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Abstract: When a test plan first enters life, it can often be like a fine wine, still good, but 
not fully mature in character, depth and complexity of test cases and objectives.  But like 
that fine wine, as a product and an organization's processes mature, so, too, should the 
test plan and associated cases.  This presentation will report on an analysis of a suite of 
tests and methods that have matured over many years.  Most software projects spend 
their “life” in maintenance and updates.  During these activities a large percentage of 
money spent on the software will be consumed by testing.  This presentation examines 
aspects of testing from initial through mature stages of an in-use software product.  
Analysis defines the impact of software trouble reports and change requests, including 
impacts from system usage on the testing.  Percentage distributions between early test 
levels, objectives, and methods are compared with distributions from the organization as 
it evolves and matures.  While data will be from a single product domain area, extensions 
and lessons learned to other software domains can be reached.  This presentation 
reports ongoing development, so questions and items currently under study are also 
considered. 

 

1. Introduction 
 Lockheed Martin Astronautics (LMA) in Denver Colorado has produced critical software 
systems for several decades. Production systems are embedded applications that must work 
the first time or hundreds of millions of dollars may be lost. These systems are typically very 
complex, consequently failures or errors could be introduced from many sources. These 
software systems have the following characteristics: real-time; spacecraft/booster flight control; 
minimal human intervention possible; and numerically intensive calculations of such critical 
items as, trajectories, flight dynamics, vehicle body characteristics, and orbital targets. 
Development programs are small, usually under 30,000 source lines of code, yet these 
programs are critical to the control and success of the flight system. Systems with software 
produced at LMA include the Titan and Atlas family of launch vehicles, upper stage boosters 
and spacecraft, as well as the associated ground systems. An example mission profile is 
depicted in figure 1. Production of software on many of these systems followed an historic and 
similar development process that has been, in part, responsible for each program’s success. 
These processes include continuous improvement and evaluation efforts designed to make 
things better. 

 Being a government-military contractor requires a certain commonality and consistency of 
approach due to compliance with numerous standards. Software engineering efforts like the 
Software Engineering Institute’s Capability Maturity Model (SEI CMM) are based on the idea 
that similarity and consistency of process over time and project are good. The CMM allows for 
orderly process change, and this paper examines how the testing evolves as a program 
continues in maintenance efforts with associated maturing of products.  While the paper is 
based on observations from a narrow domain, it is reasonable to expect similar changes in test 
cases and processes in other software domains, since many of the practices are common to the 
industry test practices in general, e.g., unit, integration, and system level testing. 



 
Figure 1 – Typical LMA System with Complex Software Requirements 

 
 This paper relates a generalized process that has been applied to numerous critical 
software programs at LMA, some experiences in testing, and the changes in testing over time.  
The basic processes of engineering and testing are introduced.  Then the presentation outlines 
how testing is maturing and changing within these process.  We find that, over time, testing 
goes through a series of maturity levels of an initial (infant), middle (teen), and maturing stage 
(adult). 

 

1.1 Introduction: Lifecycle 
 In our basic engineering approach, the engineering disciplines are employed early-on during 
concept development and requirements analysis, which are often associated with a proposal or 
a new contract. These efforts start with requirements defined at a system level (System 
specification and/or Interface Control Document). Requirements are then allocated in a software 
requirements specification (SRS). All of these requirement-based documents are written in 
English with some use of mathematical expressions. For example, the stability control laws of a 
booster will be expressed in mathematical terms.  The responsibility to produce the higher level 
requirements documents lies with the systems group, particularly in this case, where a control 
expert is required. 

 The SRS reflects a joint responsibility between systems and software engineering, with a 
software-system requirements engineer (or team) having direct responsibility for each allocated 
software requirement. Traceability between requirement documents is maintained within 
databases or traceability matrices. Engineering support tools, such as, RTM (Marconi Systems 
Technology) or SEDB (a custom LMA database program), are commonly used. In fact, 
database systems such as these are used throughout the life cycle. 

 Additionally, at this early point, use of simulations and software tools are employed to 
analyze the requirements. A variety of custom-built programs and commercial products may 
also be employed. A common one at LMA is MatLab (Math Works). For example, math 
equations of the control laws for our booster system can be entered into a specialized 
simulation program and then subjected to a variety of input conditions to see how the equations 
(as a part of the overall system) will react. This allows for improvement or “tweaking” of the 
system. Approaches like this improve requirements and later in the lifecycle these same tools 
directly support testing. 

