Removing Requirement Defects and Automating Test

Mark R. Blackburn, Robert Busser, Aaron Nauman

Organizations face many problems that impede rapid devel opment of software
systemscritical to their operations and growth. This paper discusses model -based
devel opment and test automation methods that reduce the time and resources
necessary to develop high quality systems. The focus is how organizations have
implemented this approach of model -based verification to reduce requirements
defects, manual test development effort, and devel opment rework to achieve
significant cost and schedule savings.

1 Introduction

Testing accountsfor 40 to 75 percent of lifetime devel opment and mai ntenance costs [Bei83; GW94].
Recent studiesindicate that 50 percent of test failuresare caused by requirement defects, and that
these test failurestypically result in 40 percent rework [NCS99]. Boehm and Basili report similar
findingsindicating that 40 to 50 percent of rework isavoidable. Further, they state that finding and
fixing aproblem latein the devel opment process can be 100 times more expensive than finding and
fixing it during the requirement or design phase [BB2001].

This paper describes a model-based verification approach that has been effectivein locating and
correcting requirement defects early in the devel opment process, reducing manual test devel opment
effort, and reducing rework. The approach referred to asthe Test Automation Framework (TAF)
integrates various government and commercially available model development and test generation
tools to support defect prevention and automated testing of systems and software.

11 Organization

Section 2 provides context by describing the concept of requirement defects, testable requirements,
and some results achieved in applying the TAF. Section 3 describeshow mode analyssand modd-
based test generation reduce overall devel opment timeand effort. It describes how models clarify and
formalize textual requirements and provide the basis for defect prevention and test automation.
Section 4 summarizes an effective approach for organizational adoption, and also provides test
engineer, design engineer, and manager perspectivesto illustrate the positiveimpactsfor avariety of
stakeholders.

2 Context

21 TedableRequirements

Requirement defects occur in many forms. An incomplete requirement is open to differing
interpretations, while a testable requirement must be complete, consistent and unambiguous. A

testable requirement may include some implicit domain knowledge, but that knowledge must be
known or documented within the organi zation ensuring the requirement is consi stently understand

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

within the context of the system under test. Any potential misinterpretation of therequirementisa
defect.

This paper focuses on another form of requirement defect referred to as contradictions or feature
interaction problems. These defects arise from incons stencies or contradictionswithin or between the
requirements. These problems can be difficult to identify when requirements are documented in
informal or semi-forma manners, such as textual documents. Often information related to
contradictions span many pages of one or more documents and are introduced when more than one
individual develops or maintains the requirements. Although rigorous approaches and manual
inspections can assist in minimizing incompleteness and contradictions, there are practical limitsto
their effectiveness. Theselimitsare related to human cognitivelimitsand are very dependent onthe
personnel involved. Modeling provides ameans of formalizing the requirements. Thedisciplineand
structure of the modeling process hel ps eliminate incompl eteness, and the resulting modelsprovide a
basis for tools to assist in detecting incompleteness and contradictions early in the devel opment
process. Requirement testability analysisis the process of refining and clarifying requirements
through models using acombination of the process and automated tool analysisto develop defect-free
requirements.

22 Defect Discovery

The effect of early defect discovery isillustrated in Figure 1 by thetrend curvelabeled “New.” The
rate of defect discovery increases early in the process, but quickly curtails. Thisisin contrast to the
typical situation reflected by the trend curve labeled “ Old,” where defects are not identified until
testing begins or after release when they are most expensiveto fix. Defection prevention involves
finding and correcting problems before they propagate to later development phases. Figure1aso
illustrates the conceptua savings associated with defect prevention asthe decreased rate of defect
discovery between the“New” and “Old” trend lines. Def ect preventionis most effective during the
reguirements phase when the cost of correctionislow. Industrial applications, described in Section
2.5, have demonstrated the TAF process directly supports early defect identification and defect
prevention through the use of requirement testability analysis [Saf2000].

23 Reguirement Validation

Requirement validation ensures captured requirements reflect the functionality desired by the
customer and other stakeholders. Although requirement validation is not the focus of requirement
testability analysis, it is supported. Requirement validation invol ves an engineer, user or customer
judging thevalidity (i.e., correctness) of each requirement. Models provide ameansfor stakeholders
to precisely understand the requirements and assist in recognizing omissions. Tests automatically
derived from the model support requirement validation through manual inspection or execution within
simulation or host environments.

