
LESSONS LEARNED FROM INCORPORATION OF COMMERCIAL
COMPUTER AIDED SOFTWARE ENGINEERING TOOLS IN A FLIGHT

CRITICAL SOFTWARE TEST ENVIRONMENT

Jon Hagar
Lockheed Martin Astronautics

P.O. Box 179
Denver, CO 80201

 jon.d.hagar@lmco.com

ABSTRACT

In flight critical, software intensive, avionics systems, a
major technical and managerial component is the testing and
analysis of the developed software. In many of these
systems the software must be “ultra-reliable” (work the first
time and every time) and produced within schedule and
budget. In this paper, we will examine how an existing
successful software verification and validation project
incorporated commercial computer aided software
engineering (CASE) tools. The paper examines the original
approach, how CASE and new tool concepts have been
incorporated within this approach, and some observed
impacts to cost and quality. A final section identifies the
challenges that were faced during development of the test
system.

1.0 INTRODUCTION

Software testing is an area of software development that
can occupy from twenty-five to fifty percent (or more) of
software development costs. Additionally, Independent
Verification and Validation (IV&V) costs can equal those
of development testing. Digital avionics system do not lend
themselves to the ad hoc beta testing of the “shrink wrap”
industry. Therefore, comprehensive software Verification,
Validation (V&V), analysis, and testing must be done.
Comprehensive V&V costs a great deal of money, and so
with the current interest in better, faster, cheaper, one large
area to improve is software testing.

There have been numerous approaches conceived to
improve software and software testing. One idea is just to
eliminate or reduce the amount of software testing done.
This can be disastrous, since developers of software have
not found a way to produce error free software, and
software testing is a risk management activity for software
errors. It is not acceptable to have avionics systems with
software errors which result in the failure of a system.
Another approach can be seen in the Cleanroom [1]
approach to software, which changes the fundamental way
software is produced and tested. While clean room and
other approaches like it represent interesting approaches

that fundamentally change how we do software
development, the definition of what really works and clear
technical superiority has not been proven. Further, issues of
acceptance by the software engineering staff of these
fundamental changes can be insurmountable. Yet one more
approach has been automation and the addition of computer
aided software engineering and CASE test tools.

CASE tries to maintain similar (or better) levels of testing,
but with reduced costs and time because of automation.
Test automation is nothing new in software, as most
software testing has always involved some degree of
automation. What is new in the last decade or so is the
availability and use of commercial test programs. In the
past, automated tools were custom made for specific
programs or companies. The applicability and longevity
was thus often limited to the people using them. But,
during the 1980’s and 90’s, vendors began offering
commercial CASE tools. Vendors often advertised test
tools as a way to easily save projects and software efforts.
As with much of CASE technology, there are no “magic
silver bullets”. CASE tools do not take bad software and
make it good, nor poor development processes and allow
them to make good software. What we have learned is that
good processes, practitioners, supporting tools, and
resources (time and money) are all necessary for success.

This paper examines how an ongoing flight IV&V product
area has taken existing processes, practitioners, and
supporting tools, then incorporated CASE test tools to first
develop and then start an avionics software test program.
This paper covers the test system, CASE tools
incorporated, and leassons learned. While the program is
not complete, early feedback from testing analysis indicates
that the introduced commercial tools are supporting
program goals and customer needs while achieving
reductions in cost. While this paper is about software,
much of what it addresses is applicable to system and
hardware levels testing.

2.0 CURRENT V&V PRACTICE

Our current IV&V approach involves different levels of
testing and analysis. Our test approach spans from the
software unit level to integrated hardware and software (a

system). Additionally, we have issues of configuration
control, change management, documentation, and
management. In all of our test activities, we use a variety of
supporting software tools and metrics. The goal of our
V&V is to show that flight software is ready for use and
the chance of catastrophic mission loss due to software can
be considered acceptable by the user. The software under
test is the guidance, navigation and control software of a
booster system, and so test programs that involve the fully
integrated system are not possible e.g., we can not fly the
software in a “beta” test on an actual rocket system to see if
it will work in real use.