 While we do this early analysis and simulation, we have discovered that there are no perfect 
requirements. After initial concept, analysis, and decomposition of requirements, production of 
design and then code begin. In a classical waterfall model of the software life cycle, design 
continues until complete and then implementation or coding begins. In practice, we find there is 



usually a rush to get past requirements, get into design and even into implementation. In fact, 
some or all of these go on simultaneously to a certain extent. This is why the spiral or 
evolutionary life cycle models are now a standard at LMA. Engineers need to “get their hands 
on something” and in the case of software, that usually means code or logic that does 
something or can be executed. This is true whether we are dealing with systems or software 
teams. This iterative refinement goes on throughout the life cycle, so backtracking and revision 
of requirements at all document levels is (and required by our processes to be) an on-going part 
of development.  We have started the use of design tools and auto-code generation that in 
effect link the design and coding processes. 

 Ultimately, a set of consistent products: requirements, design, and code, are produced by 
the development team. These have been produced over a number of iterations, reviews, and 
analysis as well as some development team testing and evaluation. During development and 
independent from development, formal test has been under planning and development. 

1.1.1 Software Test - V&V 
 Our test process revolves around a series of stages or levels of testing: unit, integration, and 
system, where each of these may themselves be broken down and/or repeated during spiral 
development cycles.  Test planning, design and implementation start concurrently with 
development.  It is important to note these stages are not “stand alone” end of lifecycle points 
but in the spiral process we use, integrate and repeat these to varying degrees during cycles. 

 As part of our process, testing consists of a team of both software and systems engineers. 
Both, developers during early stages, and an independent test group, conduct testing.  Unit, 
integration, and initial levels of functional tests are done by development staff and overseen by 
the test team. To ensure that software meets requirements, an independent test team does 
formal functional and behavioral testing. Formal here means that tests are written, controlled 
with independent quality assurance organizations, reported, and retained in historic archives. 
Functional is requirements based testing.  And behavioral testing examines both the required 
and designed characteristics of the system.  All tests, developer based, and independent, are 
subject to walkthroughs and/or team reviews both prior to execution.  Team reviews are also 
used after testing, as results are approved and signed off.  Test teams that have members who 
support all development lifecycles stages, have both advantages and disadvantages. 

An advantage is that these engineers are responsible for defining testable requirements and 
designs in the first place. A requirement that is testable is better than one that is not. These 
engineers also understand what the system should be doing and so can define testing and 
stress testing quicker that an engineer with no history with the requirements. However, test 
prejudice and “blind-spots” on the requirements and software are concerns when using these 
engineers to support testing. 

 To compensate, the independent test team has responsibilities for the test planning, design, 
and execution. This additional staff is combined with the development engineers to form the 
flexible and evolutionary test teams.  This combination of software and systems, enables a 
comprehensive V&V testing effort. This effort combines people, the verification and validation 
process, and test environment to show compliance of code to standards, e.g, software 
development standards, company standards, customer standards, but more importantly, to 
identify any anomalies in the software-system. 
 The different levels/stages of testing allow errors to be driven out nearest the lifecycle point 
where they were introduced.  For example, we have incremental drops of software products, we 
will complete some aspects of testing for each stage depending on risk and functionality of the 
product. 

 



Table 1 - Standard Sample Tools 
Activity Tool Function Benefit 

Verification Battlemap and 
Adatest 

Coverage Measurement of test 

Verification 
with model – 
Full Modules 

POSTII System 
simulation 

Assessment of data values 
testing 

Validation Test Environment 
– FAST 

Execution of 
software 

Assessment of software 
realistically 

 Developer based efforts using unit and integration testing accomplish verification. 
Verification shows compliance of the code to design, design to requirements, and even a binary 
executable configuration to its source files. We treat the higher level product as “truth” and test 
to show it is correctly transformed into the next level. Validation on the other hand tests that the 
requirements, design, or code does what “works” and is done at the system level. Validation is a 
much harder question and requires the human expert to quantify “works”. For example, in 
validation, we look to see if the control system has sufficient fuel to perform the mission orbit 
conditions, given things like vehicle and spacecraft characteristics. 

