
Testing Critical Software: Practical Experiences

Jon D. Hagar
Lockheed Martin Astronautics

Denver, Colorado, 80201
hagar@den.mmc.com

(303) 977-1625

Greg Green
Lockheed Martin Astronautics

 (303) 977-1763

Abstract: This paper presents our experiences in testing critical software that supports flight systems
developed by Lockheed Martin Astronautics in Denver, Colorado. This approach has not been proven
in an academic sense, but has been demonstrated over the years to result in software that successfully
performs missions. It is based on teams comprised of the correct skill balance in software and systems
engineering, as well as using a defined process.

Keywords: Flight Control, Test, Verification, Validation, Systems Engineering

1. INTRODUCTION

Lockheed Martin (formally Martin Marietta)
Astronautics (LMA) in Denver Colorado has produced
critical software systems for several decades.
Production systems are usually one of a kind that must
work the first time or hundreds of millions of dollars
may be lost. These systems are typically very complex
consequently failures or errors could be introduced
from many sources. These software-systems have the
following characteristics: real-time; spacecraft/booster
flight control; minimal human intervention possible;
and numerically intensive calculations of such critical
items as, trajectories, flight dynamics, vehicle body
characteristics, and orbital targets. Development
programs are small — usually under 30,000 source
lines of code (with small staffs), yet these programs
are critical to the control and success of the flight
system. Systems with software produced at LMA
include the Titan family of launch vehicles, upper
stage boosters, and spacecraft, as well as the
associated ground systems. An example mission
profile is depicted in figure 1. Production of software
on many of these systems followed an historic and
similar development process that has been, in part,
responsible for each program’s success. However, an
important aspect of the overall process is the human
factor, which must be considered.

Some authors and researchers would have you believe
that the process is most important. You select the right
or “latest & greatest” method; a good set of

Use Word 6.0c or later to

view Macintosh picture.

Figure 1 - Complex Software Requirements

techniques; buy your support software (tools); add in
schedule and budget to support these; and presto, you
have a reliable and safe critical software system. From
our experience, some of this is true, however, we
advocate that you cannot overlook the human factor.
Good engineers who think are necessary for the
success of the process, and there is no substitute for
human thoughtfulness. Additionally, no single
engineer can understand all expects of these complex
systems. This requires the use of teams with diverse
skill sets, as well as a good process.

This paper relates a generalized process that has been
applied to several critical software programs at LMA,
some experiences in applying the process, and the
importance of the engineering team. We concentrate in
the area of testing or Verification and Validation
(V&V) of these systems, set in the context of the
overall development concepts (processes) employed at
LMA.

2. A COMMON APPROACH BASED ON A
SYSTEM VIEW

Being a government-military contractor requires a
certain commonality and consistency of approach due
to compliance with numerous standards. Software
engineering efforts like the Software Engineering
Institute’s Capability Maturity Model (SEI CMM) are
based on the idea that similarity and consistency of
process over time and project are good. In this paper,
we’ve been asked to define how we work on critical
software systems and relate what methods work for us.
These questions have been asked by others and are of
ongoing interest in LMA. Our answers, to date, seem
to revolve around two important concepts.

1. Critical software must be developed and tested
with constant consideration of the “system”.

2. A standard, planned, and documented process
carried out by responsible and knowledgeable
humans is a requirement for success.

At LMA, we achieve success in system-software
engineering by keeping the associated personnel of
systems and software engineering involved throughout
the development life cycle. This includes software
testing/V&V which is a major topic in this paper. We
feel V&V, from a systems perspective, is important to
critical systems since we find between 25 to 50
percent (experience of authors and Beiser-84) of
development costs are consumed in various software
testing/V&V efforts, plus we notice many programs
appear to encounter schedule, cost, or technical
problems during the testing/V&V effort.

Our system engineering personnel are involved at the
beginning of a project. For example, in the flight
control software of a booster rocket. This software is
responsible for a variety of critical functions, all of
which must work for a booster system to go from its
power-up state (usually on the ground) to some final
orbit condition. The software interacts with hardware,
sensors, the environment (via the sensors and
hardware), itself, operational use timelines, and
possibly humans (if a ground command function
exists). As shown in figure 1, there are mission
performance requirements and vehicle characteristics
which influence the software. As a minimum, the
example software will employ the following kinds of
systems engineers at the time of requirements
definition: Controls, Mission Analysis, Guidance, and
Navigation, and Electronics.