2.1 What We Test
Mission
Requirements

Apogee

Perigee

Inclination

Park Orbit

 Deployment

Vehicle
Characteristics

Rocket Motor

Reaction Control

Payload

Figure 2.1-1 Complex Avionics Software Requirements

Lockheed Martin Astronautics (LMA) in Denver, Colorado
has produced critical software systems for several decades.
Production systems are usually one of a kind that must
work the first time or hundreds of millions of dollars may
be lost. These systems are typically very complex,
consequently failures or errors could be introduced from
many sources. These software-systems have the following
characteristics: real-time; spacecraft/booster flight control;
minimal human intervention possible; and numerically
intensive calculations of such critical items as, trajectories,
flight dynamics, vehicle body characteristics, and orbital
targets. Development programs are small—under 30,000
source lines of code (with small staffs), yet these programs
are critical to the control and success of the flight system.
Avionics systems with software produced at LMA include
the Titan family of launch vehicles, upper stage boosters,
and spacecraft, as well as the associated ground systems.
An example mission profile is depicted in Figure 2.1-1.
The software addresses both mission related requirements
as well as hardware/system related characteristics.
Production of software on many of these systems followed
a historic and similar development process that has been, in
part, responsible for mission success at LMA.

2.2 Historic V&V Process and Tools

2.2-1 Figure -- Tested Products - Tested Products

Our product area’s testing tools simulate various levels of
abstraction (Figure 2.2-1). In our approach, the lowest
testing level is structural verification testing conducted
with a digital simulation or hardware system, such as an
emulator. At this level, verification testing is done to
ensure that executable programs implement such things as
requirements, design information, and software standards.
This testing is usually done at a module level with small
segments of the code being executed somewhat in isolation
from the rest of the system. A tool executes code in a
simulator to support analysis of individual equations and
simple logic structure. The comparison and review of
results at this low verification level was human intensive.

The next higher tier, called integration testing within
industry, uses tools that are based on code structures which
have been integrated across module boundaries. These are
design-based tools and, at this level, they simulate aspects
of the system but lack some functionality of the total
system. These tools allow the assessment of software for
particular aspects individually.

The next level is requirements based simulation or what we
call scientific simulation tools. These simulations are done
in both a holistic fashion and on an individual functional
basis. For example, a simulation may model the entire
boost profile of a launch rocket with full 6-degrees of
freedom simulation, while another simulation may model
the specifics of how a rocket thrust vector control is
required to work. This allows system evaluation starting
from a microscopic level up to a macroscopic level.

At the system level, we test software with actual hardware
in the loop. An extensive real-time, continuous digital
simulation modeling and feedback system of computers is
used to test the software in a realistic environment.
Realistic is defined here as the software being tested as a
"black box" with the same interfaces, inputs, and outputs as
an actual flight system. To test our real-time software
system, we surround the computer with a first level of
electrically equivalent hardware interfaces. We input
signals into this test bed to simulate the performance of the
system and hardware interfaces. The test system runs in

actual real time, thus there is no speed-up or slow-down of
the system.

Numerous tools support the tiers and many of the tools are
simulations based on requirements, design information, or
the computer architecture. The tools were stand-alone,
custom built software programs that executed on separate
platforms from the software under test. These tools take
data that could be the input to the system under test, and
produce expected outputs. These can then be compared to
results generated by the actual software being tested. Some
of the tools simulate individual equations or logic
sequences, while other tools simulate aspects of the entire
system. Scientific simulation-based tools provide success
criteria or analysis capability that allow engineers to judge
the success of the software under test without relying
entirely on human judgment. Tools were often not well
integrated, so data had to be analyzed by hand or reentered.

Overall this approach and tool set has been successful in
taking input development products, doing V&V, and
generating test results (reports). In spite of success, we look
for improvements in our processes and tools to save time
and money.

3.0 WHAT HAS BEEN ADDED FROM CASE

The current business environment most industries operate
in requires such things as continuous process improvement.
While our product area has been in existence for almost
twenty years, we have practiced continuous change,
adopting what is new and works, retiring what is
antiquated, and learning what is new but maybe does not
work as well. We followed with interest the introduction of
CASE tools that assist in testing. We tried some CASE
technology and learned from other’s efforts.

During a major new system upgrade, we determined that it
was worth the effort to convert many of our supporting
tools to either CASE based or take direct advantage of
CASE information. We outline these in this section.

3.1 Modeling Tools (Requirements Simulation)

To support determination of how requirements should
behave and establish requirements based success criteria,
we model the software system. These models are
executable, meaning they can take input and produce some
output. Input and output both may be for parts of the
system or the whole system level.

Recently, we have moved from specialized FORTRAN-
based modeling tools to those based on MATLAB (TM).
The advantages of MATLAB are that it:

1. supports quicker development of models and comes with
extensive “tool boxes”,
2. is a standard that many engineers are now familiar with;
3. allows easier interface to several systems (platform
independence); and

4. interfaces easily to our test data, much of which is in
telemetry streams.

