
AS A BLACK BOX TESTER WORKING ON A

variety of development projects, I was of-
ten approached by developers who were
trying out test-driven development and
wanted to learn more about testing. To
show them how I worked. I involved
them in pair testing, a technique in which
two people test an application at the
same computer. Interestingly enough, the
developers taught me as much as I taught
them.

Let me explain how it worked. Before
a pair testing session, the developer and I
would meet to determine the focus and
scope of the test. We would pick an area
of the program to test and establish our
goal. Sometimes the goal would be to
track down an elusive bug, sometimes to
ensure that customer acceptance test cri-
teria were met, or sometimes to find bugs
in a new piece of functionality. We would
write our goals and testing ideas on a
whiteboard, keeping a copy of the fin-
ished notes for our own use.

Later, the developer would join me at
the computer. He would watch how my
exploratory testing techniques led to new
ideas and plans of attack. Soon, he too
would be actively testing. As the sessions
progressed, we would revisit our goals
and come up with new ideas for testing.

Mutual Learning
The benefits of pair testing extend beyond
the developer and tester involved. Devel-
opers learn how to test
their own code more ef-
fectively and gain a new
perspective on how their
software might be used.
Testers gain a more thor-
ough understanding of
the application they are
testing and learn debug-
ging techniques to find
causes of defects. Both de-
velopers and testers learn

how to uncover more information to
write more effective defect reports. Addi-
tionally, pair testing can break down com-
munication barriers between developers
and testers and facilitate team building.

During pair testing sessions, develop-
ers regularly told me that they had never
thought of looking at software testing the
way I did. The “what would happen if I
tried this…” mindset was not as intuitive

to them. They tended to
think of tests that reflect-
ed a typical way of using
the software; I thought of
tests that might cause
failures. As I applied my
usual techniques they
typically would say
something such as,
“Stop! Slow down! What
are you doing?” Then I
would stop and explain

my reasoning. The types
of bounds conditions or
input validation tests that
I immediately tried on in-
put fields of new features
surprised them. They
were also surprised by my
attempts to get around
the control flow of the
program.

The developers weren’t
the only ones learning
something new. I was of-
ten struck by how devel-
opers’ perspectives and
testing techniques were
different from my own. I
tend to focus on the user’s
perspective, while devel-
opers tend to focus on
what the program tells
them about what is going
on behind the scenes. As
they shared their knowl-
edge of the underlying

code, I learned what areas of the product
might contain weaknesses and gained ap-
plication-specific knowledge that helped
me track down problems more effectively
and provided more information when re-
porting a defect.

Once developers applied what they
learned about testing to their develop-
ment projects, they came up with great
testing scenarios on their own. Best of all,
it became difficult to find defects in the
developer’s code after pair testing.

Collaborative Problem
Solving
Pair testing can also be used as a way to
track down hard-to-reproduce defects.
Once, after several hours of testing an
application, I uncovered a defect that oc-
curred only sporadically. I suspected
clients had reported this defect in the
form of several seemingly unrelated is- R

IN
U

S
 B

O
R

G
S

T
E

E
D

E
/C

O
R

B
IS

 S
A

B
A

14 BETTER SOFTWARE JANUARY 2004 www.stickyminds.com

From the Front Line

Pair Testing: How I Brought
Developers into the Test Lab
by Jonathan Kohl

Software testing professional Jonathan Kohl found

that while showing developers how he tests software,

he learned a great deal about the application itself.

Info toGo

� By exploring software
with testers, developers
learn how their software
might be used.

� By looking at software
through the eyes of devel-
opers, testers can learn
more about the application
itself.

sues. To track it down, I pair tested with
a senior developer. While he had a suspi-
cion of what was causing the defect, we
could not repeat it when testing together.
At the end of that session, he installed a
debugger on my machine and told me
what information needed to be captured
if it occurred again.

The next time the defect occurred, we
tested together until we were confident we
had narrowed down the cause of the
problem. He knew what code was prob-
lematic, so we brainstormed related inte-
gration tests to narrow down where the
problem might occur on the code level.
From that list, I derived several more tests.
In almost every case, the defect occurred.
We were able to track down the problem,
fix it, and develop some solid unit tests for
the fix based on our sample of test cases.