3. SYSTEMS ENGINEERING

In our basic approach, the above engineering
disciplines are employed early-on during concept
development and requirements analysis, which are
often associated with a proposal for a new contract.

These efforts start with requirements defined at a
system level (A-level “spec” or System “spec”, or
Interface Control Document, according to military
standards). Requirements are then allocated in a
software requirements specification (or SRS). All of
these requirement-based documents are written in
English with some use of mathematical expressions.
For example, the stability control laws of a booster
will be expressed in mathematical terms.

The responsibility to produce the higher level
requirements documents lies with the systems group,
particularly in this case, where a control expert is
required.

The SRS reflects a joint responsibility between
systems and software engineering, with a software-
system requirements engineer (or team) having direct
responsibility for each allocated software requirement.
Traceability between requirements documents is
maintained within databases or traceability matrices.
Engineering support tools, such as, RTM (Marconi
Systems Technology) or SEDB (a custom LMA
database program), are commonly used. In fact,
database systems such as these are used throughout the
life cycle.

Additionally, at this early point, use of simulations and
software tools are employed to analyze the
requirements. A variety of custom-built programs and
commercial products may also be employed. A
common one at LMA is MatLab (The Math Works).
For example, math equations of the control laws for
our booster system can be entered into a specialized
simulation program and then subjected to a variety of
input conditions to see how the equations (as a part of
the overall system) will react. This allows for
improvement or “tweaking” of the system.
Approaches like this improve requirements.

While we do this early analysis and simulation, we
have discovered that there are no perfect requirements.
After initial concept, analysis, and decomposition of
requirements, production of design can begin. In a
classical waterfall model of the software life cycle,
design continues until complete and then
implementation or coding begins. In practice, we find
there is usually a rush to get past requirements, get
into design and even into implementation. In fact,
some or all of these go on simultaneously — to a
certain extent. This is why the spiral or evolutionary
life cycle models are now a standard at LMA.
Engineers need to “get their hands on something” and
in the case of software, that usually means code or
logic that does something or can be executed. This is
true whether we are dealing with systems or software
teams. This iterative refinement goes on throughout
the life cycle, so backtracking and revision of

requirements at all document levels is (and required by
our processes to be) an ongoing part of development.

Ultimately, a set of consistent products —
requirements, design, and code, is produced by the
development team. These have been produced over a
number of iterations, reviews, and analysis as well as
some development team testing and evaluation.
During development and independent from
development, formal test has been under planning and
development.

3.1 Software Test - V&V and Environment

Much of our test/V&V approach is common with
industry, but the LMA test/V&V has some noteworthy
aspects.

As part of our process, test engineers are a team of
both software and systems engineers. We use the same
types of engineers, and on some projects a few of the
very same people that define the system requirements
also implement the system software-level testing. This
is the “formal” testing that is done to ensure that
software meets requirements. (Formal here means that
tests are written, controlled with independent quality
assurance organizations, reported, and retained in
historic archives.) A test team that has members from
the requirements development staff has both
advantages and disadvantages.

An advantage is that these engineers are responsible
for defining testable requirements in the first place. A
requirement that is testable is better than one that is
not. These engineers also understand what the system
should be doing and so can define testing and stress
testing quicker that an engineer with no history with
the requirements. However, prejudice and “blind-
spots” on the requirements and software are a real
problem for the “reuse” of these engineers.

To compensate, additional engineering staff, yet with
the same skills, are used to support V&V. This
additional staff is combined with the “reused”
engineers to form the test team. On other projects the
test team is completely independent from the
development staff, but the skill base (or types of
engineers) is the same. Additional to the skills base,
projects should have on staff experienced or senior
engineers, particularly in testing/V&V, as has been
observed by [Deutsch 88 (and others)]. These
requirements are considered when building a
test/V&V team. This combination of software and
systems as well as experienced and inexperienced
engineers, enables a comprehensive V&V testing
effort. This effort combines people, the verification
and validation process, and test environment to show
compliance of code to standards, but more
importantly, to identify any anomalies in the software-
system.

Many of our V&V testing concepts originated in Air
Force programs that needed to achieve high reliability.
We defined V&V in section 1 and here we expand the
definition with some examples.

