
James Lyndsay

James Lyndsay is an independent consultant with more than ten years
experience. After working in analysis, coding and testing at IBM and in the
City, he formed Workroom Productions in 1994
(http://www.workroom-productions.com/).

As a Test Strategist, he has spent the last seven years working with
multinational corporations, long projects, and even the occasional web
start-up. His business experience includes banking, telecoms, utility
billing, logistics, electronic publishing and retail, and he pays keen
attention to the way that his clients focus is shifting away from functional
testing.

James holds an MA (Physics!), has spoken at conferences in the US, UK and
Europe, and is an invited attendee of the the Workshop in Heuristic and
Exploratory Testing. He's also a SIGiST member and on the panel for the ISEB
Foundation and Practitioner Certificate in Software Testing. James is a
director of The Manual Ltd. (http://www.the-manual.org/), a not-for profit
organisation to gather and publish basic skills.

Niel vanEeden has a background in mechanical engineering, IT hardware,
software and retail. Since relocating to the UK from his native South
Africa, he has worked in customer facing roles and in software quality, and
has been involved in testing at JobPartners since May 2000. In January 2001
he became the test manager, and is currently responsible for product
quality.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 1 of 16 Version 1.1

Adventures in Session-Based Testing

Authors James Lyndsay, Workroom Productions Ltd, Niel van Eeden, Jobpartners Ltd.

Biographies James Lyndsay is an independent test consultant with ten years experience. Specialising in test
strategy, he has worked in a range of businesses from banking and telecoms to the web, and
pays keen attention to the way that his clients' focus is shifting away from functional testing.

Niel vanEeden has a background in mechanical engineering, IT hardware, software and retail.
Since relocating to the UK from his native South Africa, he has worked in customer facing roles
and in software quality, and has been involved in testing at JobPartners since May 2000. In
January 2001 he became the test manager, and is currently responsible for product quality.

Abstract This paper describes the way that a UK company controlled and improved ad-hoc testing, and
was able to use the knowledge gained as a basis for ongoing, product sustained improvement. It
details the session-based methods initially proposed, and notes problems, solutions and
improvements found in their implementation. It also covers the ways that the improved test
results helped put the case for change throughout development, and ways in which the team has
since built on the initial processes to arrive at a better testing overall.

Session-based testing can be used to introduce measurement and control to an immature test
process, and can form a foundation for significant improvements in productivity and error
detection.

Keywords Ad-hoc testing, Exploratory testing, Session-based testing, Functional testing

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 2 of 16 Version 1.1

Session-based Testing
Session-based testing is a technique for managing and controlling unscripted tests. It is not a test
generation strategy, and while it sets a framework around unscripted testing, it is not a systematic
approach whose goal is precise control and scope. Rather, it is a technique that builds on the strengths
of unscripted testing - speed, flexibility and range - and by allowing it to be controlled, enables it to
become a powerful part of an overall test strategy.

At the heart of the technique is the idea of effective limits. A Test Session has a well-defined start and
end time, limiting its duration. During a Test Session, a tester engages in a directed exploration of a
limited part of the thing being tested - it should be obvious to the tester that an action or test is inside or
outside these limits. Within these limits, moment-to-moment activities are not controlled, but left to the
tester's judgement. The tester records his or her activity - and includes whatever other information
seems relevant; the reactions of the system, data used, conditions, diagnosis or ideas.

Session-based testing mirrors the activities of experienced testers, but is not the subject of a great many
papers or books. This paper describes one situation in which session-based testing was successfully
implemented.

Context
The product to be tested was an application delivered over the internet, and had been commercially live
for just under a year. The application had a few hundred active users at a few dozen firms, and dealt
with a large amount of incoming data submitted by many thousands of internet users,.

This application had been developed in-house by a medium size team (30-40 people total). The team
continued to develop the application, and released a new version of the application every two weeks or
so. Work was driven by a semi-formal change request process.

Although customers were satisfied with the overall service, there was a perception within the company
that the quality of the product had to improve. Something in the development process (requirements,
analysis, design, coding, testing, infrastructure, release) had to change - and unsurprisingly, attention
initially concentrated on the test process.

The existing test process was immature, and the five-member team had little experience. None of the
team had experience of a well-run test process. The precise nature of the problems cannot be detailed in
this paper, but the process exhibited the following common characteristics.

• Reactive - and therefore uncontrolled, and not necessarily focussed on important areas

• Could miss important bugs which had an immediate effect on customers

• Could not produce reliable information about the readiness of a release, and was not trusted.

The test team were active users of the mature bug tracker Bugzilla. This tool was central to the team’s
processes, and drove much of the fix/retest work in the coding and testing teams. They had been using
the tool for the life of the product, and had a well-established bug list.

To help initiate the changes, the company bought in experience, and engaged one of the authors of this
paper (James Lyndsay) for forty days spread over ten weeks.

Constraints

With a mandate for change, management were supportive of changes within the test team and their test
processes. However, the changes made had to stay within existing budget and resource. The test effort
needed rapid improvement, yet at the same time, the coders were to increase the rate of introduction of
new features, and many known bugs would be fixed for retest.