MATLAB is a commercial programming environment, that
supports rapid development and reuse via “tool boxes” and
easy engineering user interfaces. Tool boxes are callable
routines that support reuse. MATLAB comes with a large
library of vendor supplied routines that support
sophisticated analysis with graphics. In addition to
commercial libraries, many engineers on our project have
developed tool box routines that are specific to our problem
domain, but may be reused in several tools and/or even
projects. Reuse has been advantageous both in limiting
time spent on tool development and by providing analysis
options that never existed before because of development
expenses. We have noticed engineering “trading” tools and
planning for reuse during tool development.

Additionally, since MATLAB is commercial, it runs on a
variety of platforms. This allows us to develop and run on a
micro computer, and then move it to a more powerful
workstation when we want quick turn around. The
diversification of tools on all of our computer resources
allows better use of what can be a costly resource
(computer equipment). Further, since turn around time is
better, engineers can be more productive and even have
better attitudes (engineers seem to hate waiting).

Due to the commercial nature of MATLAB, many LMA
engineers now have a working knowledge of the tool. Most
new college graduates have also used it. This shortens the
learning curve and associated costs of training engineers.
Also, the familiarity leads to new ideas for tool
improvements since we have a “critical mass” of people
that generate ideas from each other.

Finally, MATLAB was designed to process streams of
numbers, and a stream of numbers is basically telemetry.
While it was necessary to create routines to decode
telemetry, this has not proven difficult. Further, because of
the tool box approach, reuse of telemetry-based processing
has proven possible. Once decoded, the steam of numbers
serves as input to the tools. Also, we find we can do
automated checking for test success. In this approach to
analysis, we first compute what a function should generate
then pull what the software actually computed out of
telemetry. Then the tool compares the two to determine that
the system is working as required. We are currently adding
to our “checks” as we mature our test analysis. We expect
continuing returns on this test analysis as we move to first
and recurring flights.

3.2 Reverse Engineering Tools

A large part of testing is understanding the software.
Another is the verification of design to code information.
Both software understanding and verification are supported
by the use of so called reverse engineering tools. A variety

of commercial systems take code and create design
pictures. We are using Battlemap (TM) by McCabe and
Associates. These design pictures are used to

1. verify developer supplied information;
2. aid engineers in their efforts to understand how the
software is operating;
3. provide a variety of metrics which measure attributes
and identify areas of code requiring added tests; and
4. feed design information into other commercial packages
(see 3.3 and 3.4).

We are finding this category of tool advantageous in both
aiding and accomplishing tests. However, the tools were
found to have limitations particularly in dealing with
embedded cross-compiled program environments. Tools
provided incomplete support in measures such as test
coverage and indication of “real” complexity. Also we
found that metrics can both mislead and overwhelm. Most
of the tools can produce hundreds of metrics. Care must be
exercised when “understanding” what they measure.
Finally, we found tools must be used in combination to
provide a complete test environment.

3.3. Unit Test Procedure Generator

We have two levels of test generator tools. One assists in
the generation of test harness (see 3.4) from reverse
engineering tool information. The other type of tool
actually helps generate the test procedure documentation
needed for our project. The tools are different in function,
however, both fit under the generator designation.

The first tool is really a series of tools, custom shells, and
integrated products that work together to generate a unit
(module or routine of code) test harness. We first take the
code to be tested and reverse engineering information about
it (section 3.2) then feed that into a requirement and
design-based CASE tool, Cadre-Teamwork (TM), which
testers enhance with test requirements and data dictionary
information. Once the refined test pictures have been
produced, the CASE tool with some supporting shells,
generates an initial unit test harness. The harness is then
compiled and executed to complete the test (see section
3.4)

The unit test process has some manual efforts which we
will continue to improve. The test generator does offer an
automated way to do what once was a manual process, as
well as providing improved test results documentation. For
example, test reviewers can now obtain on one or two
pages what used to take ten to twenty. One area of
disappointment has been in the level of initial coverage
provided by the CASE tool. We had hoped the process
would generate sufficient data sets to allow complete
coverage (statement and branch) with the first harness
generated. But, we have found that by both a lack of tool
functionality and a lack of developer supplied data, only

about ten percent of coverage is realized on the first pass.
Additional human engineering is needed to reach coverage.