 Our verification efforts concentrate on the detection of programming and abstraction errors. 
Programming faults have two subclasses of computational or logic errors and data errors. In 
Verification, we practice white box or structural testing to very low levels of the computer, 
including a digital simulator or a hardware system, such as, an emulator. At this level, 
verification testing is done to ensure that the code implements such things as, detailed software 
requirements, design, configuration controls, and software standards. This testing is usually 
done at a module-level or on small segments of the code which are executed somewhat in 
isolation from the rest of the system. For example, as shown in Table 1, we use the Battlemap 
[McCabe and Associates] and/or Adatest [IPL] tools to define our test paths, so that we get 
complete coverage at a statement and branch level. This type of testing is aimed at detecting 
certain types of faults and relies on the coupling effect in errors [Offutt-92]. A complication of this 
level of testing is the comparison to success criteria and the review of results. These are human 
intensive and time consuming although some use of automated comparisons based on test 
oracles has been achieved [Hagar-95]. 

 Verification testing detects compiler-introduced errors, as well as human programming 
faults. Our test aid programs (tools) and computer probes allow the measurement of various 
types of program code coverage (statement up to logic/data paths). Success criteria are based 
on higher level requirements in the form of English language specifications and/or design 
information, as well as an engineer’s understanding of how software should behave. Verification 
is conducted primarily by software engineers or computer scientists with some aid from other 
members of the whole team, such as, systems engineers. This is possible because the higher 
level “requirement” that is being verified to is taken as whole—complete, and good. 
Transformation of requirements-to-design, design-to-code, code-to-executable, and hardware-
to-software interfaces, all can experience deductive errors that may result in failure. Verification 
at LMA has found anomalies in and is targeted at each of these development steps. 

 Verification by development staff continues during integration testing and what we call full 
module testing. Full modules are integrated units of code that perform a function or correspond 
to an integrated object.  Units of code are integrated and test as a whole during this testing.  
Testing exercises the interfaces between units of code.  As an option during integration, we use 
computer simulations to analyze functionality. This can serve as oracles for later testing. Each 
simulation or model is specifically designed to concentrate on one error class (deductive or 
abstraction) and function of the system (control, guidance, Nav, etc.). These simulations are 
higher order, non real-time models of the software or aspects of the system, usually executing 



on a process other than the target computer. At this level, our simulations are design-based 
tools, and they simulate aspects of the system but lack some functionality of the total system. 
These tools allow the assessment of software for these particular aspects individually. 

 The simulations are done in both a holistic fashion and on an individual functional basis. For 
example, a simulation may model the entire boost profile of a launch rocket with a 3-degrees of 
freedom model, while another simulation may model the specifics of how a rocket thrust vector 
control is required to work. This allows system evaluation starting from a microscopic level up to 
a “macroscopic” level. Identical start-up condition tests on the actual hardware/software can be 
compared to these tools and cross checks between results made. Often aspects of the actual 
code and algorithms are incorporated in these full module test tools.  The results from these 
runs and tools can then be used in higher levels of testing and analysis. 

 Verification tests the code, design, and requirements at a low level. Test results are 
reviewed and approved by teams, but these efforts by themselves are not sufficient.  Validation 
continues where verification leaves off 

Validation is conducted at several levels of “black box” or functional testing. We test the 
software extensively in a realistic, hardware-based, closed-loop feedback, test environment. 
The other validation level is requirements-based analysis by systems engineering to assess the 
correctness of the requirements themselves.  This paper does not consider validation by the 
systems engineers and the associated system modeling. 

 In the major aspect of validation, we develop a comprehensive test environment.  This is 
very important in our experience, and we attempt to replicate some or all of the actual hardware 
of the system whose software we are trying to V&V.  These environments can be very 
expensive to create (cost figures are directly dependent on the complexity and size of the 
system) but are the only way to test the software in a realistic environment. Some of our test 
facilities at LMA include ground operation systems, ground cabling, and vehicle configuration. 
However, there are aspects of the critical systems that cannot be fully duplicated in a test 
environment and thus must be simulated.  