Existing testing found good bugs, but in a haphazard way. The most significant issues - particularly
those caused by data problems and often characterised by intermittent symptoms - were most regularly
found during ad-hoc testing, and the team were reluctant to move away from a proven approach.
Scripted tests would be ineffective, and would be resisted by management and by the test team.

The team were already stretched. Any time spent on training or setting up new procedures would have
to be saved elsewhere. However, as the existing process was inefficient, time savings were not hard to
find.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 3 of 16 Version 1.1

Basic strategy for test improvement

We needed a simple process which would improve on the existing ad-hoc methods. To allow us to do
this, we had to introduce some element of measurement, so that we could see which parts of the process
were working, and which parts were not. We also needed to introduce control, so that we could define
our tasks, record our actions, and so repeat or improve them.

Canter/Derr had done work at e-greetings.com which inspired the team. Their paper (A Case Study in
Extreme Quality Assurance, referenced below) helped the team to believe that they were not alone, and
that similar problems and pressures had been overcome in other organisations. However, Canter/Derr's
approach introduced change well outside the test team, and while desirable, could not be implemented
under the existing mandate.

James Bach's exploratory test methods (referenced below) meshed well with James Lyndsay's existing
'Empirical Test' techniques, and Jonathan Bach's practical implementation of session-based test
methods (described in the paper Session-Based Test Management) seemed to offer a useful and
practical starting point. Bearing in mind the need for a simple, lightweight process that would form the
basis for ongoing improvement, we set out to do the following things:

• Control the scope of testing

• Control the work

• Measure risk and coverage

Session-based methods
Session-based testing parallels the way that many experienced testers approach unscripted testing.
While not a new technique, it has not been formalised - and there are no hard and fast rules to its
execution. However, session-based testing is characterised by (at least) the following:

• A test session is a unit of time, generally a couple of hours long. It is uninterrupted, as far as
possible, and its limits are well-defined.

• During a test session, testers test something specific. They may test a feature, a characteristic,
a business scenario - they may hunt bugs or introduce failures. These limits are less well-
defined, but they are defined before the start of the test.

By introducing these limits, session-based testing seeks to focus tester attention, allowing control,
increasing the reliability of metrics and the repeatability of tests, and limiting the cost of poor
exploration.

The methods below allowed the team to:

• Control the scope of testing

• Control their work

• Assess coverage

• Assess risk and set priority

Controlling the scope - introducing Test Points

The team had no existing test list, and the project as a whole did not have uniquely-identified
requirements. Each release introduced a wide range of new tests, and although test scope was driven in
part by bug fixes, there was no list of new tests or record of tests done.

We needed some sort of a list of tests, to enable us to:

• select tests and so drive work

• consciously omit certain tests

• make easy and repeatable assessments of the state of testing

• avoid duplicates

• preserve important information, allowing members of the team to move on

• simplify communication within the team, and extend communication outside the team

• generate reliable statistics

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 4 of 16 Version 1.1

The items in this list might be tests, but the concept of a test in unscripted testing is very different from
a scripted test. We tried to avoid some of the characteristics of unscripted testing by carefully choosing
the things we would control. The items on the list:

• Would not be single tests, but aspects of the application that needed to be explored. A tester
would typically conduct many tests in their exploration.

• Needed to be independent units of work - not steps along a path. A tester could start or finish
with any item.

• Needed to be based on a wide range of sources. These included change requests, functional
requirements, development information, release notes , regression test requirements - and on
conversations over lunch, inference from unspoken topics, eavesdropping, wiretapping and
covert midnight operations.

To avoid confusion with 'tests', we call these items Test Points. Our test points have the following
broad characteristics:

• A Test Point is a unit of work and typically takes between 20 minutes and 4 hours. This
estimate of duration is first made at the point when the Test Point is defined, and can be used
as a simple metric for the cost of the test. It is refined during testing.

• Each Test Point has a simple risk assessment. This assessment is also done as part of the
process of defining the Test Point. If a Test Point has a range of risks, it is split.

• Test Points are retained from one release to the next. Some Test Points may only be explored
rarely, some become part of a set of regression Test Points, some crop up each release but
their exploration changes as the functionality changes.

• Every piece of test work has its associated Test Point - including test work from more formal
methods and work for non-functional testing.

Example Test Points:

• Is a field for 'Salary' offered as an optional input at all appropriate points?

• Examine User Access Control, using usertype xxx and usergroup yyy

• Does the 'Forgotten my password' option ever fail to send an email?

• Check navigation in 'Options' part of application, paying particular attention to 'back' button
functionality within application, and within browser.

• Check button text within 'Options' part of application for each language offered

The list of Test Points is dynamic - additions are made frequently, based on bugs found, new
understanding, unanticipated functionality and fixes delivered. We currently hold the list in a
spreadsheet that can be accessed by the team at all times, but the same job might be done as well, or
better, by a database accessible over the internet. The list can only be changed directly by the test team,
but can be (and is) accessed by many others. Regular users outside the immediate test team include the
Development project manager, Professional Services and senior management.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 5 of 16 Version 1.1

Each Test Point is associated with the following information:
Test point ID Unique ID. We found it useful to include the release number in this unique ID.

Test Points related to bugs also had the bug ID as part of their unique ID.

