefficient of zero. Positive
skewness indicates a distribution with a longer right tail
than left. It is important to recognize non-symmetric
distributions, since control charts based on assumed
symmetry would then produce too many false out of
control signals. Table 1 shows that the inspection
control variables do not possess the bell-shaped,
symmetric distributions used in classical control charts.
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Table 1. Control Variable Statistics
Percentiles

Control
Variable Mean

Standard
Deviation Skewness 1st 5th

50th
(Median) 95th 99th

Preparation
Effort 2.94 1.88 1.51 0.39 0.83 2.40 6.75 9.00

Inspection
Effort 2.78 1.58 0.72 0.64 0.76 2.40 6.00 6.52

Fault
Density 0.094 0.080 0.82 0.000 0.000 0.088 0.251 0.320

Each of the control chart variables exhibits a
substantial right skew. Note that the standard
deviation of each is much too large to allow a
lower control limit more than 1.5 standard
deviations below the mean. When dealing with
such non-normal data, there are two options:

• Transform the variable into a
normal shape and present the
transformed variable in the
control chart.

• Base control chart limits on the
percentiles of the original
variables, and present in the
original metric.

The latter approach benefits those interested in
the chart variables. They have an intimate
knowledge of the data, and can relate more
intuitively to the second type of chart.

3.1 Determining the Distributions of Control
Variables

This report was prepared using a statistical
package that fits several probability distributions.
The useful distributions for these control variables
are the Lognormal, Exponential and Gamma. Chi-
Square tests are used for statistical comparisons.

3.1.1 Preparation Effort

Table 2A gives the results of the distribution
fitting for preparation effort. The first column
provides the formal statistical tests, including
distribution name, Chi-Square test statistic, and p-
values. A small p-value indicates that the data does
not fit the distribution well. Actual and fitted
percentile points fill out the rest of the table. For
example, the first row shows that 1% of
preparation efficiencies are less than or equal to
.399 minutes per line of code. The next three rows
give the fitted percentiles for each of three
distributions.

According to Table 2A, the Lognormal
distribution gives the best statistical fit, since it has
the smallest Chi-Square test statistic and largest p-
value. But it is also important to check the extreme
points, since these are where the control limits will
lie. Here the results are mixed. The Gamma
distribution comes closest to the actual 1st and
2.5th percentile points, but the Lognormal comes
closest to the 97.5th and 99th percentiles. Low
values will be flagged as "out of control" more
often with the Lognormal limits than the Gamma,
but the reverse is true for large preparation
efficiencies. Figures 2A and 2B show histograms
of preparation efficiencies with superimposed
distributions.
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Table 2A. Distribution Fit Statistics for Preparation Effort
Test

Statistics
Percentile Actual Exponential Gamma

Log
Normal

1 0.399 0.030 0.373 0.517
2.5 0.444 0.074 0.544 0.660

Exponential
Χ2 = 15.50
p = .0084 5 0.825 0.151 0.735 0.813

25 1.656 0.846 1.632 1.548
50 2.400 2.039 2.591 2.422

Gamma
Χ2 = 8.79
p = .0665 75 3.620 4.078 3.873 3.790

95 6.750 8.813 6.348 7.215
97.5 8.400 10.85 7.322 8.893

Log Normal
Χ2 = 4.91
p = .2964 99 9.000 13.55 8.565 11.34

Figure 2A. Gamma Fit to Preparation Effort

Figure 2B. Lognormal Fit to Preparation
Effort

Figures 2A and 2B show that either the gamma
or lognormal distributions give a good fit to the
data. In fact, Lognormal and Gamma distributions
tend to be very similar in shape.

3.1.2 Inspection Effort

Table 2B gives the results of the distribution
fitting exercise for inspection effort.  The Gamma
distribution gives the best fit, with the Lognormal
providing a statistically sound fit as well.
However, when the endpoints are compared, the
Gamma provides better control limits. The
exponential distribution is clearly poor. Figures
3A and 3B compare the Log Normal and Gamma
curves to the inspection effort histogram.

Given the toss-up between the Gamma and
Lognormal distributions, two points are worth
considering:
1. The Gamma distribution can be expressed as

a sum of exponential random variables. The
exponential probability distribution models the
time or distance between faults, so total
preparation or inspection time should be well
approximated by a Gamma distribution.