Table 1 - Standard Sample Tools

 Activity Tool Function Benefit
Verification Battlemap Coverage Measure -

ment of test

Scientific
Validation

Booster
Utility
Program

3-degrees
of freedom
simulation

Assessment
of data
values
testing

Validation Test
Environment

Execution
of software

Assessment
of software
realistically

In verification, we test to show compliance of the code
to design, design to requirements, and even a binary
executable configuration to its source files. We treat
the higher level product as “truth” and test to show it
is correctly transformed into the next level. Validation
on the other hand tests that the requirements, design,
or code does what “works”. This is a much harder
question and requires the human expert to quantify
“works”. For example, in validation, we look to see if
the control system has sufficient fuel to perform the
mission orbit conditions, given things like vehicle and
spacecraft characteristics.

Our verification efforts concentrate on the detection of
programming and abstraction errors. Programming
faults have two subclasses of computational or logic
errors and data errors. In Verification, we practice
“white box” or structural testing to very low levels of
the computer, including a digital simulator or a
hardware system, such as, an emulator. At this level,
verification testing is done to ensure that the code
implements such things as, detailed software
requirements, design, configuration controls, and
software standards. This testing is usually done at a
module-level or on small segments of the code which
are executed somewhat in isolation from the rest of the
system. For example, as shown in Table 1, we use the
Battlemap tool [McCabe and Associates] to define our
test paths so that we get complete coverage at a
statement and branch level. This type of testing is
aimed at detecting certain types of faults and relies on
the coupling effect [Offutt-92]. A complication of this
level of testing is the comparison to success criteria
and the review of results. These are human intensive
and time consuming although some use of automated
comparisons based on test oracles has been achieved
[Hagar-95].

Verification testing detects compiler-introduced errors,
as well as human programming faults. Our test aid
programs (tools) and computer probes allow the

measurement of various types of program code
coverage (statement up to logic/data paths). Success
criteria are based on higher level requirements in the
form of English language specifications and/or design
information, as well as an engineer’s understanding of
how software should behave. Verification is conducted
primarily by software engineers or computer scientists
with some aid from other members of the team, such
as, systems engineers. This is possible because the
higher level “requirement” that is being verified to is
taken as whole, complete, and good. Transformation
of requirements-to-design, design-to-code, code-to-
executable, and hardware-to-software interfaces, all
can experience deductive errors that may result in
failure. Verification at LMA has found anomalies in
and is targeted at each of these development steps.
Validation continues where verification leaves off.

Validation is conducted at several levels of “black
box” or functional testing. We test the software
extensively in a realistic, hardware-based, closed-loop
feedback, test environment. The other validation level
is requirements-based or design-based analysis
programs or what we call “scientific validation” tools.
Validation has a larger (than verification)
concentration of manpower, time, and testing. This is
because the validation question (“Did we build the
right software?”) is much harder to answer. Validation
staff are mainly systems engineers, and their skills
mirror development.

In scientific validation, we use extensive computer
simulations to analyze requirements and serve as
oracles for the actual “black box” results of the
software. Each simulation or model is specifically
designed to concentrate on one error class (deductive
or abstraction) and the level of the system. These
simulations are higher order, non real-time models of
the software or aspects of the system. Our validation
efforts start at what would be considered integration
testing within the industry. At this level, our
simulations are design-based tools, and they simulate
aspects of the system but lack some functionality of
the total system. These tools allow the assessment of
software for these particular aspects individually.

The simulations are done in both a holistic fashion and
on an individual functional basis. For example, a
simulation may model the entire boost profile of a
launch rocket with a 3-degrees of freedom model (e.g.,
Booster Utility Program), while another simulation
may model the specifics of how a rocket thrust vector
control is required to work. This allows system
evaluation starting from a microscopic level up to a
“macroscopic” level. Identical start-up condition tests
on the actual hardware/software can be compared to
these tools and cross checks between results made. We
use the scientific validation tools as oracles for the test
environment as well as “stand-alone” analysis aids.