Title/Description Enough to set the boundaries of the test

Risk Simple, repeatable risk assessment. See ' ' below for details

Estimated time to
complete

If the estimated time to complete is >4 hours, it may be an indication that the TP
should be split into two simpler parts. It's hard to do useful exploration in less
than 15 minutes, so a very short time might indicate that something needs to be
re-assessed.

This estimate is updated after test execution to be ÷

Also called 'Cost'

Time spent so far
(this release)

Updated as test sessions are completed. Reset after release - so it records the
time spent to far this release.

% testing
completed

Basic estimate. Will be at 100% if testers feel that the TP has had enough
attention to be passed to the customer. May start at 100% if TP has no need to
be tested. Will generally increase with work done, but may go down if the TP
looks like it needs more testing.

Time remaining Calculated as * (1 -)

Tester Named Tester, responsible for this Test Point

Documentation Cross-references to relevant documentation

We needed to have the best assessment of risk and cost, and felt that this would be made most reliably
by those closest to the Test Points - so individual testers were made responsible for Test Points. This
had the added effect of motivating the team and neatly defining their test tasks. Responsibilities
include:

• identifying the documentation – and raising notice of its absence

• prioritisation of Test Points (with team and Test Manager)

• exploratory testing around these Test Points

• raising bugs found

• filling in the Test Session Report

• updating Test Point information – risk, time spent, necessary testing completed

• adding new Test Points for the release if they feel it is necessary

• talking about the Test Points at group meetings

Controlling the work with Test Sessions

While a Test Point might be described as a unit of work, a Test Session is a unit of time. A Test Point
may be repeated - a Test Session is planned, happens, and is recorded. Each is unique. By setting the
scope of individual tasks, controlling the time taken to do them, and requiring deliverables on
completion, we controlled the work, and were able to dynamically adjust the plan.

A Test Session is an uninterrupted period, generally half a day or less. During a Test Session, testers
will investigate one or more Test Points - with the minimum size of a Test Point at around 20 minutes,
most Test Sessions look at no more than four. The choice of the Test Points to include in a session can
be made on a number of criteria, and for planning, works well when related Test Points are chosen
together. However, in action, it tends to be a very dynamic process, reflecting the team's need to react
to the fast-changing priorities that are characteristic of a rapid-release environment. A plan that cannot
adapt to fit circumstance is worse than useless in a changing environment.

Typically, the Test Manager controls the initial choice of Test Points for a release. The Test Manager
also acts as the driver for change when necessary - and can substantially change test priority and scope
during the process, and at short notice. His/her decision is based on:

• Availability of software

• Availability of test resources

• Time needed to test vs. time available

• Tests done so far, and their coverage of functional areas and risk

• Existing Plan

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 6 of 16 Version 1.1

Session Timeline and Reporting

Before starting a Test Session, Testers print off a blank test session report and fill in the administrative
details - including the Test Points they plan to explore. Test Session Reports have space for the
following information:

Test Session ID Unique ID. It was helpful to include information about the release, and about the
tester doing the test session - although note that including the release ID could
both cause and resolve confusion when testing (particularly fixes) in a release
other than the one being used by the rest of the team.

Title/Description Enough to set the boundaries of the session

Contents Test Points covered in the session (often 1, rarely more than 4)

Administrative details Tester name, release, date + time etc.

Notes To be filled in while testing, although system conditions, available data etc. is
often noted before the start of the session.

While exploring those Test Points, the testers use the Test Session report to record data, impressions,
problems, queries, possible bugs, bugs raised, diagnosis and so on. The reports aren't formal, or neat,
but they are good records - and got better as the testers became more experienced.

A Test Session is a timed activity. At an appropriate point around the end of the allocated time, the
session ends. Testers are not encouraged to spend more time than planned on any one Test Session -
although the Test Points may be returned to in a later session.

The deliverables at the end of the Test Session are:

• completed session report filed appropriately

• updated list of Test Points

It is important to remember that although the Test Session may be finished, testing may not be over.
Although exploratory testing can be controlled by imposing an end-time, problems found during testing
can result in a greatly increased - or decreased - estimate of the time necessary for adequate testing.
Dealing with this was an important factor in deciding what to measure.

Review of Test Session Reports

Although simply writing a Test Session Report helps the testers (see below), recording the events
allows Test Sessions to be reviewed after the event. This helps different people in a wide range of
ways.

• Helps testers and the Test Manager when setting the severity of a bug, looking for duplicates
etc. It is particularly helpful when the severity is queried

• Helps decide how to approach testing if the time needed is more than the time taken so far.

• Helps the Test Manager and individual testers to control and improve the quality of testing.
The Test Session Report is a useful coaching tool; the coach does not have to sit with the
tester for the duration of the test, and more than one session can be reviewed and compared.
The Test Manager also gets a good idea of the approach to testing of each tester, and can re-
direct as appropriate.

• Helps the test team to look back on a session, to be reminded of their actions and results, to
examine the data used in the light of new information etc. Reviews also allow testers to re-
interpret their conclusions, or to use multiple session reports for diagnosis or examples.

• Helps testers to share information - testers can swap Test Session Reports when handing over
areas of responsibility, or can compare their different approaches to the same Test Point.

• Helps coders and designers get over the 'if I haven't seen it, it isn't a bug' problem. Illustrating
the problem by showing the data used can be very helpful, and noting times helps to match
problems with known system events - network failure, batch job etc.