24 Ted Desgn Effort

Thetasksrelated to test design aretypicaly manual and error prone and can account for 60 percent of
testing effort. Organizations have reported spending nearly 50 percent of their test effort devel oping
and debugging test scripts. Automating the process of test design and test driver or script development

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
2

can result in significant cost savings and more effective testing. The TAF approach leveragesthe
models used to support requirement defect analysis for automating test design activities.

old Late Defect
Discovery Results in
Significant Rework

Defect
Prevention

Rate of Discovery

Requirements Design & Release Release
Build to Test to Field
——————————————— TIME = = = e e e e e e e e = = =

100X Increase in Cost of Removing Defects*

Source*: Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, Inc. 1981.
Boehm, Basili. “Software Management.” IEEE Computer, January 2001.

Figure 1. Early Defect Identification and Prevention
25 Applicationsand Results

The core capabilities underlying this TAF approach were developed in the late 1980s and proven
through use in support of FAA certifications for flight critical avionics systems [BB96]. Statezni
described how the approach supports requirement-based test coverage mandated by the FAA with
significant life cycle cost savings [Sta99; Sta2000]. Safford presented results stating the approach
reduced cost, effort, and cycle-time by eliminating requirement defects and automating testing
[Saf2000]. Safford’s presentation summarized the benefits:

Better quality requirements for design and implementation help eliminate rework in those
phases as well as during test

Verification modeling can reduce the time normally spent in verification test planning by
up to 50 percent

Test generation from a verification model can eliminate up to 90 percent of the manual
test creation and debugging effort

Both the number of test cases and the phasing of their execution can be optimized,
eliminating test redundancy

A known level of regquirements coverage can be planned, and measured during test
execution

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
3

TheNational Ingtitute of Standards and Technology (NIST) isassessing this approach asthe basisfor
a methodology and supporting toolkit to automate major aspects of security functional testing
[BBNCO1]. The methodol ogy recommends devel oping model s of functional security requirementsas
the basis of automated test generation and execution. Experimentsindicate the methodology provides
asolution to the problem of functional security testing by increasing test coverage, while reducing
time and manual effort. NIST and its sponsor have investigated other model -based test generation
approaches, but found that they lack support for automated test execution. They cited the ability to
integrate automated test generation with test driver generation mechanisms for multiple test
environments as a key benefit of the TAF approach.

TAF has been used for modeling and testing system, software integration, software unit, and some
hardware/software integration functionality. It has been applied to critical applicationslike telemetry
communication for heart monitors, flight navigation, guidance, autopilot logic, display systems, flight
management and control laws, airbornetraffic and collision avoidance. In addition, it hasbeen applied
to non-critical applications such asworkstation-based Javaapplicationswith GUI user interfacesand
database applications. The approach supports automated test driver generation in avariety of open
languages (e.g., C, C++, Java, Ada, Perl, PL/I, SQL), aswell as, proprietary languages, COTStest
injection products, and test environments.

3 Approach Overview

This section provides an overview of the TAF approach, starting with how it has been successfully
applied in some organi zations. Subsequent subsections describe modeling concepts, toolsfor creating
and maintaining models, toolsfor automating test generation, toolsfor automating test execution and
how these different aspects are integrated in the approach.

31 ProcessFlow and Roles

The conceptual process as rendered in Figure 2 identifies the typical organization roles: 1) a
requirements engineer performs requirement anadysis, 2) a designer/implementer develops
system/software architecture, design and implementation, and 3) atest engineer performs verification,
including testing, analysis and reviews, and some validation. Any person on the team may perform
one or more roles. Requirements are typically recorded textually and are sometimes supplemented
with graphics, tables or formalized models and algorithms. The requirementstypically passto the
system designers and testers as documents that can include Software/System Requirement
Specifications (SRS), function lists, or change requests.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
4

Requirements Textual Designers &

Engineers Requirements Implementers
& Models

System

el =

Interfaces Test

» Results
Test Verification Tests and
Engineers Models Test Drivers
______________ TIME == == o= o= om oom oom oom oom oom oo o= ==
Key
-Role NOTE: process is iterative and can be applied at any system level
A - Tool

8 - Artifact(s)

Figure 2. Process Roles and Flows

Thekey changeto atypical processistheintroduction of verification models. These models support
automated means of identifying model defects and generating tests highly effectivein verifying a
system is consistent with the model. Figure 2 illustrates a specific process in which testers are
involved in developing verification models. This approach has been effectivein many organizations
not already developing rigorous models. Other successful approaches have involved requirements
engineers or designers using existing modeling tools or adopting new tools, such as MATRIXX,

ObjecTime, or Statemate to develop models that support both development, validation and

verification. This paper highlights aprocessin which testers devel op modelsto support verification in
SCR (Software Cost Reduction).