 Typically these test environments use supporting computers, workstations, and programs 
that replicate the functions that a completely hardware-based test system cannot.  There are 
always questions of fidelity and accuracy of these models, and we have had problems in these 
areas in the past that have resulted in lost time and efforts. Consequently, we take great care in 
the test environment set-up area. 

 Validation testing on the hardware-based test bed is done in nominal (expected usage) and 
off-nominal scenarios (stress and unexpected usage).  This “real world” systems-based testing 
allows a fairly complete evaluation of the software even in a restricted domain. In addition, 
unusual situations and system/hardware error conditions can be input into the software under 
test without actually impacting hardware. For example, we can choose to fail attitude control 
thrusters, so that the control software we are testing is forced to react to a set of hardware 
failures.  Validation testing is aimed at “breaking” the software to find errors, even more than it is 
at the nominal test cases, which seek to show the software is working. Failures in software at 
this “system” level receive the most visibility and publicity, and we seek to have 100 percent 
mission success. [Howden 91] argues that the goal in V&V is not correctness but the detection 
of errors. We agree with this and practice testing consistent with it. Each of the tools shown in 
Table 1 has been successful at detecting errors that would have impacted system performance. 
Thus, they are credible test aids. 
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Figure 1.1.1-1 - Test Tool Levels 

 This software is responsible for a variety of critical functions, all of which must work for a 
booster system to go from its power-up state (usually on the ground) to some final orbit 
condition. The software interacts with hardware, sensors, the environment (via the sensors and 
hardware), itself, operational use timelines, and possibly humans (if a ground command function 
exists). As shown in figure 1.1.1-1, there are mission performance requirements and vehicle 
characteristics, which influence the software.  As a minimum, the system test/validation process 
will employ and be reviewed/approved by the following kinds of systems engineers: Test 
engineers, Software, Controls, Mission Analysis, Guidance, and Navigation, and Electronics. 

2. Test Evolution 
M u t a t i o n

P a t h c o v e r a g e
S i m p l e p a t h c o v e r a g e
E l e m e n t a r y p a t h c o v e r a g e
L e n g t h - n p a t c h c o v e r a g e
l e v e l - i p a t h c o v e r a g e
C y c l o m a t i c c r i t e r i o n
B r a n c h c o v e r a g e
S t a t e m e n t c o v e r a g e

A l l d e f i n t i o n c r i t e r i o n
A l l u s e s
A l l c o m p u t a t i o n u s e

/ s o m e p r e d i c a t e
A l l p r e d i c a t e u s e

/ s o m e c o m p u t a t i o n
A l l P r e d i c a t e
A l l d e f i n i t i o n - u s e p a t h
R e q u i r e d - k - t u p l e
O r d e r e d c o n t e x t
C o n t e x t

C o m p o u n d c o n d i t i o n
L i n e a r c o d e s e q & j u m p
T E R n c r i t e r i a

S p e c i f i c a t i o n m u t a t i o n

N x 1 D o m a i n a d e q u a c y
N x 1 D o m a i n a d e q u a c y
N x 1 D o m a i n a d e q u a c y
F u n c t i o n a l a d e q u a c y

S p e c i f i c a t i o n s y n t a x

C o n t r o l
F l o w
b a s e d

D a t a
F l o w
b a s e d

P r o g r a m
t e x t
b a s e d

F a u l t
b a s e d

C o v e r a g e
C r i t e r i a

C r i t e r i a
A d e q u a c y

S p e c i f i c a t i o n
b a s e d

F a u l t b a s e d

E r r o r b a s e d

C o v e r a g e c r i t e r i a

E r r o r B a s e d

P r o g r a m
b a s e d

Figure 2-1 Classification of Test Data Adequacy Criteria 
 The first part of this presentation outlined our basic engineering and test processes to set 
the context for how our testing matures.  The following sections outline how some of the specific 



test techniques and test cases have been observed and measured to change over time.  It is 
important to note the on-going and product (flight) products.  Not all results and data are 
finalized. 

 To categorize the changes in the test process we are using classification criteria as seen in 
figure 2-1, which is taken from [Gardiner 99].  Process evolution has been one of the larger 
areas of change.  We have progressed from older custom build tools to generic commercial 
products.  While doing this we have taken the best from the old and added the new. 
 