In the other major aspect of validation, we develop a
comprehensive test environment. This is very
important in our experience and we attempt to
replicate some or all of the actual hardware of the
system whose software we are trying to V&V. These
environments can be very expensive to create (cost
figures are directly dependent on the complexity and
size of the system) but are the only way to test the
software in a realistic environment. Some of our test
facilities at LMA include ground operation systems,
ground cabling, and vehicle configuration. However,
there are aspects of the critical systems that cannot be
fully duplicated in a test environment and thus must be
simulated.

Typically these test environments are done using the
supporting computers, workstations, and programs that
replicate the functions that a completely hardware-
based test system cannot. There are always questions
of fidelity and accuracy of these models, and we have
had problems in these areas in the past that have
resulted in lost time and efforts. Consequently, we
take great care in the test environment set-up area.

V&V/testing on the hardware-based test bed is done in
nominal and off-nominal scenarios (stressing testing).
This “real world” systems-based testing allows a fairly
complete evaluation of the software even in a
restricted domain. In addition, unusual situations and
system/hardware error conditions can be input into the
software under test without actually impacting
hardware. For example, we can choose to fail attitude
control thrusters so that the control software we are
testing is forced to react to a set of hardware failures.
Thus, after requirements based “acceptance” testing,
which we must do, the concentration of our testing is
directed at finding the significant and catastrophic
failures that result in mission loss or unacceptable
degradation of system performance. Failures in
software at this “system” level receive the most
visibility and publicity, and we seek to have 100%
mission success. [Howden 91] argues that the goal in
V&V is not correctness but the detection of errors. We
agree with this and practice testing consistent with it.
Each of the tools shown in Table 1 has been successful
at detecting errors that would have impacted system
performance. Thus, they are credible test aids.

Devel opment
Products

Requi rement
s

Desi gn

I mpl ementati on

Executabl e
Program

Sci enti f i c
Si mul ati on
Tool s

Desi gn- based
Si mul ati on
Tool s

Hardware &
Di gi tal
Si mul ati on
Test
Systems

Test
Reports

Devel opment
Products

Requi rement
s

N-Version Test Program

Figure 2 - Test Tool Levels

3.2 N-Version Testing

Our approach can be likened to a multiple version (or
N-version) based testing methodology. This is because
we have simulations and partial implementations of
the system which have been generated separately from
the software development team and are used in our
V&V. Figure 4 depicts the different levels commonly
found on our projects. We have the hardware test
environment at the bottom of the figure that was
previously talked about. We also mentioned above that
we create design based simulation tools that replicate a
function or groups of functions of the software. And
finally, at the top we have the software programs that
are based on requirements including possibly several
different levels of requirements documentation. In our
view, these form the equivalent of an N-version
programming system. This is because these tools are
compared at different points to each other. In one of
our project areas, we have a minimum N=3, and a
maximum N=8 during all test phases. Thus, we
compare and check points of at least “N” different
programs and/or levels. These numbers of versions
represent a typical test program for us and has
remained constant over the years, though individual
tools and checks have changed.

N-version programs have been criticized for not
significantly aiding in reliability [Knight and Leveson
- 86]. Knight’s and Leveson’s experiments indicate
that different teams tend to make the same mistakes in
“independent” versions of software. The underlying
assumption of N-version is that independently coded
programs fail independently and Leveson’s
experiment proved this to be incorrect in the general
case. This has been, and continues to be, a concern to
us. However, our use of the N-Version program-based
testing has been successful in detecting errors. And we
and others like [Houden] judged the value of tools on
their ability to detect errors.

For example, one program area can be characterized
as:

• long term - over 15 years
• multiple numbers of missions - 13 flights
• critical and complex - responsible in real-time

for all flight guidance, navigation, and
controls activities of booster system

• size - nearly 10,000 lines of source code.

A team has tested and analyzed this system in a
redundant Independent V&V effort (IV&V). This
effort has yielded over 1,500 errors. Error counts are
spread out over many revisions of the software and
higher error counts, as expected, occurred during the
early development phase of the program.
Approximately 1 percent of these errors, if undetected,
would have significantly affected mission performance
or mission success. This data is typical of our other
program areas. Some of these errors have been found
by the N-Version testing approach in all phases of the
software’s maturity. The approach has found the
following specific kinds of errors:

• compiler-generated logic problems
• differences between requirement-

specification and code equations
• differences in logic between requirements

and control logic
• differences in numeric representation of

floating point values
• differences in requirements-to-design

deduction
• problems between development products and

test products
• incorrect data load and initialization values
• differences in tools between development and

test groups.