SCR, and the associated SCRtool developed by the Naval Research Laboratory, havebeenusedina
variety of industrial applicationsto model system and software requirements[HJ96]. Asreflectedin
Figure 2, the TAF trand ator transforms and expandsthe SCR specificationsinto aform supporting
automatic test generation. T-VEC provides model analysisto detect requirement defects, aswell as,

generates test vectors, performs specification coverage analysis, and generatestest drivers[BB96;

BBF97].

32 Veification Modd Development

A “pure” requirement model specifiesthe requirementsin terms of logical entitiesrepresenting the
environment of the system under test, where as, a verification modd s specifiesrequirementsin terms
of theinterfaces for the system under test; adesign engineer typically definestheinterfaces. Thisis
analogousto the way atest engineer devel opstestsin terms of the specific interfaces as opposed to

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
5

logical concepts of the environment for the system under test. SCR is a table-based modeling
approach, as shown in Figure 3 that modd s system and software requirements. The SCRtool isused to
develop verification models through a process of requirement clarification.

Function Data Types
L|s D >

Change Requirement B .
SRS
_ Request Modeling —
Requwements And Variables §
(come in many forms) Clarification

: Behavior
State Machines
(Mode Table) Events

Figure 3. SCR Modeling Constructs

SCR represents systems inputs as monitored variables, system outputs as controlled variables and
intermediate values asterm variables. Variables are defined through primitive types (e.g., Integers,
Float, Boolean, Enumeration) or user-defined types. Models are constructed from four model
elements: modes, terms, conditions, and events. A mode classisagaie machine, where sysem dates
are called system modes and the trangitions of a state machine are characterized by guarded events. A
term is any function of input variables, modes, or other terms. A condition is a predicate
characterizing a system state. An event occurs when any system entity changes vaue. Each term and
controlled variable must be defined using an event or condition table.

33 Modd Trandations

The TAF trandator converts SCR model's, which are composed of combinations of condition, event,
and mode tables into test specification models as shown in Figure4. For model analysis and test
generation themodel is“transformed” into a set of precondition/postcondition pairsreferred to astes
specification elements. As reflected in Figure 4, a test specification element includes a set of
constraints on the inputs and a postcondition that definesthe output as afunction of the constrained
inputs. Thetest specification element constraints are defined as aconjunction (i.e., logically ANDed)
of Boolean-valued relations on the inputs (monitored variables or terms).

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
6

Monitored Controlled

Variables Term Variables
Variables

\

Condition Tables

Event Tables Event Tables

Mode Tables Common Mode Tables—_

Conditions \
/

Precondition (Postcondition)
| |
defines used as inputs
Test | |
Specification Constraint 1 —— output = f,(inputs) ‘
Element R
Constraint 2 ——» output = f,(inputs)
OoR
Constraint n ———poutput = f (inputs) ‘

Figure4. Representation of Test Specification Modd
34 Ted Generation and Defect | dentification

Test vector generation attempts to produce atest vector for every test specification element. A test
vector isaset of test input valuesthat satisfy theinput congtraints, and an expected output valuethat is
derived by evaluating the postcondition with the input values [BB96]. Informally, from a test
generation perspective, a specification is satisfiable if at least one test vector exists for every
specification element [BBF97]. If atest vector is not produced, then the specification probably
contains a contradiction (arequirement defect).

The SCRtool can check consistency for individual tables, but most inconsistencies result from cross-
table dependency relationshipsthat are anal ogousto feature interaction problems. Therefore detect
identification with TAF isatwo-step process: 1) thetest vector generator attemptsto find atest for
every test specification element, 2) a post-processng activity identifiestest gpecification dementsthat
have no associated test vector. The test specification elements are traced back to the requirements
model to identify requirement defects.

35 Ted Drivers Execution and Results Analyss

Test driver generation automates the time consuming and error prone activity sometimesreferred to as
test script development. Asillustrated in Figure 5, thetest driver generator combinestest vectorsand a

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
7

test driver schemato produce atest driver and afile of expected test outputs. The test vectors describe
the test data, while the test driver schema describes the generic test execution steps. A test driver
schema describes a pattern that performs the steps necessary to execute atest case. The schemais
defined once per test environment. The schema algorithm typically performs some type of

initiaization and then loopsthrough each test to initialize outputs to something other than the expected
value, loadsinputs, callsthe system under test, and then retrieves and stores the actual test outputs.

