
Bhushan Gupta
Bhushan Gupta joined Hewlett Packard, Vancouver Printer Division, as a Software
Quality Engineer in 1997. He is currently a Software Process Architect for HP’s Digital
Publishing Services Division focusing on software process improvement and software
measurements.

As a systems analyst, Bhushan worked at Consolidated Freightways from 1995 to 1997
where he was responsible for the design and implementation of a Windows-based
logistics system. Prior to that Bhushan was a faculty member in the Software
Engineering Department at Oregon Institute of Technology from 1985 to 1995 where he
developed and taught numerous courses and coordinated the curriculum.

Bhushan has a BS degree (1975) in Metallurgy from Regional Engineering College,
Warangal, India. He has a MS degree in Metallurgy (1982) and an MS degree in
Computer Science (1984) from New Mexico Institute of Mining and Technology, Socorro,
New Mexico. He is on the board of Pacific Northwest Software Quality Conference
(PNSQC) and currently co-chairs the program committee.

Build and Deployment Process for the Web Applications
Bhushan B. Gupta

Hewlett-Packard Company

Abstract

Open source products have gained a broader acceptance for developing Web-based
applications. Although the operating system, development tools and utilities, and languages are
free of cost their poorly managed utilization could cost significant schedule slip and lead to project
set backs. In an environment where it only takes a mouse click to upgrade your development
tools and utilities, it becomes critical to have well established build and deployment processes.

This paper describes proven practices that have led to a sound and reliable build and deployment
process at Hewlett-Packard. Two teams of engineers, later joined by a third, responsible for
developing e-service components to build a Web application, chose to use open source
development tools/utilities in the “Evolutionary Software Development Lifecycle” environment.
Very early in the development, the teams established build and deployment goals with an ultimate
objective of completely automated XML scripting, capable of nightly build and deployment on
multiple servers. The teams established a strategy that started with a manual build and
deployment and was refined in each EVO cycle to progress towards its ultimate goal. Build
failures occurred often due to the use of multiple versions of tools and utilities by individual
engineers. The teams enacted “an evaluate and adopt policy” for using the latest versions. The
use of multiple versions, when a must, was supported by an extended directory structure. A
clean deployment on a server was achieved by deleting the old code, copying the latest version
from the source control system to a staging area on the server, and compiling and deploying it to
a predetermined directory structure. Deployment failures, often caused due to missing or older
configuration files, were overcome by deleting/updating the files via XML script. Several EVO
cycles prior to the product release the team had a very reliable build and deployment system
capable of nightly deployment and limited debugging. The process has significantly eased the
build and deployment activity for developing future Web-based applications.

Introduction

Software build process is an activity that compiles the source code, links it with other components
and produces binaries that are ready to be deployed for production. Without a successful build,
software cannot go into production. The build process brings together essential component of a
software product and must be in place as early as possible in the software lifecycle. In his article
on “Best Practices” [1], Steve McConnell has emphasized the importance of early and frequent
builds. McConnell sites minimum integration risks, reduced low quality risks, and easier defect
diagnosis as some of the benefits of early and frequent builds. Michel Cusumano and Richard W.
Selby [2] have described the daily builds as the sync pulse of a project.

A Web application is made up of one or more e-services and thus requires a complex build and
deployment operation. The factors such as linking with the correct version of an e-service,
maintaining correct configurations of development, build and production servers make this
operation complex. Once in production, any versioning requires an immediate and accurate build
and deployment activity placing further demands on the process.

Challenges of Open Source Environment

Developing Web applications in the open source environment poses unique requirements on a
build process. Streamlining the build process is complex due to numerous open source software

tools and utilities, which are often developed and released separately. Generally, versioning and
support of these tools and utilities seem to be a major problem. A typical utility is made available
in the following builds:

• Release – ready for prime time
• Milestone – Unknown degree of quality
• Nightly – very unstable

Only the release version is intended for production. These versions can often be downloaded at
no cost. It encourages the developers to download the latest version for production. This
behavior encourages unintended use of milestone and nightly build versions. Depending upon
the nature of the developers, a development environment often ends up with multiple versions.
Once a developer has acquired the version she wants, it often takes a fair amount of efforts to
configure the utility and put it to it’s intended use. The documentation is limited and the only way
to obtain some support is by using FAQ which has a long waiting period and does not match the
development environment. This support will most likely not be synchronized with the needs of
our development cycle, and will not be specific or in the context of our environment.