Most of the 1500 errors were uncovered early during
initial testing. But the comparison process shown in
figure 4 has continued to expose software anomalies
even after 10 years of testing. Most of these in the later
years have been classified under the last two of the
above factors.

The production of the N-Versions of software tools
serves the following functions:

• as oracles to aid the human in judging when a
software unit under test has worked by
providing comparison data points;

• as error identifiers when differences between
versions occur, they must be resolved; and

• as part of a process that requires the human
engineer to rigorously think about the
problem that is being solved.

Thus, while N-Version Programming is in question,
our use of different programs in testing has detected a
variety of errors. We would argue that the statement

for N-Version should be “that independently coded
programs fail independently sometimes”. And this is
sufficient to allow their use as test tools, if we
recognize their limits, i.e., not all errors or failures will
be found.

We employ supporting methods to ensure some of the
problems of N-version are partially mitigated. We use
numerous cross compares where differences must be
resolved. Tools or simulations are developed in a
controlled software development process and are
subject to peer reviews to add an improvement over
just having a human read or review the code or
products. Thus, we have always looked for
improvement. This has included increasing levels of
automation and data “inter-changers” (between
programs), and limited application of formal methods
[Hagar-95]. We recognize the limits, and would not
claim N-version based testing is a complete answer in
and of itself, however, it is one “trick” in our bag for
testing and has been successful at aiding in error
detection on real software versus academic
experiments.

4. EXPERIENCES, ADVANTAGES-
DISADVANTAGES

The basic approach to critical software outlined in this
paper has many advantages. The first advantage is that
it works. The basic approach has been in use and
evolving since the first space flights. It has been
documented in our company standards. Further, the
approach is adaptable. Variations on this theme have
proved possible over the years. Finally, the approach
eliminates some types of problems and has checks and
balances that successfully detect problems introduced
during development. Additionally, since the software
and systems engineers are a composite of people who
both defined the initial system and/or have similar
domain knowledge of what the software should be
doing from a concept stand point, we can detect faults
in the software that are associated with missed or
poorly abstracted software requirements. This is
accomplished by detailed inspection and review of
analysis results from the automated tools and software
under test runs. This is a subjective activity, but we
establish as much objectivity as possible with rigorous
controls over the test process.

Despite the advantages, things are not perfect. We
have already outlined the issues of N-Version. Our
approach has dependency on humans. In a purest
world of “process, process, process”, this dependency
is disconcerting to some in the software community.
However, we feel less worrying should be done about

removing every aspect of the “human equation” and
more interest should be directed toward the things in
software engineering that get done and those that
produce working systems.

As noted in the previous discussions, the process is
dependent on a thorough, consistent development
process as well as engineering judgment.
Requirements are sometimes open to interpretation
and interactions between subsystems can be difficult
to predict. To compensate, extensive testing/V&V is
required as well as picking the right people to
minimize the chances of errors.

Availability of skilled software and systems engineers
continues to be a challenge for the industry. This is the
well-known “software crisis”.

The evidence that our approach works in a large part is
anecdotal. We find problems. We fix problems. We fly
systems. The software and associated systems work.
Does this say we have an optimal solution to building
systems? Perhaps more importantly, what is the
optimal solution? Does our approach work in the more
academic theoretical world? Are there better “mouse
traps” that will work for us, our process, and
engineering staff? We have metrics now, but will they
allow us to answer these questions and know if we
actually are getting better? There still seems to be a lot
of questions unanswered.

References

B. Beiser, “Software System Testing and Quality
Assurance”, Van Nostrand Reinhold, 1984

J. Hagar and J. Bieman, “Adding Formal
Specifications to a Proven V&V process for
System-Critical Flight Software”, Workshop on
Industrial-Strength Formal Specification
Techniques, April 95.

W. Howden, “Program Testing versus Proofs of
Correctness,” Journal of Software Testing
Verification and Reliability, Vol. 1, Issue 1.

J. Knight and N. Leveson, “An experimental
evaluation of the assumption of independence
in Multiversion programming”, IEEE trans. of
Software, SE-12, Jan. 1986.

A. Offutt, “Investigations of the software testing
coupling effect”, ACM trans. of Software
Engineering and Methodology, Jan. 1992.