Test Driver
Generator

Expected
Results

Results
Analysis

Drivers

Schemas

Test
Environment

Actual
Results

Figure 5. Automated Test Execution Process

Resultsanalysis smply compares the actual results of test execution to expected test results asdefined
by the test vector expected outputs. A comparator utility supplied with the T-VEC tools supports
automating the results comparisons while accounting for any numeric tolerances.

4 Organizational Adoption

The key changes to the organization and existing process necessary in adopting this approach are
relatively minor. In Figure 2, thekey organizational changeinvolvesusing thetest engineer to develop
verification models early in the development process. Verification models are developed as
reguirementsare acquired. These models are continuoudy analyzed. Defects discovered arefed back
to the requirements engineersfor correction. Later in the process, the models are used asthe basis of
test vector and test driver generation, rather than devel oping these artifactsmanualy. Thefollowing
subsections provide rationale from different stakehol der perspectivesto explain why thisapproachis
adopted by organizations.

41 Ted Engineer Perspective

Test engineers are willing to adopt the process because: 1) they areabletowork early inthe processas
opposed to latein the process when schedul e and budget are more critical and limited, 2) by working
earlier in the process they have moreimpact on adding test hooksinto the system architecture, 3) they
arewilling to use new toolsto support their job, especially when the processfor using thetoolsis
similar to the existing manual process.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
8

Test engineers have found that developing verification models using SCR is similar to test plan
development using verification cross-reference matrices. Figure 6 provides an illustration of the
relationship between requirements, which might comein theform of an SRS, functionlist, or change
request. The traditional test planning activity determineshow each function/action in the requirements
isrelated to one or more conditions (or events). Thetabular approach shown to the right is sometimes
used to define the relationship between the functions and associated conditions. Thetest plan matrix is
then used as the basis for developing the particular test sets.

Function
List D
N
@ é Test Plan Matrix 1]12]3|4]5
Change Conditions/Events
SRS Request Condition 1 T[T FLF
- Condition 2 F FIT]|F
Condition 3 T T|F
R / Function/Action
% Function 1 R R
TP Cm ‘Action 1 R|R R
Function 2 R
% TS Function 3 R
Function 4 R|R
N X N Function Iis required when
Condition 1 is True and
Key Condition 2 is False and
RT;EE_?:S'{‘EPT;M Test Inputs Expected Output Test Procedure Condition 3 is a “don't care
TS = Test Set and Tolerance Code

Figure 6. Traditional Requirement-Driven Test Planning

Figure 7 relates the concept of atabular test plan to requirements modeled using SCR. SCRisa
tabular approach, and testers have found it quite natura to model Conditions of atest plan as Boolean-
valued terms, where the constraints on the inputs are defined using condition, event or mode tables.
Similarly, the Functions of thetest plan matrix can be modeled asan SCR table, and related to other
tablesthat have specified the Conditional relationships. Onceacondition or functionismodeled it can
also be reused. Thissystematic approach to requirement modeling, with planned reuseiswhat helped
Safford’ s organization reduce verification test planning by 50 percent [Saf2000].

Use casetesting isanother popular approach that can be structured as atabular test plan, asshownin
Figure 6. A use case test is typicaly defined in terms of a precondition and postcondition. A
precondition can be presented as a Condition/Event in the test plan matrix, while the postcondition can
be represented as a Function/Action. A benefit of the test plan matrix is that commonality between
truth-tablerelationships (i.e., conditions) isexplicitly visible; thiscan help in better understanding the
completeness of the tests for the required test combinations.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
9

Monitored
Variables

Test Plan Matrix

Conditions/Events

Condition 11

Controlled
Variables

Condition 4 F T
isonditionl) F|T F

Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R|R R

Term
Variables

Event Tables Event Tables

Common
Conditions

Mode Tables Mode Tables

Figure 7. Relationship Between Test Plan Matrix and SCR Models
42 Dedgn Engineer Perspective

Often design engineersareinitially skeptical of thisapproach. They do not wish to complicatetheir
designsto support testability. They are more supportive of the adoption oncethey redlize that parallel
testing and program devel opment reduces program schedulerisk allowing development and designto
continuefor arelatively longer period of time [Saf2000]. In practice, test engineers ask key questions
of the design engineer that help address detailed issues (e.g., range congtraints, Sizing) earlier inthe
process, which helps avoid rework. In addition, the design engineer and implementer have early
accessto test drivers, which reduces the implementer’ seffort in creating test driver and test stubsto
support unit testing and debugging.

