
1

Is Quality Negotiable?

Lisa Crispin

Senior Consultant
BoldTech Systems

1050 17th St. 11th Floor
Denver, CO 80204

USA
303.629.9206 x 5274
lisa.crispin@att.net

Abstract

The morning I sat down to start writing this
paper, my contractor called (we’re in the middle
of building an addition to our house). He told
me the painter would apply one coat of paint to
the primed siding. If I wanted a second coat of
paint, it would cost $275 extra. Higher quality
often costs extra. It struck me how often we
make decisions and compromises about quality
in our daily lives. Shall I buy a Yugo or a
Volvo? Eat at McDonald’s or go home and
cook? It all depends on what I need most –
money, safety, time, nutrition.

In eXtreme Programming Explained [1], Kent
Beck describes the four variables of software
development: Cost, Time, Quality and Scope.
As he says, “quality is a strange variable”. If you
try to save time or money, or increase scope, by
sacrificing quality, you will pay a price in
human, business and technical costs. XP teams
have the right to do their best work.

On the other hand, customers have the right to
specify and pay for the only the quality they
need. How does one reconcile two potentially
conflicting points of view? Is quality
negotiable? If so, how do we go about
negotiating it?

This paper will explore the following questions:

• Is quality negotiable?
• How can we negotiate quality?
• What are internal and external quality, and

are either or both negotiable?
• What’s the XP tester’s quality assurance

role?
• How far should testers go in helping the

customer define acceptance criteria?

Keywords

Testing, acceptance testing, quality assurance,
tester, web testing, GUI testing, XP, painting
houses.

Introduction

When my husband and I decided to put an
addition on our house, we chose to include a
basement. We signed a detailed contract with
our contractor which specified many little
details. We thought we read this carefully.
When the basement was built and a hole cut for
the door, the contractor pointed out that he had
neglected to include the door itself in the
contract. We had access to the new basement –
it was functional – just no way to close it off if
we wanted. Since the door was not included, we
would either have to do without it, or pay extra.

Naturally, we had assumed there would be a door
to the basement room which we could open and
shut. But since we had not specified this, the
contractor hadn’t included the price of the door
or the labor to install it in his price. We couldn’t
expect the contractor to just give us a free door.
How nice it would have been if someone else
had looked at the contract with me and asked,
“There isn’t a door specified here, don’t you
want one?” Then I could have decided whether
or not to spend the money – it wouldn’t have
been a surprise later.

I’ve participated in XP projects where I’ve seen
this type of thing happen. (OK, it happens in all
software projects, no matter what practices are

2

used). For example, the customer has a story for
an add screen, and just assumes the developers
know he also wants the ability to update, read
and delete. Or maybe there’s a story for a login
screen with authentication, but nothing about
what should happen if the same user logs in
twice. At the end of the iteration, an exception
thrown by having the same user log in twice
looks like a defect.

As a tester and quality assurance engineer of
long experience, I’m something of a tyrant about
quality. I have my own standards which
naturally I think everyone should follow. When
I started working on XP projects, I realized it
wasn’t about MY quality standards – it was the
customers’.

Here’s an example. Say we have a startup
company as our customer. For now, they just
need their system up and running to show to
potential investors. They just need a system
that’s available one or two hours a day for
demos. They aren’t looking for a bulletproof
24x7 production server. In fact, they can’t afford
to PAY for a bulletproof system right now.
They’d rather have more features to show off,
even if they might not handle a high level of
throughput. It would probably take significantly
more time and /or resources to produce a system
with guaranteed stability. If the customer isn’t
willing to pay the price, they can’t expect to get
it for free.

In XP, the customer’s role is to make business
decisions, not to be a quality expert. Face it,
some people are always on the “happy path”...
just as my husband and I were when we signed a
contract with our builder for our home addition.

As the tester, I feel it’s my responsibility to help
the customer make conscious decisions about
quality during the planning process. If the
customer is clear about his acceptance criteria,
and these are reflected accurately in the
acceptance tests, we’re much more likely to
achieve the level of quality the customer wants,
without giving our time away for free.

Internal and External Quality

In Extreme Programming Explained, Kent Beck
writes:

“There is a strange relationship
between internal and external quality.
External quality is quality as measured

by the customer. Internal quality is
quality as measured by the
programmers.”

He goes on to explain the human effect on
quality:

“If you deliberately downgrade quality,
your team might go faster at first, but
soon the demoralization of producing
crap will overwhelm any gains you
temporarily made from not testing, or
not reviewing, or not sticking to
standards.”

In this light, it looks as if we should always
strive for the highest standard of quality. This
would of course make me very happy. But is the
customer willing to pay for it?

I think the important concept here is the
difference between internal and external quality.
Whenever I meet someone who works in an XP
environment, they always tell me that one of the
reasons they love coming to work each morning
is they know they’ll be allowed to do their best
work. If you take that away, XP won’t work.
It’s good to have 100% successful unit tests. In
the long run, it speeds up development time.
Internal quality should be a given.