• Having a tangible and discussible record of test work available for review helps the business
have confidence in the test process, and the reviews themselves help the testers and the
business understand each others priorities and desired approaches.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 7 of 16 Version 1.1

Assessing test coverage

Coverage - a brief explanation

Coverage is a measurement of what has been done as a proportion of what could be done, and is an
important test metric. It plays a key role when assessing whether the product has had enough testing to
give the business confidence that it can be released. When broken down by area, it can indicate those
aspects of the product that have had enough, or too little testing, and so becomes a vital input in
adjusting the plan as circumstances change.

There are many ways of measuring coverage - Cem Kaner lists 101 coverage metrics in his paper
Software Negligence and Testing Coverage, some serious, some not so serious. Although they are each
measures of 'testedness', they do not all measure the same thing - so 'good' coverage by one metric may
be inadequate when measured by another (i.e. Statement coverage vs. Service Level Requirements
coverage). It also can be hard to measure some coverage metrics without instrumentation set up prior to
testing (i.e. branch coverage), and others can be impossible to measure in some projects (i.e.
requirements coverage in a project without formal requirements). Indeed, while comprehensive testing
results in good coverage measured by most methods, testing driven by a single formal technique can
result in excellent coverage when measured by one method, and poor coverage when measured by
another.

Formal methods of coverage measurement do not work well with unscripted testing, and can introduce
complexities to test execution that work against many of unscripted testing's better qualities. We
introduced a measurement of coverage that was simple to assess yet gave a good indication of the
testing that had been done compared to what needed to be done, the readiness of the system for live
operation, and the parts of the system that needed more testing.

Our coverage metric

We based our coverage metric on a subjective assessment of 'testedness'. By using Test Sessions to
focus and control the work and take many small-grained assessments, we hoped to be able to make an
objective measurement from the combination of subjective estimates.

At the end of a test session, the testers recorded two figures;

• the amount of time they had spent testing each Test Point.

• an estimate for how ‘tested’ the test point was, as a percentage.

As these figures were recorded, other figures used in planning future work were calculated (new
estimated test cost, time remaining, overall coverage). Calculating these figures on the fly gave the
testers immediate feedback and a more concrete perspective on their estimate, helping them to make
their estimates more consistent.

Example: A Test Point was estimated at 3 hours. The tester completed 3 hours exploration, but felt she
had not yet tested all the things she wanted to test, and estimated she was 75% done.

On recording these figures, two figures were calculated automatically. The Test Cost was raised to
(3 75%=) 4 hours. The time remaining was set to the 1 hour that remained.

Test Point Cost
(Est. Time)

Completed % complete Cost/time
remaining

Before assess email functionality
triggered by …

3 hours 0 0% 3 hours

After assess email functionality
triggered by …

4 hours

calc

3

input

75%

input

1 hour

calc

We hoped that the tester’s expertise would enable them to make a fair judgement – but recognising that
the testers were not yet expert, we encouraged the testers to spend time looking back over past
estimates and discussing their accuracy – and, if necessary to re-assess their current estimates. The
team found this useful, and were also helped by the immediate feedback from their estimates into
figures used for planning.

Special cases -

• Test Points that needed no testing were at 100% coverage from the start. This was achieved by
setting their test cost to 0 and including a special condition in the number crunching functions,

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 8 of 16 Version 1.1

as keeping the cost and setting work done to match it introduced confusion. Note that such
Test Points are excluded from some summaries.

• Tests where the tester had done three hours - but kept the estimate at two - were not listed as
150% done, but were fixed at 100%. However, they were highlighted - to highlight input
mistakes, and to allow the Test Manager to review the test with the tester and avoid the issue
next time.

• A 1-hour test that the tester estimated was 10% complete needed 9 more hours. Some tests
genuinely needed this much more testing, but others could be more accurately re-estimated, or
given special attention by experienced team members or the business to see if the testing could
be made more efficient. Giving feedback to the testers by exposing the planning figures helped
avoid this problem.

• At the start of testing for each release, the amount of testing completed for each Test Point
was reset to zero, and estimated cost and risk was re-assessed for existing Test Points.

Combining estimates for more accurate overall figure

Although each individual estimate was rough and subjective, their worth improved when they were
combined. Note that a less blunt combination, split by risk, would be used for most decision making.
Estimates were combined as follows:

• Overall test time remaining, derived from the sum of (estimated time - completed time). This
was useful throughout testing - it gave an estimate of the effort needed at the start of the
process, and tracking it in real time allowed the Test Manager to see how well the team was
staying on target. It is worth noting that there was always more testing to do – we never
reduced this figure to zero.

• Coverage for the whole release, derived from the (sum of time completed)/(sum of estimated
time to complete). This gave a one-figure summary of the progress of testing. Just as the %
complete of individual test points could go down as well as up, so could the coverage. This
was entirely appropriate - and was usually the result of the addition of new test points from
bugs, or as a result of underestimation of test cost / complexity.

Conclusion

Testers are notoriously bad at informal estimates of how much testing is needed. We aimed to improve
this ability – and, in part, we achieved this by placing the skill at the centre of the planning process.