Another innovation we have realized is the use of tools to
generate our test procedures. Test procedures are written
documents that define such things as, test objects,
references, special considerations, execution steps, analysis
and success criteria, and ultimately, pointers to results. We
became interested in ways to speed up the generation of
test procedures, test execution, and documentation as well
as approval of these by management and quality assurance
people. We were also looking for ways to take advantage
of our large scale corporate and project computer network.
We felt that electronic softcopy versus hardcopy might
have a variety of advantages.

This led us to the world wide web (WWW) and hypertext
markup language (HTML) which are supported by
commercial network tools such as NETSCAPE (TM).
Using these tools, we created a system that allows the
generation of executable test procedures [2].

Various HTML templates and forms have been created that
allow first the generation of specific test cases, and then the
execution of tests using the completed HTML-based test
procedures in an on-line, interactive mode. This approach
highly automates and standardizes test procedure
generation and execution. Tests are designed by filling in
HTML template forms which in turn generate test
procedures in the form of other HTML documents. The
basic process is seen in figure 3.3-1. All test inputs and
outputs, shell files used, and the STEP itself, are stored in
the specified location for review and analysis by
engineering after the run.

STEPGEN
HTML-
Templates

Tester
STEP

Unix

Tester

System Under
Test

Software
Test
Results

Figure 3.3-1 STEP Generation Process

As fields are entered, the system “builds” a new HTML file
(“STEP” in figure 3.3-1) that is itself an executable test
procedure. In order to allow the user to process smaller
pieces of the test procedure, the tool offers the feature of
partial submittals at the end of logical sections of the test
procedure. The user can then exit the browser and begin
generation of the later test procedure sections at a
subsequent time. This supports test design over a number
of sessions or designers. Custom and pre-designed
procedures can be mixed freely with order independence.

When completed, test procedures are submitted for
electronic on-line review and approval (peer, management,
and quality assurance review). Once approved for use, the
test procedure file can be executed via the Web. Test
procedures prompt testers (test engineers) for actions
interactively and spawn actual test tool execution, as well
as providing both the input and output retention.

We have found that use of Web technology has numerous
advantages, some of which are listed below.

1) Breaks test generation and execution into smaller more
manageable pieces.
2) Utilizes hyperlinks to quickly and easily view input,
output, and analysis that exists online.
3) Provides a standard test procedure form used by all
groups, adding consistency to the testing.
4) Provides an intuitive and easy to use user interface
5) Browsers are device independent and allow multi-
platform use with consistent results.
6) Use of an “electronic only” option helps eliminate paper
and encourages a paperless office.

While this system works and is useful, it was a learning
experience setting it up. Issues were raised early on by
management about the security of data and whether this
was more a system for “play” than work. Both of these
have been addressed by standard company policies and
properties of the Web tool we are using.

3.4 Unit Level Test Harness Tool

Testing units of flight code at LMA is a rigorous activity,
since we must ensure the absence of certain unit level kinds
of errors that might be catastrophic if they occurred. In the
past we had specialized tools and a great deal of human
effort to do such things as complete statement and branch
coverage testing. We have incorporated a commercial
package, AdaTest (TM), that supports direct unit testing
with what is called a test harness system. This system
allows the testing, automated checking, and reporting of
unit level tests. The automation required a different unit
level test process, but achieves the same and better results.
Before we had to hand code a test language for a module,
then debug it, generate a test, run the test, and then analyze
the results. The new system is driven with an integrated
process across several commercial tools. We can quickly
get the basics of a harness and set of inputs from the
combination of tools. This is then added to reach the
complete levels and check our test procedures require. We
are creating a library system of test inputs, cases, and
results, which will be archived for regression tests.

Regression tests required new test scripts and test, and
could only be built in a limited fashion on past results. The
new system will solve these because we will reuse the
harness(es) from initial testing by modification of only the
“changed” code checks.

3.5 Online Documentation and Information Control
Aids

A major issue for testers is that information (files,
documents, tools, programs, data, drawings, etc.) used in
testing must be easily and quickly accessible, correct and
current [2]. Modern software systems have numerous levels
of documents (requirements, design, code, data, executable,
and test) all of which must be managed efficiently.
Providing the configuration management information,
controlling the files (e.g., write protected), and accessing
the data are all necessary for success.

We have established informational pages for each product
configuration under test. Within these pages are links to
correct files and documentation. These links are defined
and used by testers but maintained and controlled by our
internal quality assurance group. This separation allows
better control by quality assurance which in turn supports
better review and audit by the quality assurance group. The
system is online and easy to use for quick support of
project test documentation needs.