External quality can be defined as a set of
features, for example:
• Whenever the user makes a mistake, a user-

friendly error screen appears
• It’s impossible to crash the server via the

user interface
• The system can handle a hundred concurrent

logins
• The system will stay up 99.995% of the time

Negotiating with the customer on external
quality doesn’t mean skimping on acceptance
tests or deliberately producing unstable code. It
means that the customer asks for a certain
standard of quality and pays for it. If they want a
system to handle all exceptions, that should be in
the story – or multiple stories. Story one says to
implement this functionality; story two says to
make the functionality work with N concurrent
users hammering it.

The XP Tester as Quality Assurance Engineer

The XP books say that the customer writes the
test. In Extreme Programming Explained, Kent
Beck says customers need to ask themselves,
“What would have to be checked before I would
be confident this story was done?” This very

3

question implies tests that check for intended
functionality, or what my boss calls “Happy
Path” testing.

Beck goes on to say that XP teams should have a
dedicated tester who “uses the customer-inspired
tests as the starting point for variations that are
likely to break the software.” This implies that
the tester SHOULD guide the customer in
defining tests that will really stress the
application. He also mentions “stress” and
“monkey” tests designed to zero in on
unpredictable results.

In practice, when I have neglected to negotiate
quality with a customer, acceptance testing
became as treacherous as the mud pit which
currently surrounds the new wing of my house. I
wrote and performed acceptance tests according
to my own standard of quality. Naturally, the
tests, particularly the load tests and “monkey”
tests, uncovered issues. To the XP-naive
customer, these just look like bugs, and they’re
upsetting. The customer starts to worry that his
stories aren’t really being completed.

The XP way to deal with any kind of issues or
defects is to turn them into stories, estimate
them, and let the customer choose them for
subsequent iterations. We know we’ll always
have some defects and unexpected issues crop
up. However, to minimize the pain of dealing
with these, it’s best to set the criteria for quality
at the start of each iteration.

Set the Quality Criteria

As the XP tester, ask lots of probing questions
during the planning game. If the customer says
“I want a security model so that members of
different groups have access to different feature
sets”, ask: “Do you want error handling? Can
the same user be logged in multiple times? How
many concurrent logins should the system
support?” This may lead to multiple stories,
which will make estimation much easier.

Our customers have rarely thought of things like
throughput capacity and stability up front –
rather, they assume that their intentions are
obvious: “Well, of COURSE I want to have
more than one user log in at a time”. The tester
should turn assumptions into questions and
answers. This way you don’t end up with
doorless rooms.

Write acceptance tests which prove not only the
intended functionality, but the desired level of
quality. Discuss issues such as these with the
customer:
• What happens if the end user tries a totally

bizarre path through the system?
• What are ways someone might try to hack

past the security?
• What are the load and performance criteria?

As a result of these discussions, you may need to
get the team back together to see if stories need
to be split up or new stories written, and re-
estimate stories to reflect the quality standards
the customer has set in the acceptance tests. The
customer will have to drop a story or change the
mix, but they will be happier with the end result.
Higher external quality means more time and/or
more cost! Both a VW Beetle and a Hummer
will get you to the grocery store, but if you need
to cross the Kuwaiti desert, you’re going to have
to pay for the vehicle that’s designed for the job.

Participate in developers’ task assignment and
estimation sessions. Testers often have more
experience dealing with customers and a better
understanding of what the customer meant to
request. If the story is for a screen to add a
record to the database, it’s likely that the
customer also meant they wanted to be able to
read, update and delete records as well. Get
everyone back together if there have been
assumptions or a disconnect in understanding.
Testers are in a unique position to facilitate this
process.

I work in the same room as the developers, pair
with them when needed, participate in the
standup meetings. At the same time, I try to
have as much contact with the customer as
possible: we discuss the tests, get together to run
them, look at the results. Testers are part of the
development team – much more so than in a
traditional software process. But as a tester, you
need a level of detachment; you have to be able
to be an advocate for the customer and at the
same time a guardian of the developers. This can
be a lonely and difficult role at times. The
beauty of XP is that you’re never really alone.
With the help of your team, you can enhance the
customer’s satisfaction.

Running Acceptance Tests

The fast pace of XP iterations makes it difficult
for acceptance testing to keep pace with

4

development. It’s much better to do the
acceptance testing in the same iteration with the
corresponding stories. If you’ve ever done
“downstream” testing where you don’t get the
code until development is “finished”, you know
that developers are looking ahead to the next set
of tasks. It’s painful to have to stop the fun new
stuff you’re doing and go back to fix something
you’ve already put out of your mind.

In our projects, the developers try to organize
tasks so that they can give me components to test
early in the iteration. This way I can find defects
and they can fix them BEFORE the end of the
iteration. This means that the estimates have to
include time to find and fix bugs. I think it
makes everyone happier. There will most likely
still be some defects or issues left over that have
to become stories for future iterations, but it’s
possible to minimize these, and we should try.

As iterations roll along, regression testing of
acceptance tests from previous iterations also
have to be performed. In an email to the
YahooGroup extremeprogramming, Ron Jeffries
[2] says that once an acceptance test passes, it
should pass forever after, so any regression
defects for previously working tests must be
addressed.