2.1 Verification: Unit level  
 Unit level testing initially consisted of achieving statement and branch coverage.  This 
initially was done with custom-built tools, test cases, and a fair amount of pain.  This limited the 
number of test case instances that could be run (table 2.1-1).  Further, during maintenance, only 
changes tend to be unit regression tested, i.e.; a whole suite was not always run. 

 We have recently progressed to using commercial tools with a higher degree of automation 
and a larger coverage (see maturing data of table 2.1-1) 
 
Table 2.-1 Unit Testing 

Effort: Criteria (right 
side) 

Tests - 
Sample 1 

Sample 1 
Measures 

Tests - 
Sample 2 

Sample 2 
Measures 

Initial Statement & 
Branch  

38 Code units - 
6 
Cy peak - 
16 
 

20 Code units - 8 
Cy peak - 10 
 

Maintenance Statement & 
branch of only  
changes during 
regression 

12 * 4 
(repeated 4 
times) 

Units - 6 
Cy peak – 
16 
Changes - 4 

9 Units - 8 
Cy peak – 10 
Changes- 1 

Maturing – 
new 
development 

Cyclomatic 
number and 
ordered context 
coverage 

332  
(large data 
structures) 

Units - 3 
Cy peak - 2 

70 Units - 8 
Cy peak - 12 

Notes:  Cy – McCabe's Cyclomatic complexity number. 
   Code units – number of units of code (separate compilation) in sample. 
   Changes are counted by individual “function” and not total lines of code changed, 

e.g., a fix or change will impact a single function of the unit of code but may impact 
more than one line of code. 

Observations: 
 1. For the mature regression testing process to be used during maintenance, all of the unit 
tests will be rerun.  This is an improvement over the regression methods initially used. 

 2. The more mature unit test process increases the level of coverage to include cyclomatic 
complexity which includes the other lower levels of coverage.  We have also expanded our 
coverage into the data flow based criteria.  In earlier stages data was only selected to drive 
control flow and a few “interesting” data cases. 

 3. The test automation allows a larger number of tests because of features like automated 
success criteria checking and metrics that before had to be “hand” generated. 



 4. What is not clear is the impact to error density in later life cycle stages, i.e., is more really 
better.  Defect trends and density are currently be monitored; though they are not ready for 
reporting in this paper. 

 5. While not listed in the table, each of the methods had limited specification based 
coverage criteria of the specification’s syntax. 

 6. Additionally, most tests set cover compound conditions (limited). 

 7. During earlier program efforts, maintenance testing was primarily aimed at the software 
fix or change (e.g. a smoke test).  This did include limited regression testing, but not all the unit 
tests were executed.  This was due to nature of the changes and to conserve time/effort.  A 
more comprehensive approach to regression is to execute all tests, which is what will be done in 
the maturing approach.  The more mature methods will mitigate some of the regression risks of 
partial execution. 

2.2 Verification: Module and integration testing stage 

 Module testing in the initial stages was based on the execution of the integrated package 
(series of functionally related units) and/or simulation models as described in section 1.1.1.  This 
approach introduces coverage of specification, error based, functional coverage (see figure 2-
1), by executing the integrated package over a number (large number) of specification based 
data conditions.  This technique was used in both initial and maintenance efforts.  It proved 
effective in that it found errors before we entered system testing and lost “visibility” into some 
code functions. 

 These methods are continuing as we mature, however we are increasing number of tests in 
the integration level by adding test cases from the unit level.  We have found that unit test 
information can be integrated with drivers to test a whole series of units in the integrated 
module/function.  This can be done quickly and results automatically compared.  Also, additional 
integration data sets are being added that cover cases that cross unit boundaries.  This appears 
to increase out level of coverage, but we have not gone far enough with this maturing to see: 

1) Are more or different errors being found than historically? 
2) Does this complement or impact historic efforts? 
3) What are the cost impacts? 
 

2.3 Validation: System stage 

Software system level testing matures in the following ways. 

1) Initial numbers of tests are larger, to get to a baseline product; then as the product 
enters maintenance and use, the numbers of tests are fewer (regression problem); 
2) During initial testing of a new products, the test plans “grows”. 
3) The nature of the test set changes, as tests come to reflect the nature and problems of 
the product. 