These metrics assessed not the state of the system, but the state of testing. While necessarily subjective,
the metrics turned out to be repeatable - different testers came up with broadly the same estimates of
completion, particularly as they worked together, and grew more experienced in their methods, in
testing, and in the system. Because the system was assessed in small grains, individual errors in
estimation at a Test Point level were small compared to the overall figures. The team updated their
figures regularly and often, and the metrics became an important feedback to the team, helping them
perceive a common goal and giving good feedback into their process of ongoing improvement.

Management understood that the metrics gave a reliable indication of how the testers felt about how
well they had tested the system. This, in combination with the number, type and severity of problems
found and fixed, was soon an important part of the go-live decision. Rather than wait until the end of
testing to find out how good the system was, the decision could be assessed earlier, allowing warning
of problems and re-prioritisation of effort. The ‘coverage’ figure was both useful and effective.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 9 of 16 Version 1.1

Risk and Prioritisation

The test team needed to be reactive. Their reactions needed to be fast - but could not be allowed to be
uncontrolled. They needed a means of assessing new circumstances against existing tasks quickly and
accurately. In making decisions about importance and urgency, it was good to have information about
risk and cost.

Risk is a combination of cost of failure and likelihood of failure. To allow assessments would be
consistent and repeatable, we needed a simple method of assessing risk. We started with possibly the
simplest:

Likelihood of failure

Risk High Low

Cost of failure High 3 2

Low 2 1

Each Test Point was assessed for risk. Work was prioritised by risk, and metrics were split by risk. We
found that the risk associated with a Test Point was easily communicated to the business, and broadly
matched their expectations.

Note that test work did not concentrate simply on the highest risk test points. It was important to spread
the test effort in case the risk assessment was wrong, and we typically spread the test effort so that all
major functionality had some testing. However, at the end of testing, high risk Test Points generally
had better coverage than low and medium risk Test Points.

In some releases, coverage of high-risk test points never matched the coverage of low- and medium-
risk test points. This was due to two factors

• high-risk elements released to testers / fixed close to live release deadline

• the more testing that was done in high risk areas, the more the testers felt they needed to dig
deeper

We found that the proportions of Test Points over time matched the following profile:
Risk % TP by number % time required % time spent

3 (highest) 15% 20% 25%

2 35% 40% 40%

1 50% 40% 35%

This profile indicates that individual high risk test points generally required more time than low-risk
ones. The difference between %time required and %time spent indicates that when the team were
running out of time, high-risk test points were given priority over low-risk test points.

Note that these figures include a substantial proportion of regression-test-related Test Points, which are
generally judged low- and medium- risk. This lowers the proportion of high-risk tests. If these figures
were for a single release concentrating more on new functionality and fixes than regression testing, it
would have a greater proportion of high-risk tests.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 10 of 16 Version 1.1

Building on the Process
The new methods were not adopted immediately, but good initial results encouraged the team to
persevere. The methods have been in place since June 2001, and have been supplemented with a
number of improvements and refinements.

Process and Techniques

• Some Test Points now include scripted and automated elements if appropriate and effective.

• Test Points are grouped not only by risk, but also by family. The four families are:

• Test Points for new functionality

• Test Points for fixes

• Test Points for regression testing

• Test Points for QA investigation

• The Test Team has a process of ongoing learning:

• A ten-minute daily meeting keeps the team focussed and together, and highlights common
issues

• A two-hour training session, each Friday afternoon, helps the team take a longer-term
look at the application, at test techniques, tools and at process improvement. It allows
them to share their experience, and encourages them to think of testing as a skilled job.

• The figures and feedback have helped the team to improve their estimating skills, and
have encouraged their planning skills

• The practice of recording their test sessions allowed review and improved their ability to
test without scripts. Sessions were reviewed by peers, by senior testers, and by the testers
themselves after the fact.

• The responsibility for individual test points encouraged ownership and interest, improving
test analysis and planning skills

• Communication improvements driven in part by test sessions encouraged skill sharing
and greater interest in the general process of testing and its literature

Metrics

• Refined figures improve the focus for individual testers and Test Point families

• Automated metrics provide a 'Test Dashboard', giving instant feedback of overall summary
and planning figures as test are completed

• Improved metrics allow more complete views and more reliable assessments

• Identification of bugs found in production has allowed the team to start measuring test
effectiveness

• Measurements of estimation accuracy help improve the estimation skills of the team

Early involvement

• The Test Team is now involved earlier in the process, and is able to discuss design and assess
code before delivery to test

• Testers are involved in document review – and find design problems before coding

• Testers spend a short period testing code with a coder, at the coder’s machine, after unit
testing but before promotion to the generally available code. Not only do the testers
increase their familiarity with the deliverable (and the coder), but they also spot simple
problems that have not been apparent from the unit tests.

Changes outside the Test Team

• Improved documentation references allow testers to link each test point to each identified
document and track dates for its completion and availability. Documentation availability has
made work more intensive, but more focussed, and the team is able to be more productive

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 11 of 16 Version 1.1

• Better documentation has improved the linkage between tests and business requirements

• Visible improvement in the Test Team and their processes encouraged process improvement
elsewhere, particularly in the generation of inception, design and implementation
documentation, and in the processing of urgent requirements for live fixes.