Some of the activities in this area that previously involved
manual transfer, review and input have been automated
with the use of the Web. This information control
automation using the WWW tools has resulted in:

1) timely electronic notification to engineers and
correspondents;
2) improved status identification that in turn is accessible to
other WWW based tools;
3) improved configuration control because of the server;
and
4) improved test design and execution, since tools have
direct access to Web information on the same system that
they are executing.

4.0 LESSONS LEARNED & ADVANTAGES

In the discussion on the kinds of tools we have taken
advantage of, we defined some of the tool specific lessons
learned and advantages. This section summarizes some
general level observations that our project has had during
the initial set up and use of the CASE tools.

1) Training - The importance of and allowing for (time and
money) training is important. Some tools require training
(it is usually provided with their purchase). Training for our
project been both formal and less formal—on the job.

2) Planning - CASE tools must be planned for and
developed like any software effort. CASE tools are not
“plug and play”. To be successful, we planned for,
developed, integrated, and tested our CASE tools,
supporting software, and processes.

3) Thinking “outside of the box” - For existing engineers, it
is easy to want new tools to be like old ones, consequently

engineers and specific activities must change- which can be
difficult.

4) Determine the real requirements - Since new CASE
tools did things differently when we first started, we did
requirements definition followed by trade studies to
determine what functions we really needed tools to
perform. This resulted in selection of tools and CASE
implementation efforts that were successful. Look and feel
may not be real requirements.

5) Usability of a tool must be reasonable - While tools will
need training and by nature have complexities, a tool that is
too hard to use or is constantly in revision by vendors,
leads to a frustration by users that in the extreme will lead
to “shelfware”. The user interface was part of our selection
evaluation before purchase.

6) Engineering acceptance - Engineers can get tied to their
“favorite” tool. They are slow to use another tool that they
are not familiar with. This leads to some tools labeled as
“Bill’s” or “Ed’s”. And you hear things like “I am not
going to use Bill’s system. Get him to do it”. This issue of
acceptance and large scale use relates to training and
management commitment. It takes time to learn anything
that is complex (and most engineering tools have some
complexity, otherwise they would not be engineering
tools). Management has to allow for this and keep focused
that “It is your job to use Bill’s tool.”

8) Expect some failures and learn from it - We explored
several tools that we abandoned after an initial period of
time. While failure is not good, it is really only total failure
when one does not learn from the mistake. We have a
continuity of people and processes such that when some
“piece part” idea does not work, we still have overall
success. This requires planning and attention to what is
happening, because if you do not know, you have failed or
can not say how something failed, then lessons learned will
not be possible. Also, management must avoid blaming
engineers for the failure of an idea since this stifles future
ideas.

9) Process is important - CASE tools must fit within your
process. Lack of process but just having tools will probably
result in failure.

10) People are important - CASE tools by themselves do
nothing. People with training and knowledge are needed to
make tools work.

11) Avionics system have special problems - Despite
progress, CASE tools do not totally solve all test problems
in digital avionics systems. We have found problems in
cross compiling, embedded applications, design, data
representation, and requirements engineering, as well as
other areas. These can be worked around but that means
vendors have more functions to add.

4.1 Cost and Quality Impacts

When compared to custom developed tools, establishing
our CASE environment has taken 50 percent less people
than before. We have realized this savings while
maintaining functionality though things look and feel
different. Further, we expect less (50 percent reduction in
budget) maintenance costs since vendors provide upgrades
for a low annual fee (relative to staff costs). We have the
disadvantage of not being able to add functions we want to
tools, but this has proven a minor issue.

Additionally, we have reduced our test production staff by
40-to-75 percent (based on several past test cycles). We
believe we will reach similar levels of quality testing and
error detection rates though this remains to be seen since
we are only several months into our test activity. Early
engineering testing indicated our error reporting rate to be
equivalent to a time when we used custom tools. Ultimate
quality will be determined in long term use of the system
we are testing.

5.0 SUMMARY

CASE tools can be good if one considers them as tools and
not “magic bullets.” People make tools work and people do
the hard parts of engineering that tools cannot do. Tools
should aid people—not be a replacement for them. Also,
tools should fit within one’s requirements and process.
Modification of process procedures is unavoidable and
having people that can change with the newness is
important. While CASE tools are now viable, there is a lot
of room for improvement in CASE environments.

6.0 REFERENCES

[1] Dyer, The Cleanroom Approach to Quality Software
Development, Wiley & Sons, New York, 1994.

[2] Hagar, Burba, Wittekind, Bell, “HTML and the Web”,
Proceedings of 9th International Software Quality Week, 1996.

