[

Adam Tate
Scott A. Will

Table of Contents

1) (o) i O0) 11=) 115 J PSRRI 1i
J FIS g e e 18 Te75 (0) o UUURUR PSRRI 1
Malice — 1N MeEaSUIEA DOSES.....eeiieeiieieiiireeieeeee ettt e eeeeertrrr e e e e e e e eeeeeeeeesaranneees 2
Administering a Malicious TeSt DAYuevviiiiiiiiiiiiiiiiieeieeeeeiiie et 3
The Unexpected Challenge of Scheduling...........ccocvvveeieeiiiiiiiiieiieeeieee e 4
Involving Others and Some of the Benefits It Affords.......cooouvvvviveiiiiiiiiiiiiiieiiieis 4
OWNETSIID .vteeitieeiiieeeitteeiee et e et e et e e et e e steeesteeesabeeesaseeesseeensseeassseessssassnsneennseeenns 5
Learning from OtherS......oooouuvviiiiiiii ettt e e e e e e et r e e e e e e s e ssanbaaaees 6
Is Once Enough? How Many Are ToO Many?ccccueeeioeueeieieineeeeeeeeeeeeeeeeee e 8
Change is Good: FOStering CreatiVITYcoovveeuvriiiieeieiiiiiiiireeeeeeeeeesnreeeeeeeeesesssnraaeeeeeeseens 8
Evil Intent with 8 LOVING PUIPOSE ..vvviiiiiiiieeeeiieeeeeeeeee ettt e 9
AULhOr BIOGIADNIEScoiiiiiiiiiiiiiee ettt e e e et r e e e e e s e sanaaaeeees 10
T RIVETA. vttt e e et eeeaae e e e eeateeeeeeaaeeeeseataeeesenaneeeean 10
AN TALE ..ottt e e e e e et et e e e e e s eaaans 10
SCOLE WILL ..o e et e e e e e e et r e e e e e e e eenasanneeas 10

i

Munzging =
Tealimyg Prinnirii

e

..._'

Introduction

Being a tester is a challenging occupation, not only because of the nature of
the work itself, but also because of the attitude and perspective it often
demands. Ron Patton, currently a testing consultant and formerly a test
manager overseeing some very well-known products, writes:

Your job is to inspect and critique your peer’s work, find
problems with it, and publicize what you’ve found. Ouch!
You won’t win a popularity contest doing this job.'

It is often the case in the books and articles written about software testing that
subjects like politics are prominently featured, and the guidance offered to the
tester is often presented as if he must somehow become a skilled negotiator
among the larger organization in order to find enduring success.

At times, this emphasis can create an atmosphere where the test team views
itself as if walking on the eggshells of the development landscape — being
careful to watch every step. It is interesting to note that the chapter in Rex
Black’s book, Managing the Testing Process, entitled “The Triumph of
Politics: Organizational Challenges for Test Managers” is longer than the
chapter “Plotting and Presenting Your Course: The Test Plan.”? He writes,
“[A]s a manager, you must be sensitive to political realities, some of which
are unique to test management.”™ This emphasis, while often muted and
subtle, is real.

In the introduction to the chapter entitled “Thinking Like a Tester,” Kaner,
Bach, and Pettichord offer the following perspective:

Testers come from many backgrounds. They are a diverse
bunch, but most people agree: Testers think differently. How
do they think differently? Some say testers are “negative”

'Ron Patton, Software Testing, SAMS, Indianapolis, Indiana, 2001, p. 45.
? Rex Black, Managing the Testing Process, Wiley, New York, 2002.
3 Ibid., p. 333.

thinkers. Testers, they say, like to complain and_break things,
and take a special thrill in delivering bad news. This is a
common view. We propose an alternative view. Testers don’t
complain; they offer evidence. Testers don’t like to break
things; they like to dispel the illusion that things work. Testers
don’t enjoy giving bad news; they enjoy freeing their clients
from the thrall of false belief. Our view is that thinking like a
tester means practicing epistemology. Testing is applied
epistemology, not grumpistics or whinography.* [Underscore
added]

This is a very positive and productive view of the profession of testing — one
we agree with and support wholeheartedly. At the same time, take a look at
what we’ve underlined above.

Testers are people like everyone else. We succumb to daily ruts, we develop
comfortable, predictable habits and patterns of work and practice. To
overcome these tendencies, and in a spirit of love and cooperation, with an
aim of mutual benefit, we propose the following: every now and again, we
should allow a wholly different attitude to prevail. "The Grinch got an idea,
an awful idea. The Grinch got a wonderful awful idea."