How do you do acceptance testing that fast?
That’s another paper in itself, but here are some
tips.

• Make acceptance tests granular enough to
show the project’s true progress. Fifty
tests of ten steps each is better than ten
tests of fifty steps each.

• Separate test data from actions in the test
cases. Spreadsheet formats work well;
we’ve experimented successfully with
XML formats too. It’s easy to produce
scripts to go from one format to another; a
script that turns your spreadsheet test data
into a form your test tool can use is
invaluable.

• Identify areas of high business value and
critical functionality. Automate tests for
basic user scenarios that cover these areas.
Add to them as time allows – don’t forget
to budget time to maintain and refactor
automated tests.

• Modularize automated tests; avoid
duplicate code and create reusable
modules. For example, if you are testing a
web application, have a main script that
calls modules to do the work of verifying

the various interfaces such as logging in,
running queries, adding records and so on.
Split functions such as verifying that a
given set of links is present in the HTTP
response out into separate modules that
can be reused from test to test and project
to project.

• Make automated tests self-verifying. Both
manual and automated tests should
produce visual reports which tell “pass” or
“fail” at a glance. One way to do this is to
write test results out in XML format and
have your team write a tool that reads the
XML and produces an HTML page with
graphic representation of tests passed,
failed and not run.

• Verify the minimum success criteria. As
they say in the Air Force, if the minimum
wasn’t good enough, it wouldn’t be the
minimum.

• Apply XP practices to test automation. Do
the simplest thing that works, continually
refactor, pair test, verify critical
functionality with a bare-bones “smoke”
test.

Conclusion: Delivering Quality

In the abstract, I asked some questions that I’ve
discussed in this paper. Here’s a summary of
what I have concluded. Disclaimer: despite all
most a year doing XP, I have almost as many
questions as I have answers. Practice XP and
come up with your own conclusions!

Is quality negotiable? If negotiation means a
dialog between the tester and the customer to
make sure that the customer has clearly defined
his quality criteria and that the acceptance tests
are written to reflect these, then quality is
negotiable. Because you, as the tester, and the
customer talk about all aspects of quality, the
customer can be specific about what he wanted
and perhaps even defined stories that address
criteria such as stability and performance under
load. The developers can accurately estimate
stories, and the customer can get the quality he’s
paying for.

How can we negotiate quality? By asking lots
of questions of both customers and developers
and making sure that nobody makes
assumptions. By making sure the customer
understands how XP works and what his role is
in the planning game and knows what to expect
each iteration. By putting a price on quality in

5

the form of story estimates and letting the
customer decide what is most important for his
business.

What are internal and external quality, and
are either or both negotiable? Internal quality
is quality as measured by the programmers. XP
works best when each member of the team is
allowed to do his best work. Internal quality
may actually save money. External quality is
quality as measured by the customer. The
customer has to pay whatever it costs, so the
customer should set the standard. The XP team
helps the customer do this by telling them how
much the criteria for quality will cost, in the form
of story estimates.

What is the XP Tester’s Quality Assurance
Role? Help the customer set quality criteria and
write tests that verify them. Provide a reality
check for the developers. Mentor the developers
in testing and quality assurance practices.
Developing and testing share a lot of skills, but
are distinctly different professions.

How far should testers go in helping the
customer define acceptance criteria? As far as
possible in the given timeframe. Ask all the
questions you can think of.

The XP books state that acceptance tests don’t
have to pass 100%. The closer you come to
clearly and completely defining the stories and
the criteria for proving the stories work, the
closer to 100% success you will have.

Negotiating quality makes the end of each
iteration much more constructive and
comfortable. The customer is satisfied that the
stories were completed. He knew what to expect
and his criteria for quality were met. The
developers are satisfied that they did their best
work and produced functioning code that is up to
the customer’s standards. The tester is satisfied
that the customer got what he paid for, without
the developers having to give away the store for
free.

The acceptance test results may prompt the
customer to change his mind about what his
quality standards are. That’s OK, this is XP.
He’s allowed to reduce scope in return for
increased quality. We’ll negotiate about that in
the next iteration.

References
1. Beck, Kent. Extreme Programming

Explained: Embrace Change. Addison-
Wesley, 2000.

2. Jeffries, Ron. Email “New file uploaded”,
on extremeprogramming egroup, March 12,
2001.

Lisa Crispin

Since July 2000, Lisa Crispin has enjoyed the challenge of working as a tester on teams
using Extreme Programming (XP) practices. She currently is a Senior Consultant with
BoldTech Systems (http://www.boldtech.com), a technology consulting firm. In her pre-
XP days, Lisa was Quality Boss for TRIP.com, a travel website. She has also worked as
a quality assurance and test engineer for more traditional software companies, testing
database, client-server and 4GL software on a wide variety of platforms.

Lisa has presented or co-authored papers on quality assurance and testing at local,
national and international quality and XP conferences, including Quality Week, Quality
Week Europe, XP2001, XP Universe and PSQT. Her article “Extreme Rules of the
Road: How an XP Tester Can Steer the Project Toward Success” was published in the
July/August issue of STQE Magazine.

	Paper
	Bio