Results
Perhaps the most significant result is that testing is now seen as a vital aspect of the development
process, rather than incompetent, obscure, and a hindrance to productivity.

'Tangible results' listed below are those characterised by a deliverable or directly measurable quantity.
'Intangible results' are those characterised by a change in perception.

Immediate, Tangible results

• The team produced a useful coverage metric from the first pass through testing, and showed
that riskier parts of the system had received more attention. This has subsequently become a
central metric.

• The Test Manager was able to review testers' work off-line i.e. without being with the tester
while the work was done.

• Test Session reports were a useful record of unscripted test activities, where previously there
had been nothing but a bug report.

• Because few measurements had been taken before the introduction of these methods, it was
hard to get real results in the early stages. However, the rate at which significant bugs were
found stayed the same on the introduction of these methods, and increased for the next five
months – although this reflects the increasing complexity and size of the code (as so the
number of bugs to be found) as well as process improvements.

Longer term Tangible results

• The product is more stable and has fewer outstanding bugs

• In the last few months, the rate at which significant bugs are found has fallen, although new
functionality is still being introduced as fast as ever. This reduction is thought to be due to the
increasing quality of the code, rather than test failure. The test team’s skills and procedures
have been instrumental in helping the designers and coders achieve this improvement.

• The test team’s metrics are used as a basis for improvement by non-test teams.

• Problems outside the test team were no longer obscured by test team problems, and could be
identified and addressed. This applied particularly to documentation, which was refined to fit a
useful purpose rather than simply generated as part of a deliverable, and to the way that live
problems were handled.

Immediate, Intangible results

• The test team felt in control of their work. They could see the size of it, see how much they
had done, and what was left. They could decide what to do next, and back up those decisions.

• The Test Manager felt more confident in controlling and planning testing.

Longer term Intangible results

• The coders felt that problem logging and diagnosis had improved

• Visibility of test process and progress allowed other teams to trust the Test Team's
information, and the communication that the trust enabled resulted in a ‘virtuous circle’.

• The introduction of more formal, scripted testing was easier as the test sessions helped the
testers to think more rigorously, and to work in a systematic and analytical way.

• The test team take a much greater interest in their jobs, and morale has improved. The team
generate three or more good ideas a week, of which at least one is implemented.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 12 of 16 Version 1.1

Lessons Learned
The team needed a process that enabled learning and encouraged improvement. We recognised that
while we might not start out well, the right attitude and the right tools would allow us to develop an
effective and efficient process.

Three overall factors

While we learnt a number of useful lessons, three key factors stood out. These factors underlay many
key parts of the approach - without any one of them, the approach would have failed

• Communication. The methods above gave us the tools to communicate within and outside the
team. By improving communication, we felt that we reduced the number of
misunderstandings. Communication also helped to increase trust, which both improved
personal relations, but also helped facilitate solutions.

• Empowerment. Testers were individually responsible for Test Points. They were encouraged
to measure their own progress and their estimates were trusted. Morale improved, and the test
team was seen as an interesting and valuable place to work.

• Openness. The list of Test Points, the work done and the work needed were available to the
coders and designers at all times. Although initially attracting little interest, the fact that the
information was always available, and always up-to-date, encouraged the other teams to work
with the test team, take an interest in their activities, and trust their work.

Cost estimation

Test cost - in terms of the time a test would take - was a vital metric. By comparing the actual cost with
the initial estimation, we hoped to improve estimation skills.

Within the first couple of cycles, it became obvious that the whole team were not only underestimating
the cost of risky tests, but their estimates got worse for longer tests. This was bought to the team's
attention, and estimates improved. Analysis of a recent release indicated that 5% of tests done would
have required more than twice the estimate to be fully tested, and that estimates were within 35% of the
required time for 70% of the tests. Over the whole release, the time the testers felt was needed to fully
test the release was 25% more than their original estimate – but note that this straight average is
deceptive – tests that need less time than estimated cancel out those which need more.

We believe that the testers are accurately estimating the time needed to explore a Test Point to an
acceptable level. This is supported by the improvement in test effectiveness (bugs found in live / all
bugs found). This is an important skill, and allows the Test Manager to plan and react with confidence.
It also allows the rest of the business to trust the testers estimates.

Test Points - analysis

The analysis needed to define a list of Test Points was not trivial, but the process of generating Test
Points gave form and repeatability to a necessary analytical task that was not otherwise addressed.
Although this analysis was unfamiliar, it was easy for the test team to see when they had finished - they
had a definition, a cost and a risk. As releases and test cycles passed, the team got better and faster at
doing the analysis.

Test Points are likely to overlap - particularly when defined by someone who is not familiar with the
list. The Test Manager plays an important role in identifying duplicates and overlaps, but his/her job is
made easier because the list is public. Resolution is made simpler because each Test Point has a Tester
assigned.

The task of defining Test Points has been made easier by improved documentation and tester
involvement in design and implementation meetings. The team finds that not only does the increased
familiarity with the requirements help, but that the extra time to think improves the scope of their
analysis.

Test Points - writing descriptions

One of the difficult parts of writing Test Points is to define a non-trivial exploratory area that is well-
defined enough for the testers to know what is in the area, and what is not. Consideration of three
aspects helped:

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 13 of 16 Version 1.1

• time limit - areas that might take a couple of hours to explore were easier to define than larger
areas.