2. On the other hand, the lognormal distribution
is easier to work with and easier to
communicate.

Given these considerations, the author feels that
the Lognormal would be a good choice here.
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Table 2B. Distribution Fit Statistics for Inspection Effort
Test

Statistics
Percentile Actual Exponential Gamma

Log
Normal

1 0.638 0.028 0.405 0.537
2.5 0.675 0.071 0.574 0.677

Exponential
Χ2 = 16.96
p = .0046 5 0.761 0.143 0.759 0.826

25 1.748 0.801 1.603 1.525
50 2.400 1.930 2.482 2.336

Gamma
Χ2 = 14.4
p = .0061 75 3.600 3.860 3.639 3.577

95 6.000 8.342 5.844 6.604
97.5 6.000 10.27 6.707 8.060

Log Normal
Χ2 = 16.06
p = .0029 99 6.522 12.82 7.803 10.90

Figure 3A. Gamma Fit to Inspection Effort Figure 3B. Lognormal Fit to Inspection
Effort

3.1.3 Fault Density

Table 2C provides the statistics and
percentile points for the fault density, and
Figures 4A and 4B provide a graphical view of
the fits.

The table shows that the Lognormal
distribution is clearly out of the running for fault
density. The exponential gives the best fit
statistically, followed by the Gamma. When the
percentile points of these two distributions are
compared, the Exponential is a clear winner,
especially in the endpoint regions.
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Table 2C. Distribution Fit Statistics for Fault Density

Test
Statistics

Percentile Actual Exponential Gamma
Log

Normal
1 .00001 .00094 .00001 .00001

2.5 .00001 .00237 .00004 .00004
Exponential
Χ2 = 9.13
p = .0580 5 .00001 .00481 .00019 .00010

25 0.0127 0.0270 0.0073 0.0024
50 0.0879 0.0650 0.0381 0.0218

Gamma
Χ2 = 17.3
p = .0006 75 0.1500 0.1299 0.1213 0.1984

95 0.2514 0.2807 0.3753 4.7412
97.5 0.2857 0.3457 0.4968 13.289

Log Normal
Χ2 = 61.6
p = .0001 99 0.3200 0.4315 0.6632 44.051

Figure 4A. Exponential Fit to Fault Density Figure 4B. Gamma Fit to Fault Density

The figures seem to indicate that the gamma gives a
better fit, but this is an artifice of the manner in which
the statistical software package produces histogram
intervals. There is also a compelling theoretical reason to
accept the exponential model. Total faults in a code
module possess a Poisson probability distribution,
characterized by a constant rate of fault introduction. By
definition, the fault density is that rate of fault
introduction. Since the waiting time between Poisson
events has an exponential distribution, it is not surprising
that the fault density is well modeled by this distribution.
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3.2 Control Charts

The best fitting distributions are used to determine
the center-line and limits for the control charts. Exactly
where to set the limits is a decision made after careful
consideration of costs. For software development, there
are two possible errors one can make:

1. Deciding to re-inspect when the code was well
written and properly inspected.

2. Concluding the code is good and the inspection
properly performed when either rewriting the
code or re-inspection is in order.

If the first mistake is more costly than the second
control limits should be wide, making a re-write or re-
inspection less likely. In software development, the
opposite is generally the case. As the introduction made
clear, the cost of allowing a fault to escape detection is
high compared to the cost of re-inspection. So control
limits for preparation and inspection efficiencies were
set at the estimated 2.5th and 97.5th percentile points.
This means that 5% of the good code will be re-
inspected.

In the following control charts, green lines represent
the 50th percentile, and red lines the control limits.
Notice that the vertical axes for the effort measures are
scaled logarithmically. Tables 2A, 2B and 2C provided
the control limits for the charts in figures 5, 6 and 7,
respectively.

Preparation Effort
Figure 5 shows the chart for preparation effort.

There are four unusually low values, indicating
inadequate preparation time. The last section of this
paper will provide actions that the decision-maker might
wish to consider.

Inspection Effort
The chart for inspection effort also shows some

lower out of bound signals. Some of these correspond
to the low points in the preparation effort chart.

Fault Density
The chart for fault density only has a center-line and

an upper control limit. It is not at all uncommon for code
modules to be error-free, so we do not need a lower
limit. Figure 6 shows two code modules with
exceptionally high fault densities.

Figure 5: Control Chart for Preparation Effort

Figure 6: Control Chart for Inspection Effort

Figure 7: Control Chart for Fault Density
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3.3 Responding to an Out-of-Control Signal

When the preparation or inspection effort variables
exceed the upper limit, the inspection process has taken
an abnormal length of time. This may indicate that:

1. The document or code module is unusually
difficult to inspect.

2. The inspection process is not being performed
in accordance with a standard, repeatable
process.

If #1, attention should be paid to the defect density.
If that density is quite high, (even if it is within its
control limit), the product may require rework. This is a
judgment call that requires some experience on the part
of the decision-maker.