While it may be wise and prudent as our normal course of action to humbly
navigate the landscape of the software engineering community, Malicious
Test Day affords the rapturous possibility that there should come a time when
we unshackle our minds from its normal constraints, a day on which we give
full vent to the notion that it’s absolutely liberating on the most infrequent
occasions to relish breaking things and to tArill in delivering bad news. And
thus, Malicious Test Day was born.° And so, with a tip of the hat to Admiral
David Glasgow Farragut, “Damn the politics — full speed ahead!”

Malice — in Measured Doses

So, what exactly is Malicious Test Day? Malicious Test Day is a day that we
set aside, generally once a quarter, where the entire System Test and Quality
Assurance organization devotes an entire day to testing an integrated product

* Cem Kaner, James Bach and Bret Pettichord, Lessons Learned in Software Testing, Wiley,
New York, 2002, p. 11.

5 Dr. Seuss, How the Grinch Stole Christmas, Random House, New York, 1957.

%It is at this point you should hear an evil-sounding cackle reverberating in the inner recesses
of your mind...

What questions
should you be
asking?

suite. Most of our products are designed to work together, so we simply
install our products across multiple environments, with different operating
systems and databases, create special user IDs for each member of the
organization, and tell them to “Have at it!” There are two parallel emphases
during a Malicious Test Day. The first concentration is for those who wish to
have no step-by-step instructions given, no mandated tests to perform. The
only guidance we give to these participants is:

Play with the products — try to break them if you can. If you
come across something that even remotely looks like a defect,
or if you see a performance problem, or any other anomaly,
write up a defect report. If you see something that can be
improved, write up an enhancement request.

Needless to say, this aspect of Malicious Test Day is rather “free-form” in its
approach, but this type of testing can sometimes mimic customers’ usage of
the products in a way that highly-structured tests sometimes cannot. Imagine
50 or 60 people, all using various aspects of your product suite at the same
time, and all thinking of devilishly clever ways to break something. We’ve
found it to be quite fun, and quite a learning experience as well! That being
said, however, we generally also have some comprehensive and complex
scenarios in mind that can only be executed with significant coordination
beforehand.

Administering a Malicious Test Day

The principal objective of this event, of course, is to shake ourselves out of the
common routines of our testing and look with new eyes at the software under
development. It is an opportunity to answer questions such as these, as well
as many others:

How does a new user look at this product?
What might frustrate experienced users?

What might a hacker attempt?

What kinds of security exposures might exist?
What areas of the product am I unfamiliar with?
What can I do to fest the limits of this product?
What environmental oddities can we create?
What have we never tried before?

To be honest, we thought running a malicious test day would be a breeze —
just pick a day and let glorious mayhem flow. To our surprise, though, we
found that planning fruitful malice is hard work.

What follows are several areas that we have found that we need to pay
attention to prior to executing a successful Malicious Test Day. Review the
following considerations well in advance of implementing your Malicious
Test Day in order to orchestrate a truly productive event.

The Unexpected Challenge of Scheduling

A Malicious Test Day can be as simple or as complex as you want it to be.
Our approach was somewhat involved, as we were looking for benefits
beyond the obvious. As a result, timing the event became an important
consideration. Depending on the size of your company, this may present no
small challenge.

First, we wanted a timeframe that was just after major releases of one kind or
another for the majority of our test teams — the worst mistake you can make is
to schedule an event such as this when the team is already pulling overtime to
close out a release. In addition, we tried to avoid low attendance periods
(such as peak summer months or late-year holidays). Further, we took into
account activities in other organizations that might conflict, in order to
maximize participation from groups outside of the test teams. We then
publicized our event as early as possible and obtained the commitment of key
leaders.

Involving Others and Some of the Benefits It Affords

Probably the principal advantage to such advance planning is that we were
able to get the commitment of other groups to participate fully. Consider the
possibilities. What if you were to invite...

o The development team. Do you think they might enjoy testing
another group’s product? Writing code to overwhelm it and
expose weaknesses? Might they want to test the edges of their
own product? To prove the superiority of the code they wrote? As
an added bonus, participation by the development team in our
Malicious Test Day activities provides you with an opportunity to
showcase ways in which heightened ongoing involvement and

interaction with your test team might be both possible and
mutually beneficial.

o Sales, information development, marketing, and services. These
groups often are able to bring in a client perspective that more
inwardly-oriented groups might miss. In addition, in many cases,
this gives these groups an opportunity for hands-on experience and
interaction in a safe atmosphere — all questions are welcome. We
have found Malicious Test Days to be profitable means of
education for many groups.

o Other test teams. By engaging other test teams, you gain an
additional professional perspective, but also, they gain the
opportunity to better understand how your product set works and,
potentially, how it interacts with the products they test.