Although not specific to the open source environment, the other challenge faced by the
development team is to build an application on multiple servers. The task becomes increasingly
difficult if the servers have different configurations. The build and deployment process has to
work on multiple platforms. Sanjay Mahapatra[3] has alluded to the benefits of platform
independent builds.

Lastly, the development environment varies greatly. There are several IDEs (integrated
development environments) such as Jbuilder, Visualcafe, and Netbeans, that make their way into
the development environment. Although they do not cause major problems, they normally
increase the complexity of the build and deployment process.

Project Information and Development Methodology

For the sake of confidentiality the project and the e-services names have been disguised. The
mission of project XYZ was to build a Web application to support internet printing using three e-
Services, LServe, MServe, and Nserve. These e-Services provided the underlining functionality.
Each e-Service was owned by a development team and each team had a “build miester”. The
Mserve team was also building another Web application. LServe had a dependency on e-Service
Mserve and so MServe played a leading role for LServe.

The application was based on J2EE and supported by dynamic html and JDBC. The teams were
not bound by a single IDE and thus both VisualCafe and Jbuilder were being used across the
board. The development was carried out in the PC environment and the deployment platform
was Linux 6 with Apache Web server. The development tools included Ant (a build tool) [4], CVS
(configuration management system), XML and other scripting languages. The teams used
Evolutionary Development Lifecycle[5,6]. The functionality was built in small chunks with a
constant evaluation either from a real or a surrogate customer.

The environment included a development, a test and a demonstration server with identical
system configuration. The application was built and deployed on all three servers. The
development server code was constantly changing. Building on the development server
synchronized it with the other servers. In the beginning the testing server was used for both
validation and demonstration. This caused lengthy validation downtimes especially when there
were customer demonstrations for usability evaluations.

Build and Release Process

Setting Up Build Goals:
The build process was to meet individual developer’s needs and other build miesters needs.
Individual developers needed to build their components and test their code while the build meitser
needed to build the system for deployment. The activity was initiated with establishing a build
team. The team was comprised of two representatives from development and database teams,
the system (server) administrator, and a process architect. The first task of this team was to
setup build goals. Following are some of the “MUST” goals that the team decided the build
process to have.

• Clean build every time
• Simple process without any need for documentation
• Build the entire system as well as any specific components
• Choose any version of a system component for a build
• Build recursively starting at any level
• Use simple tools
• Build on demand
• Build and deploy together
• Automated
• Build needed targets concurrently

Some of the “WANT” goals included:
• Be capable of driving a unit test
• Executable from a web site

Build Configuration:

Figure 1. Build and Deployment Mechanism Layout

The entire application was under CVS, a version control utility running on a dedicated server.
The code was transferred to a build area on the target server, built on the server and then
deployed in a dedicated area where it could be used for production if desired.

Directory Structure:
The application directory structure was predetermined based upon the application web server.
The tools and utilities were stored in dedicated directories. In the event that an e-Service
depended on another e-service it was stored in the e-Service area as a jar.

Communication:
The build day and time was predetermined for the LServe, Thursday 1 PM. All the developers
were reminded of the build time and asked to check in their changes to CVS by noon. Another
reminder was sent at noon and code was labeled at 1 PM. Exceptions were made if a developer
was working on a critical functionality. Since LServe depended on MServe, MServe was built by
Thursday noon.

Code
(CVS)

Server
Build Area

Application Source
Utility Jars
JSPs, xsl, xml
Configuration Files

Server
Deploy Area

Application Binaries
Utility Jars
JSPs, xsl, xml
Configuration Files

Incremental Approach – Stepwise Refinements:
Initially, each e-service had its own build script that was used by the build miesters. The
application build and deployment was manually performed by using a Korn shell script. It was a
“clean build” approach. The server was shutdown, old code was deleted from both build and
deploy area. The code, including the barebones build script, was moved from the resident server
to the target server using ftp. It was built in the build area and then transferred to the deployment
area. Any update to the application configuration files and the server properties were performed
manually. The server was restarted. The application was smoke tested and any build failures
were immediately resolved. The build and deployment was then performed on the QA server.
Once the failure was resolved, the system was not always clean-rebuilt immediately.

Refinement 1 – Basics :
The Lserve moved to an XML based script using Ant as the build tool. The script deleted the
staging and deployment directories on the target server, ported the code over to the build area,
produced the binaries and finally copied the binaries and the utilities to the deployment area. Any
server configuration and properties were manually modified. The target server was “hard-coded”
in the XML file and thus had to be changed for each server. The developers still manually built
and deployed the new code and debugged it.