43 Manager Perective

Managers are willing to adopt the new process because devel oping verification models support
requirement defect analysis and automated testing. Testing becomes continuous throughout thelife
cycle asverification models directly support automatic generation of test vectors and test drivers,
reducing cost and schedule. Asreflected in Figure 8, managers can usefailure anaysi s supported by
continuous testing as an objective measure of product goodness and releasability. Failures can be
categorized to systematically address and resolve top priority problems. Correcting issues such as
interface problems or feature interaction problems may be necessary for rel ease, while correcting
problemsrelated to an experimental features may be deferred to later releases. Findlly, thisprovidesa
basis for software reliability estimates by tracking the failures over time from the beginning of
development as opposed to the start of a serial testing phase.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
10

Daily Failures Lo
4 d Failure Categories

eInterface Problem

0

]

Ei *Spec/Implementation Mismatch

& eIncorrect/Inconsistent Requirement
*«Weak Requirement
*Not Supported in Release

Time
Figure 8. Management Through Failure Analysis
5 Summary

This paper describes amodel-based verification approach that integrates commercially available
model development and test generation tools to support defect prevention and test automation.

Organizations have reported significant cost and effort savings by using this approach to reduce
requirement defects, manual test development, and rework involved in devel oping and testing both
software and systems. They found requirement modeling takesno longer that traditiond test planning,
while reducing redundancy and building in areusable model library capturing the organization’ skey
intellectual assets. Because testing activities occur in parallel to development efforts, they requireless
dedicated time at the end of the development cycle. Thus, the approach supports“relatively” longer
devel opment effortswithout risk to the overall schedule. Defect prevention isakey benefit of the
approach. It is achieved using model analysis to detect and correct requirements defects (e.g.,

inconsistency, ambiguities, feature interaction conflicts) early in the development process. The
verification model s enable automated test generation. Thiseliminatesthetypically manual and error-
pronetest design activities and provides measurabl e requirement-basad test coverage. Organizations
have demonstrated that the approach can beintegrated into existing processesto achieve significant
cost and schedule savings.

6 References
[Bei83] Beizer, B. Software Testing Techniques, New Y ork, New Y ork: VVan Nostrand Reinhold, 1983.

[Blagg] Blackburn, M. R., Using Models For Test Generation And Analysis, Digital Avionics System
Conference, October, 1998.

[BB96] Blackburn, M.R., R.D. Busser, T-VEC: A Tool for Developing Critical System. In Proceeding of
the Eleventh International Conference on Computer Assurance, Gaithersburg, Maryland, pages
237-249, June, 1996.

[BBF97] Blackburn, M.R., R.D. Busser, J.S. Fontaine, Automatic Generation of Test Vectorsfor SCR-
Style Specifications, In Proceeding of the 12th Annual Conference on Computer Assurance,
Gaithersburg, Maryland, pages 54-67, June, 1997.

[BBNCO1] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to
Security Test Automation, Quality Week 2001, June 2001.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
11

[GW94]
[HIL96]
[Stag9]
[Sta2000]

[Saf2000]

Ghiass, M., K.I.S. Woldman, Dual Programming Approach to Software Testing, Software
Quality Journal, 3:45-58, 1994.

Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

Statezni, David, Industrial Application of Model-Based Testing, 16th International Conference
and Exposition on Testing Computer Software, June 14-18, 1999.

Statezni, David. Test Automation Framework, State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, 30 April - 5 May 2000.

Safford, Ed, L. Test Automation Framework, State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, 30 April - 5 May 2000.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.
12

Mark R. Blackburn, Ph.D.

Dr. Blackburn is a Software Productivity Consortium Fellow, President of T-VEC
Technologies, Inc. and co-inventor of the T-VEC system. He has twenty years of
software systems engineering experience in development, project leadership and
applied research in object technology, requirement and design specification, model-
based development, formal methods, and formal verification. His more recent technical
activities have been focused on transforming various functional, OO, and control-system
models from 3rd party tool systems into a representation that can support requirement
defect removal and test automation. He is also involved in functional security testing,
developing strategies for integrating knowledge management and e-business, and has
also been involved in applied research and technology demonstrations in web-based
knowledge engineering, domain engineering, and reverse engineering. He has also
spent over ten years in the development of real-time flight critical avionics systems. He
earned a BS in Mathematics from Arizona State, MS in Mathematics from Florida
Atlantic University, and a Ph.D. in Information Technology from George Mason
University.

Mark R. Blackburn (blackbur@software.org; blackburn@t-vec.com)

Software Productivity Consortium (www.software.org)

T-VEC Technologies, Inc. (www.t-vec.com)

2214 Rock Hill Road

Herndon, VA 20170

(W) 703 742-7136

(F) 703 742-7350

Robert D. Busser and Aaron M. Nauman are co-authors.

	Paper
	Bio