2.3.1 Decreasing tests as a product matures 
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Figure 2.3.1-1 Tests decrease over time (more mature usage cycles are on top) 

 
Figure 2.3.1-1 shows the “shrinking” of the tests that are executed per product usage (release).  
The bottom two bars show a new version of the product with major changes and new 
functionality.  It required extensive testing prior to first use.  This was done in two phases.  The 
first configuration covered the generic functionality of the system.  Following this, a first usage 
(mission) resulted in about 25 percent fewer tests, with the tests aimed at this particular usage, 
i.e., not all generic functionality was tested.  Finally, historic data shows that once a software 
version goes into maintenance (small or no logic changes but new data/parameters), the 
number of tests fall to about 10 percent of the first time configuration.  Note: the 10 percent 
number is a median value taken over 30 software releases. 

 The majority of the 10 percent number are regression in nature.  We define regression suite 
as tests that are aimed at the old functions, minus any removed features, plus the test of any 
new features or fixes.  The make up of a typical regression suite of tests is based on a nominal 
mission run and one or more stress cases.  If these regression tests are not sufficient to cover 
the new/change functions, then additional tests are added to the test plan.  The assessment of 
the tests are needed and made during software review board meetings and include the 
development, test, and systems staff associated with each change or data set. 

 Additionally, the 10 percent of tests include one or two tests drawn from the historic suite of 
tests (lower two bars) that test functional areas of the system.  The historic suite is made up of 
all tests ever run at the software system level including the first time and mission based tests.  
With this approach over time, all the “classes” of tests are cycled through and executed.  This 
method of adding new, regression, and historic tests has turned up problems in the regression 
suite, code, and/or test environments.  This approach of cycling through tests represents a 
maturing of the test planning process (it was not done initially). 
 

2.3.2 Maturing within a test plan cycle 
 

 The maturing of the test plan can be seen as more tests are added to it.  Figure 2.3.2 –2 
shows this.  During a major product upgrade, the test plan started at 195 tests.  By the end of 
the testing cycle, 362 tests had been completed.  The tests were executed, analyzed, errors 
detected and based on these errors, product changes made to the software.  Not all the 
increases in the number of tests were the result of errors or changes in the code.  About 20 
percent of the increases appear to be due to tests aiding the understanding of the staff.  As the 



staff understood the software and system better, they then wanted more tests to check of 
features and behaviors of the software.  This increase can be viewed as maturing the test plan.  
The rest of the increase is due to changes in the software (regression tests).  The breakdown of 
these changes, due to errors, can been seen in figure 2.3.2-2.  The majority of new tests were 
associated with design issues.  This was reflected in the design/purpose of these tests.  The 
next largest number of tests was associated with requirement changes, and very few tests were 
associated with other sources. 
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Figure 2.3.2-1 Growth of testing within a test planning cycle 

 The majority (85 percent) of the added tests were just refinements of existing test cases.  
The typical changes were to introduce new test environments (data variables or commands) or 
refine of test sequence procedures.  The test cases matured by including different stress cases 
or numbers that impacted the execution of the software and addressed functionality of the 
system that had not previously been tested.  During the study test cycle, approximately 20 “new” 
tests were defined during this “maturing” process. 

Changes by Type (Total 74) on Modules of Code

Design Errors
47%

Modif ied Requirement
29%

Program Errors
15%

Des/Prog
3%

Req/Des
6%

 
Figure 2.3.2-2 Product/Lifecycle Error Trending 

2.3.3 Aging of the Test Plan Data base 
 The historic test plan database appears to have been in place over about 10 years.  There 
are about 310 tests in our historic base, with 35 of these tests being “nominal”.  This means that 
the major (over 265) of tests cover some special function, error, stress, dispersion, or system 
condition.  Figure2.3.3-1 shows what happened during one analyzed test period (covers several 
test cycles and efforts).  The majority (90%) of the added 40 tests were new or modified off-



nominal tests One can see from this increase, that as it continues over time, the test plan data 
base will become more and more weighted toward these off nominal tests. 