• risk - if an area of exploration had risky parts, and not-so-risky parts, it was probably two Test
Points.

• wide range of different approaches that could be taken - one Test Point might examine the
functionality of 'Back' buttons and return navigation throughout the application, while another
might look at ways that email-sending functionality could be broken.

Test Sessions

Testers may find it productive to collaborate on a test session, particularly when the area is unfamiliar.
Some test sessions, for functionality hidden from the users, may be performed in collaboration with the
coders. Collaboration with coders is also used in short test sessions (called ‘splash testing’ on-site) that
are performed immediately before the coders incorporate new functionality into the main body of code.

Test Session Reports

We found that the act of writing stuff down encouraged better testing, as testers could refer back to
what they had done, and leave distractions for later without losing track of them entirely. They could
draw diagrams, annotate previous notes and use colours and sticky labels – and, under pressure, most
testers found it faster to write than to type (this may because the testers use the same PC to test as to
run the word-processor). Testers using paper documentation did not have to worry about a PC failure
causing the loss of their session log. We also found that when the sessions were reviewed, a hand-
written log was a better visual mnemonic than a typed or on-line document.

It is worth noting that each member of the team has a different style of testing, and each produces a
slightly different style of test session. One of the team feels that the advantage of hand-written
documents are outweighed by the ability to use copy/paste – particularly given the legibility of his
handwriting – and prefers to use a word-processor and other PC tools to record his Test Session report.

Testers got better at writing session reports - partly as a result of reviews, and partly as they started to
use the reports as a tool in themselves

Maps

We found that a map of the navigation of the product helped the testers with aspects of the system that
manifested in many places, acting both as a breadcrumb trail and as a checklist. It also helped them
plan their testing and estimate completion more accurately. However, the map cannot be constructed
automatically and the team has had problems with obsolescence.

Documents needed

An important change in the development process was the introduction, enforcement and tracking of
standardised documentation. These documents helped the testers explore areas more effectively, and
the tracking helped them plan their activities to match the design and coding teams schedules and
events.

• Inception Document: contains the original idea. Describes the way the new feature needs to
work, contains the requirements and the design logic.

• Design Document: Analysis of changes needed to database, classes, modules and pages

• Implementation Document: Details changes actually made. Signed off on delivery of code to
test.

Rapid reactions and real-time results

Once the tracking spreadsheet had been set up to include a real-time test dashboard, the Test Manager
always had an up-to-date picture of the tests that had been done, the tests yet to be done, current issues,
coverage and risk. This knowledge allowed the team to react more quickly to changing circumstance,
without losing track of the overall aims of testing. The improved response had a direct effect on the
way that other teams and staff interacted with the test team, and increased trust and communication.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 14 of 16 Version 1.1

Fixes, retests and regression tests

The team quickly adopted test sessions to drive and record retests and regression tests. Test sessions
allowed a faster response to the arrival of a fix, and served as effective proof that the fix had been well
implemented and tested. The team found that looking at the session for the test when the problem had
been found helped plan the retest.

Test Points are now classified into four families (see "Building on the Process" above), one being
‘Regression Test Points’. This important improvement has resulted in the development of a
comprehensive regression test set. A selection of Test Points for ‘new functionality’ is added to the set
of Regression Test Points at the end of each release, keeping the tests current. The team can isolate
coverage figures by family, allowing ongoing assessment of the depth of regression test coverage for
the release.

Outside the team

Other parts of the organisation can understand and read test points – and the figures summarising test
progress are available at all times. The business may add to the test points, but in practice will always
ask a tester to add any that may be required. This allows control, and directly assigns ownership of the
test point to an individual.

We found that having improved the test process and the visibility of its results, other teams started to
change their processes, as thin spots were revealed. Changes in coding practice and in the preparation
of the design have been initiated partly because testing could reveal and measure the points where
existing practices were not working well. Embarrassment and peer pressure can be an important
motivating factor in the improvement of code quality!

Live bugs

With session-based testing, we were able to get real value from analysis of live bugs. We could look
back over sessions for the current release or previous releases, and could analyse the tests done to
discover how the bug had been missed. This approach, impossible with poorly-recorded ad-hoc testing,
drove a multitude of small process improvements.

Mistakes and problems

We drove the testing from a single, complex spreadsheet. While this allowed good flexibility and quick
improvements, it caused a number of problems:

• Corruption and data loss: The spreadsheet was shared – and sharing did not work perfectly.
Summary test metrics were helpful in identifying corruption, and a few ‘sanity checks’ were
built in. The spreadsheet was backed up regularly. These problems have become less frequent
as the team have become more familiar with the spreadsheet application.

• One line per test point: A spreadsheet is not database. In particular, it does not allow a simple
method of recording many actions to one item, as each item is recorded on a single row. In
this case, the restriction made it hard to input and extract good information for test points
which were performed more than once in a release (inclusion in more than one session, re-
delivery of software after a fix, poor approach the first time etc.). It also caused problems
when a test point was performed by two testers working together, or when adding multiple,
dated comments. There was no easy solution to this, but the numbers involved did not
unacceptably compromise the accuracy of the metrics.