Ownership

There are some people who treat rental cars as gingerly as they would their
own. They check the oil, keep the interior in pristine condition, run it through
the car wash, and use the accelerator with only measured enthusiasm. In
general though, car owners are far more accountable for the maintenance and
care of their vehicles than car renters. Malicious Test Days function best
when someone knows this is their event to own and run. They must have the
latitude to customize the event, to inject fun, and to try new things.

There are some constants in the equation which the owners of your event will
need to keep in mind:

e [FEvent Setup

We have found that by far the most time-consuming aspect of our
Malicious Test Days has taken place behind the scenes, setting up
hardware, software, userids, permissions, and physical locations
that allow for appropriate levels of interaction and collaboration.

If it is your aim to involve people from a wide range of other
organizations then there is no winging this — this takes a lot of hard
work. It also takes planning to arrange the appropriate trinkets and
trophies! More on this aspect below...

e Coordinating the Day’s Schedule

As mentioned earlier, we have found it helpful to focus on
products and combinations of products in an orchestrated manner,
moving essentially from one major task to the next. In parallel, we
also encourage those who have an interest in acting maliciously on
their own, but perhaps the best results have been obtained from the
“coordinated mayhem.” We pull together sessions we call “Uber
Tests,” where we have a large number of people hammer a
particular product or scenario mercilessly. It is challenging to
allow for both planned and unscripted activities, but it can be
done!

And of course, it is essential to know when and where the pizza
and goodies will be available!

e Communication

Prior to the event, a good deal of communication needs to take
place in order to ensure that adequate representation is obtained
from within and without the test community. On event day, people
need to feel connected and must be able to interact — they need to
know what is coming next and what defects are being discovered.
Tote boards, bells, instant messaging, websites, and all kinds of
other means of communication are useful ways of keeping those
destructive juices flowing.

e Representing client environments

In addition to the individual environments we provide for the
event, we also customize a number of scenarios that involve using
real customer data (and if possible, real customers!). Recreating
high numbers of users using real customer data produces real
world high stress conditions (if planned and orchestrated
appropriately, that is). In short, the owners of our event work with
the test team to devise complex situations that they believe will
push the products in ways they’ve never been pushed before.

Learning from Others

We have found two books especially helpful for the perspective and insight
they bring to bear on the mindset that a Malicious Test Day aims at. Edward

COFTWAERE TESTIMNG
I THE EEAL WORLD

Im preavag the prooms

B e el

Howe teo
Break Software
03000 10t

Sanes A WRLal e

Kit’s work on “Creative Destruction” is often cited by those who are familiar
with his book, Software Testing in the Real World. He writes,

Testing is a positive and creative effort of destruction. It takes
imagination, persistence and a strong sense of mission to
systematically locate the weaknesses in a complex structure
and to demonstrate its failures....What we need is someone
else who can attack it with the attitude of: “I’m here to destroy
this thing. I’m going to find the defects that I know are there;
that’s my job and that’s what I’'m paid to do.”’

The chapter from which this quote is taken, “Good Testers Have a Testing
Attitude,” is solid background reading in preparation for the event, and will be
beneficial for participants who have a background in testing or otherwise.

The second book which we have found especially useful for our Malicious
Test Days is a veritable handbook for the event. It is James Whittaker’s How
to Break Software. Whittaker offers dozens of tips and techniques to drive out
defects, and it is notable that he speaks specifically about events similar to
Malicious Test Days which he refers to as “Bug Hunts,” which are limited to
two-hour events. He writes,

We hold bug hunts immediately after a major new build occurs
or a new feature is added. We generally limit the hunt to a
specific area of the software. So we look for clues from
developers about what features have had the most code
modifications or new code added, and we target those.

The purpose of a hunt is not only to shake some good bugs out
of a new build but also to foster teamwork and friendly, healthy
competition among your testers. We always hand out cash
prizes and try our best to bow to the victors when we pass them
in the hallways. Winners usually get the “we’re not worthy”
bow for a couple of days after a hunt.®

And so while the intent of Whittaker’s bug hunt is a bit different than one of
our Malicious Test Days, there are many similarities, and there are a number
of excellent insights that can be gleaned from Whittaker’s book as a whole for
planning your own event. A good example is the manipulation of
environmental characteristics (such as memory, disk space, etc.) that can
cause an application no end of angina.