Refinement 2 – Automation:
While Mserve was still using the manual process, the LServe started to automate the build
process. First the script was modified to handle any changes in the server configuration and the
properties. The second enhancement to the script was to specify the server name on the
command line. At this point the build process was fairly stable however, the developers were still
manually building and testing their code changes.

Refinement 3 – We became diligent:
At this point NServer was actively contributing to the application. The focus shifted to more
automation and providing a universal build script for the developers and the build miester. The
plan to achieve it is illustrated below.

Figure 2. Final Build and Deployment Mechanism

Developer Build File

Build Script with targets
System variables
3rd party Jars

e- Service Build File

Build Script with targets
3rd party Jars
Database Schema

Server Build File

Server Variables
Build Script with Targets
3rd party Jars
e-Service Jars

Each developer was provided a build template which she could configure to her PC environment.
Both LServe and NServe had e-Service build files and produced jar files. The final application
was built and deployed by the build script on the target server.
This provided a reliable build process to build the e-Services and the applications.

Build Problems and Remedies:

Multiple 3rd Party Utility Jar Versions:
This was a major and ongoing problem. The developers freely downloaded jars often causing
version inconsistency among the services and the application. There were multiple occurances
of the same component
 in the directory structure. This causes build problems, especially when there are multiple
versions of the same component. To remedy this problem, the teams emphasized use of a
single version. Domain experts were assigned to each utility and were responsible to determine
the adequate version for use. The problems caused by incorrect sequencing of utility jars were
corrected by proper education and communication.

System Configuration and Property Files:
The development team made changes to the development server configurations via .profile file.
In the beginning deleting a property file was considered unsafe. Instead, it was decided to
manually update the property files. At times these changes were not communicated to the build
miester resulting in build failures. This problem was overcome by establishing better
communication between the build miester and the developers and later by progressive build
automation.

Human Errors and Limitations:
In rare instances the developers forgot to verify their changes. Also, some directories were
moved around on the development server. The target server was not updated accordingly with
the changes causing build failures. The team had very limited experience with the build tool.
This was overcome by improved communication. As the build miester gained more experience,
the situation improved.

Hard-coded String References:
At times the developers used hard-coded strings to specify a particular server name. Because
the target server was different, it caused build failures. This was not a build problem and was
overcome by modifying configuration and properties files. Several copies of the configuration
were maintained, one for each deployment environment. Eventually, the strings which were
moved to configuration and properties files were created as part of the build process. The build
of this configuration was able to use the build parameters already a part of the progressively more
automated build process.

Leading e-Service Impacted the Trailing e-Service

The service LServe depended upon MServe. MServe implemented new utilities as it was
supporting another web application. The new utilities at times caused build failures.

Did we meet our goals?

We achieved most of our goals – clean build, simple tools, build on demand, build and deploy
together, and automation. It was a diligent approach to develop the build and deploy process in
small steps. The approach resulted in a single script for both developers and the build miesters.
A big bang approach normally is not goal oriented and takes a longer time to build a satisfactory
process. The process revealed that the open source environment does require more attention
and communication is the key to avoiding build failures.

Acknowledgements

The author would like to acknowledge Mark Dovi, Software Development Engineer, who actively
participated in the implementation of this process. The later development was carried out by
Petar Obradovic, Software Development Engineer, who is still enthused about making further
refinements. The author greatly appreciates their support in preparing this manuscript and
accompanied presentation.

References

1. Steve McConnell, Daily Build and Smoke Test, Best Practices, IEEE Software. Vol. 13,
No. 4, July 1996. http://www.construx/stevemcc/bp04.htm

2. Michael Cusumano and Richard W. Selby, Microsoft Secrets, The Free Press, 1995
3. Sanjay Mahapatra , Benefit from platform-independent builds, Java World, August 2000
4. Michael Cymerman, Automate your build process using Java and Ant, Java World,

October, 2000
5. Bhushan B. Gupta and Steve Rhodes, Adopting a Lifecycle for Developing Web Based

Application, Software Quality Week, San Francisco, June 2000
6. Alan MacCormack, “Product Development Practices That Work: How Internet Companies

Build Software,“ MIT Sloan Management Review, Winter 2001

	stickyminds.com
	SMCoversfixedfont1.PDF
	BIO
	PAPER