There was no explicit link between Tester, Test Session and Test Point – each Test Point had a Tester,
and each Test session had Tester and Test Point, but there was no linkage to allow the extraction of all
the Test Sessions that had involved a particular Test Point. While this seemed important in planning, in
practice the close ownership of Test Points by individual Testers meant that the information was easy
to reach.

Close ownership of test points meant that testers were unfamiliar with some aspects of the application –
which could lead to poorer testing if one of the testers was unavailable. Once a family of regression
tests was developed, ownership of the regression tests was rotated each release to give each tester
exposure to the full application.

Including the release in the ID of the test point and the test session made good sense during the first
few releases. However, it could become confusing when re-doing test points that had been generated

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 15 of 16 Version 1.1

for previous releases, or test points which were to retest an area following a fix. We now include the
release ID in some, but not all of the Test Point IDs and Test Session IDs.

Naturally, Test Sessions were rarely uninterrupted. We also found it difficult to separate out time spent
setting up / clearing down the test, time spent doing the test, and time spent logging bugs. Some
activities that might be considered part of exploratory testing - such as talking to the coders and
designers about the system and its problems - were not generally part of the test session. Work is in
progress to address this.

Testers dealt with large amounts of information – and the volume of the information means that
sessions can contain errors and omissions. Ideally, the testers would have liked to copy/paste directly
into their handwritten session logs – but without a budget to create an impossible tool, they printed out
information and stapled the printout to the session. This needed a nearby printer to avoid upsetting flow
of work.

The simple risk assessment worked well in the initial stages. However, the business and the testers soon
demanded a more refined scale, although no method has been decided which allows consist assessment
by different people. A priority field is currently being used in conjunction with the risk assessment to
plan testing.

The team are very happy with session-based testing, but this has led to some resistance to systematic
methods and automated tools. The team are, however, finding success in fitting systematic methods,
automated tools and scripted test cases into their familiar system of Test Points and Test sessions.

Failures

It seems obvious to perform related Test Points in the same session, and the testers found that this was
an efficient approach. However, it may bias the testers assessment of the length of time a test needs –
two related Test Points performed together will need less time than if performed separately.

Any testing driven by a single coverage metric is flawed - and the methods described above are indeed
driven by a single coverage metric. Splitting the Test Points by risk and into families helps with this,
but it would be good to see (for instance) requirements coverage being assessed simultaneously.

Each TP is a slice through the system – many overlap, and this can be seen as inefficient testing.
However, inefficiencies tend to be concentrated on commonly-used parts of the application and would
still exist in other approaches.

Test sessions, as hand-written records, cannot be parsed electronically, and any statistics gathered are
based on information logged by the testers in addition to the test sessions.

We are disappointed that our test effectiveness metrics are historically supported by only anecdotes, as
the data has been lost. We hope to be able to extract test effectiveness metrics from current data.

Conclusion
Session-based test techniques worked well on the occasion described in this paper; while staying within
budget and using existing resources, they allowed unscripted testing to be controlled, refined and to add
real value. They may be less effective in a more sophisticated environment, and they are not
appropriate in environments that require systematic and complete approaches to test definition.
However, by bringing control to unscripted testing, session-based techniques are a useful addition to
the test arsenal.

In implementing this approach, we used a number of project-specific measures - as described in this
paper, the methods may not fit other projects. However, they shared the following principles:

• Simple measures are the best

• Favour effective communication over knee-jerk documentation

• Unobtrusive, immediate metrics allow real-time control

Our experience has shown that, when given appropriate feedback, testers can learn to improve both the
effectiveness of their unscripted testing, and the accuracy of their estimates. Central to this process is a
repeatable and trusted coverage metric which allows many subjective assessments to be gathered into
an objective view of the degree to which the product has been tested. Session-based testing allows the
subjective assessment to be controlled so that it can be drawn together in this way.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 16 of 16 Version 1.1

Appendix 1: References
Session-Based Test Management

Jonathan Bach

http://www.satisfice.com/articles/sbtm.pdf

also STQE magazine V2, I6 - 11/2000 and STARWest 2000 conference notes.

also see James Bach's wide range of articles on context-based testing and other practical techniques at
http://www.satisfice.com

A Case Study in Extreme Quality Assurance (XQA)

Authors: Jim Canter/Liz Derr

http://www.stickyminds.com/docs_index/XDD2561filelistfilename2.zip

Near Zero Undiscovered Defects and Shorter Time-to-Market!

Authors: Jim Canter/Liz Derr

http://www.stickyminds.com/docs_index/XUS202021file1.doc

Software Negligence and Testing Coverage

Cem Kaner

http://www.kaner.com/coverage.htm for 101 coverage

A Guerrilla Guide to Empirical Testing

James Lyndsay

http://www.workroom-productions.com/papers.html (may not be available for Spring 2002)

Appendix 2: Acknowledgements
The authors would like to thank the designers, coders and testers involved in the project for putting our
ideas into practice and for supporting us with so many fine ideas. We would also like to thank the
reviewers for their patience and suggestions.

http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com
http://www.stickyminds.com/docs_index/XDD2561filelistfilename2.zip
http://www.stickyminds.com/docs_index/XUS202021file1.doc
http://www.kaner.com/coverage.htm
http://www.workroom-productions.com/papers.html

	BIO
	SUPPLEMENTAL MATERIALS