Growth in Tests

40

260

New Tests
Historic baseline

 
Figure 2.3.3-1 Growth of tests 

 From this, one question might be, how frequently are the "off nominal" tests being executed, 
with the concern being that if these are executed more frequently, they would tend to grow 
because of the frequency of execution.  However, at least one nominal test is scheduled for 
every test cycle and is executed as part of every regression sequence.  Nominal tests account 
for one third of the total tests that are run, even though they account for only about ten percent 
of the test base.  Further, about 55 percent of the non-nominal tests are executed only once or 
twice during at test plan cycle. 

 One can surmise that the testing is fairly well distributed, but because errors and features 
tend to “lie” in the off nominal areas of the design/code, the tendency will be to see increases in 
these tests.  Also, even though many requirements deal with "off nominal" cases (thus validation 
tests would tend to reflects this), there still is growth above this in the number of "off nominal" 
tests as the test plans mature. 

3. General Observations 
1. Regression cases typically are within the existing portfolio of tests, though specific data 
and use-cases needed to be refined. 
2. Rotation through the suite of tests has a tendency to be good in that it exposes errors 
that might not otherwise be seen. 
3. Majority of system-software validation tests are aimed at non-nominal test scenarios.  
This appears to be a continuing shift over time, i.e., more off nominal tests are created 
which bias the total count over time. 
4. Item 3 appears to be related to the concept raised by people like Boris Beizer regarding 
what he calls “the pesticide paradox”. Briefly, test may remove one or more errors, but 
running the same test will not remove errors that have already been “killed” and successfully 
removed, i.e. the tests become ineffective.  And related to this, errors that remain, get 
harder to kill.  We see that data base of testing shifts increasingly toward runs that are 
aimed at “special” cases (rerunning the same cases over and over did not buy us anything).  
Further looking at the tests we do rerun, we noted that almost all of them included new 
values and data (in fact they were not exact reruns).  This increased the likelihood of 
avoiding aspects of the pesticide paradox. 
5. Testing moves more toward “earlier” and high levels of coverage with the use of tools 
that enforce rules.  The desire is that this will find errors earlier.  (Note one “technique” not 
discussed in this paper is the use of peer review and structured walkthroughs.  While some 



consider inspections an aspect of verification and related to testing, we have not detailed 
them, since it was not within the scope of this paper.  However, Peer review and inspections 
are a key to LMA processes).  

3.1 Future Efforts 
 As an ongoing product area, we practice optimization and strive for continuous 
improvement.  Testing is an important area to look to.  It represents between 15-to-50 percent of 
our budgets (depending on the project).  The following items continue to be researched: 

1. Our unit testing has increased the numbers of test cases we execute.  Will this really 
decrease errors in later tests and development cycles? 

2. Use of unit and integration automation has been seen to improve (speed) regression 
during the spirals of development.  Will this continue to be realized during maintenance? 
3. Does the improvement in Unit and Unit-Integration testing, really improve the overall 
error trends and “speed” (nearness to point in which they were introduced) with which they 
are found when they are most cost effective to fix? 
4. Test growth in system test/validation area appear to be associated with increasing 
numbers of off nominal tests.  This was measured during one major update cycle. A) Is this 
historically true for all test cycles and B) will this trend continue give some of changes listed 
in this paper under the maturing test process? 

4. Summary 
 Earlier test plans seem to been aimed at basic coverage and nominal testing.  The focus on 
testing for errors has driven the trends towards off nominal test cases. There were data gaps 
encountered in this study from extremely early test plans, so we do not have complete statistical 
analysis.  Some anecdotal evidence was gathered by talking with long-term program members, 
and the data did not conflict with any that the data provided from later efforts.  It does appear 
test plans and cases go through a maturing process, and testers would do well to consider the 
types of maturing changes outlined in this presentation.  The result can be better test plans, 
schedules, and development efforts. 

 Early test plan efforts can be summarized as lower levels of coverage.  The middle efforts 
appear to be characterized by the growth of the numbers and types of tests.  Finally, maturing 
plans seem to have a duality.  The numbers of tests may very well increase, and these tests 
have higher levels of coverage.  This appears to be associated with improvements in 
methodology and tooling.  The other nature is that the numbers of tests decrease once the 
errors have been “driven out" (during maintenance).  This results from a decrease in the number 
of tests associated with Validation.  The long-term impacts of these trends have not been 
determined, nor has the impacts of increasing the numbers of tests in areas like Verification/unit 
testing. 
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