" Edward Kit, Software Testing in the Real World, Addison-Wesley, 1995.
¥ James Whittaker, How to Break Software, Addison Wesley, 2003, p. 124.

Is Once Enough? How Many Are Too Many?

Given the approach we take for our Malicious Test Days, we decided to ask
our test teams how frequently they should be held. Given the work involved
and the setup required, we expected them to suggest annual or semi-annual
events. To our surprise, they strongly suggested that they be held on a
quarterly basis — the educational benefits, the actual defects discovered, and
the opportunity to try new things warrants the investment of time. And did we
mention these can be fun?

Change is Good: Fostering Creativity

In order to ensure your Malicious Test Day leaves a mark well beyond the
event itself, bear in mind three essentials to the festivities:

1. Buy trophies

7 B ATER g
' J"' , ;‘ié* We usually buy several trophies of varying sizes, with the largest
P:_!,i: ; Tﬂ . reserved for the worst defect discovered. Accept no substitutes:
R S St find a trophy store that will stick a bug on the top of the biggest
trophy they offer!

2. Give rewards

Many people work hard to make a Malicious Test Day successful.
Recognize your owners, those who have helped behind the scenes,
and those who have done the most damage, er, found the most
bugs!

3. Foster creativity

Use Malicious Test Days as one of many organizational tools that
can help to instill in your teams the notion that creativity in their
work does bear real fruit. By thinking about testing in new ways,
we can help ensure better-tested and, therefore, higher-quality
products, and help also to make our clients happier.

Evil Intent with a Loving Purpose

On Malicious Test Days, we find dozens of defects. We gain new
perspectives. We learn many new things. We have fun and build our teams.
That should be benefit enough, right? Done right, a Malicious Test Day can
have even more far-reaching consequences.

Not long ago, a major power outage affected the Northeastern United States.’
The kinds of difficulties encountered in a power outage seem like they are
largely incidental to software applications — if the computers aren’t working,
neither is the software! In point of fact, though, such outages can cause
extreme conditions for many of the applications developed, conditions not
unlike those that might be reproduced in a Malicious Test Day. Consider all
of the perfect storms that your applications might encounter, and design
scenarios with the worst case scenarios of the real world in mind.

While it is true that testers need to be team players, fundamentally, there is an
important dimension of our work that can be too often muted when “getting
along” becomes the chief objective — it is our job to drive defects out of our
software — mercilessly. ©

% % & % ok

We would appreciate any comments, suggestions, or feedback based on your
implementation that you would be willing to offer. You can reach us via the
following email addresses:

Ted Rivera: trivera@us.ibm.com
Adam Tate: atate(@us.ibm.com
Scott Will: sawill@us.ibm.com

Thank you — and we look forward to hearing from you!

? In August, 2003, to be exact. See the following news account: http:/news.com.com/2100-
1011_3-5063997.html.

mailto:trivera@us.ibm.com
mailto:atate@us.ibm.com
mailto:sawill@us.ibm.com

Author Biographies

Ted Rivera

Ted is a Product Development manager with IBM Corporation’s Tivoli
Systems Software division. Ted manages several departments that provide
system verification, performance and scalability testing, integration testing,
documentation, globalization, and a range of other services in support of
products in Tivoli’s portfolio. He has worked at IBM for over 20 years in a
variety of programming, customer support, and management assignments.

Adam Tate

Adam Tate is a Quality manager with IBM Corporation’s Tivoli Systems
Software division. His experiences as an engineer and as a manager give him
a well-rounded view of organizational issues as they relate to Quality. His
experiences in both start-up and enterprise companies provide him with a
unique perspective of today's technology business environment. His
commitment to customers has won him awards for his successful involvement
in hundreds of customer situations.

Scott Will

Scott is a Quality Assurance manager with IBM Corporation’s Tivoli Systems
Software division. In his 13 years with IBM, he has held management roles in
software testing and quality assurance, team-lead roles in customer support,
and has been chief programmer for several projects, programming in C, C++,
and Java.

10

	Table of Contents
	Introduction
	Malice – in Measured Doses
	Administering a Malicious Test Day
	
	The Unexpected Challenge of Scheduling
	Involving Others and Some of the Benefits It Affords
	Ownership

	Learning from Others
	Is Once Enough? How Many Are Too Many?
	Change is Good: Fostering Creativity
	Evil Intent with a Loving Purpose
	Author Biographies
	
	Ted Rivera
	Adam Tate
	Scott Will