If #2, then an investigation should be undertaken. Do
inspections facilitated by the same moderator tend to
have very high prep or inspection efficiencies? Is this
document inherently difficult to understand? Maybe the
document author tends to write in a very difficult
manner and needs to take a business writing class. The
inspections database contains a rich set of
administrative variables to facilitate this type of root
cause analysis. Another option is to perform analysis of
variance to see if the control variables differ significantly
for some categories, such as coding language.

If the fault density exceeds the upper control limit
there is a clear indication of a poorly written document
or code module. This is especially true if the preparation
and/or inspection efficiencies are also low, for the
inspectors found a large number of faults without
expending a lot of time. The inspected product should
be returned to its author for rework.

If the preparation or inspection effort is too low,
there is a possibility that the inspection has not been
thorough. The decision-maker should check the fault
density. If this is very low, it is likely that the product
needs to be re-inspected. On the other hand, the
document or code may be very straightforward, in
which case it is understandable that the control variables
would take low values.

Unusually low fault densities could indicate that a
segment of code was exceptionally well written. One
would in fact be very confident of this conclusion if the
inspection was very thorough. On the other hand, an
extremely low fault density will more likely indicate a
poor inspection performance when accompanied by low

preparation or inspection efficiencies. Therefore, one
must consider all three variables before making a
decision to re-inspect

The decisions considered in this section require
simultaneous review of all control variables. Overlay
plots are especially useful in this regard. Two such plots
are given in figures 8A and 8B. Three points stand out in
the overlay charts. These are the 3rd, 33rd, and 43rd points.
They are characterized by low fault densities, and low
preparation and inspection rates. This is a warning that
the low number of faults is perhaps due more to a poor
effort than it is to a good module. The manager of the
inspection team should investigate to determine the root
cause.

Figure 8A: Overlay Charts for Fault Density and
Preparation Effort

Figure 8B: Overlay Charts for Fault Density and

Inspection Effort
In contrast, a point such as 19 shows zero faults, but

adequate preparation and inspection efficiencies.
Therefore, the low faults can be attributed to a superior
product rather than insufficient inspection effort.
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5. Glossary

Control Chart Terminology

Assignabl
e Cause

A shift of the process level or an
increase in process variability
assignable to a specific reason, as
opposed to the random variation
commonly associated with the
process.

Center
Line

A horizontal control chart line
representing the average value of
the process.

Control
Chart

A graphical characterization of
measured process outputs (see
figure 2 on page 4 below).  Control
charts present limits that are based
on the current distribution of output
values.  When observed process
values fall inside these limits, the
process is declared "in control".

Control
Limits

A set of one or two horizontal
lines on a control chart.  When an
observed process value is either
greater than the upper control limit
or is less than the lower control
limit, the process is declared "out
of control".

In control A state in which a process is
producing output consistent with its
expected distribution.

Out of
Control

A state in which a process is
producing output that is
inconsistent with its expected
distribution.  This may result from a
shift of the distribution of output
values or from an increase in its
variability.

Outlier A number that is inconsistent
with the other values in a sample.

Random
Cause

A process will not produce
identical values every time.
Outputs vary randomly, in
accordance with an underlying
probability distribution.  Such
variability cannot be assigned to a
specific cause, and is accepted as
uncontrollable within the scope of
the current process.

Target Can refer to the desired level of
process output ("voice of the
customer").  For control charts, it
commonly refers to the expected
level of the process, and provides
the centerline of the chart.
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Statistical Terms

Mean A measure of central tendency,
given by the arithmetic average of a
set of values.  For a random
variable, the mean is also called the
expected value.

Percentile When a sample is arranged in
ascending order (order statistics)
percentiles can be determined.
For a given percentage P, the
associated percentile is a value
such that P% of all values are less
than or equal to that percentile.
For example, consider the set of
eight numbers {2, 5, 5, 9, 11, 15,
16, 22}.  The 25th percentile (1st
Quartile) is 5.  The 50th percentile
(the 2nd Quartile or Median) is 10,
and the 75th percentile is 15.5.
Note that 15.8 could also serve as
the 75th percentile.  There are a
variety of methods for
interpolating between values in a
case like this, but they differ little.

Type I Error When testing an hypothesis of
the form H0: Population Mean = k,
a type I error occurs when one
rejects H0 when, in fact, the mean is
equal to k.  In terms of control
charts, a type I error occurs when
we conclude the process mean has
moved from centerline when it has
not.

Type II Error When testing an hypothesis of
the form H0: Population Mean =
k, a type II error occurs when one
accepts H0 when, in fact, the
mean is not equal to k.  In terms
of control charts, a type II error
occurs when we conclude the
process mean has remained at the
centerline when it has actually
drifted.
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