The whole process took only a couple
of days. In my experience as a tester,
tracking down difficult defects on my
own has taken much longer. Through
collaboration, we found the cause more
quickly and were able to ship the soft-
ware with a high level of confidence.

Working Together in
New Ways
Sometimes, instead of black box testing
together at a machine, we collaborated
on automated unit test ideas. We began
by working on test cases that involved
permutations and combinations. From
the large number of possibilities, we de-
termined a sample size and chose a set of
test cases for automated unit test devel-
opment. In addition to these tests, I sug-
gested other testing ideas for developers
to implement when writing their auto-
mated unit tests. When I tested the same
feature, I complemented the developers’
unit tests with scenarios they had not
covered. Some developers were much
more comfortable with this type of col-
laboration than with pair testing together
at a computer in the testing lab.

Risks and Limitations
Pair testing is not a cure-all. As with any
technique, there are risks involved, and
some pair testing efforts fail. Some fail-
ures can be traced to what Agile QA
Manager Janet Gregory calls a lack of
trust between the developer and the
tester. “If one or the other goes in with

www.stickyminds.com JANUARY 2004 BETTER SOFTWARE 15

From the Front Line

When your software process breaks down –
you don’t have to.

corporate offices: 125 Whipple Street, Providence, Rhode Island 02908 888-299-7638

We prevent breakdowns.

At SQA, we do one thing – software QA – and we do it better
than anyone else.

We get to the heart of your software quality problems. We
design QA processes and create solutions that strengthen
your development capabilities and get your applications to
work – on time and on budget.

SQA offers a full range of QA services at every stage in the
software development process. Whether you need a strategic
consulting solution, a custom-made team, or staff augmenta-
tion, SQA’s the only call you need to make.

It’s a winning formula – one that earned SQA the #1 ranking
in the Talent Economy’s Purple Squirrel Top 100 fastest
growing companies.

To prevent your next breakdown, visit us on the web at
www.sqassociates.com or call 888-299-7638.

Deadlines looming.

Your software’s full of defects and
your staff is overwhelmed.

Development costs are mounting.

the idea that it is a one-way learning ex-
perience, the experience will fail.” Pair
testing is only effective in an environment
of mutual respect and trust.

In pair programming, both people al-
ready understand program design and ar-
chitecture. In testing, the developer might
not understand the testing focus. Whoev-

er is “driving” during pair testing must
ensure that the other party is actively
participating and understands what is
going on. Encourage thinking and talk-
ing aloud, keeping the other person in-
formed on the motivation behind your
actions.

Teaming a tester who has a knack for
black box testing and finding defects
with someone who is intimately familiar
with the underlying code is a great com-
bination. Try it. {end}

Jonathan Kohl (jonathan@kohl.ca) is a
software testing professional in Calgary,
Alberta, Canada. He thanks Javan Gar-
gus, Janet Gregory, and Elizabeth Kohl
for their help with this article.

16 BETTER SOFTWARE JANUARY 2004 www.stickyminds.com

From the Front Line

Sticky
Notes

For more on the following topics go to
www.stickyminds.com/bettersoftware

� Pair testing
� Agile development & testing

Getting Started
To use pair testing in your team, start with these steps. While this is not an exhaustive list, it
will help:

1. Choose a developer you trust and who buys into the concept of pair testing.

2. Pick a suitably-sized project. Don’t try to test the whole application in one session. Pair
testing works well when testing new functionality and when both participants have been
working on the project since inception.

3. Plan up front. Determine a time to test, the length of the session (an hour or so is a good
place to start), a break schedule, and a testing focus definition. Clarify the goals, and de-
fine the outputs of the test sessions. Computer engineer and software tester Javan Gar-
gus notes that in programming there is generally only one kind of output: documented
code. In testing, there can be several outputs: defect reports, test documentation, test
cases, etc. You should define the intended outputs of pair testing efforts so that both par-
ties understand what is required.

4. Use an environment that is suitable for two people to test together at one machine. Be
sure you can work without interruptions and are free to talk to each other.

5. Evaluate outcomes. How successful were the pair testing sessions? What would you do
differently next time?

