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Abstract: This paper presents our experiences in testing critical software that supports flight systems 
developed by Lockheed Martin Astronautics in Denver, Colorado. This approach has not been proven 
in an academic sense, but has been demonstrated over the years to result in software that successfully 
performs missions. It is based on teams comprised of the correct skill balance in software and systems 
engineering, as well as using a defined process. 
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1. INTRODUCTION 

Lockheed Martin (formally Martin Marietta) 
Astronautics (LMA) in Denver Colorado has produced 
critical software systems for several decades. 
Production systems are usually one of a kind that must 
work the first time  or hundreds of millions of dollars 
may be lost. These systems are typically very complex 
consequently failures or errors could be introduced 
from many sources. These software-systems have the 
following characteristics: real-time; spacecraft/booster 
flight control; minimal human intervention possible; 
and numerically intensive calculations of such critical 
items as, trajectories, flight dynamics, vehicle body 
characteristics, and orbital targets. Development 
programs are small — usually under 30,000 source 
lines of code (with small staffs), yet these programs 
are critical to the control and success of the flight 
system. Systems with software produced at LMA 
include the Titan family of launch vehicles, upper 
stage boosters, and spacecraft, as well as the 
associated ground systems. An example mission 
profile is depicted in figure 1. Production of software 
on many of these systems followed an historic and 
similar development process that has been, in part, 
responsible for each program’s success. However, an 
important aspect of the overall process is the human 
factor, which must be considered. 

Some authors and researchers would have you believe 
that the process is most important. You select the right 
or “latest & greatest” method; a good set of 
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Figure 1 - Complex Software Requirements 

techniques; buy your support software (tools); add in 
schedule and budget to support these; and presto, you 
have a reliable and safe critical software system. From 
our experience, some of this is true, however, we 
advocate that you cannot overlook the human factor. 
Good engineers who think are necessary for the 
success of the process, and there is no substitute for 
human thoughtfulness. Additionally, no single 
engineer can understand all expects of these complex 
systems. This requires the use of teams with diverse 
skill sets, as well as a good process. 

This paper relates a generalized process that has been 
applied to several critical software programs at LMA, 
some experiences in applying the process, and the 
importance of the engineering team. We concentrate in 
the area of testing or Verification and Validation 
(V&V) of these systems, set in the context of the 
overall development concepts (processes) employed at 
LMA. 



2. A COMMON APPROACH BASED ON A 
SYSTEM VIEW 

Being a government-military contractor requires a 
certain commonality and consistency of approach due 
to compliance with numerous standards. Software 
engineering efforts like the Software Engineering 
Institute’s Capability Maturity Model (SEI CMM) are 
based on the idea that similarity and consistency of 
process over time and project are good. In this paper, 
we’ve been asked to define how we work on critical 
software systems and relate what methods work for us. 
These questions have been asked by others and are of 
ongoing interest in LMA. Our answers, to date, seem 
to revolve around two important concepts. 

1. Critical software must be developed and tested 
with constant consideration of the “system”. 

2. A standard, planned, and documented process 
carried out by responsible and knowledgeable 
humans is a requirement for success. 

At LMA, we achieve success in system-software 
engineering by keeping the associated personnel of 
systems and software engineering involved throughout 
the development life cycle. This includes software 
testing/V&V which is a major topic in this paper. We 
feel V&V, from a systems perspective, is important to 
critical systems since we find between 25 to 50 
percent (experience of authors and Beiser-84) of 
development costs are consumed in various software 
testing/V&V efforts, plus we notice many programs 
appear to encounter schedule, cost, or technical 
problems during the testing/V&V effort. 

Our system engineering personnel are involved at the 
beginning of a project. For example, in the flight 
control software of a booster rocket. This software is 
responsible for a variety of critical functions, all of 
which must work for a booster system to go from its 
power-up state (usually on the ground) to some final 
orbit condition. The software interacts with hardware, 
sensors, the environment (via the sensors and 
hardware), itself, operational use timelines, and 
possibly humans (if a ground command function 
exists). As shown in figure 1, there are mission 
performance requirements and vehicle characteristics 
which influence the software. As a minimum, the 
example software will employ the following kinds of 
systems engineers at the time of requirements 
definition: Controls, Mission Analysis, Guidance, and 
Navigation, and Electronics. 

3. SYSTEMS ENGINEERING 

In our basic approach, the above engineering 
disciplines are employed early-on during concept 
development and requirements analysis, which are 
often associated with a proposal for a new contract. 

These efforts start with requirements defined at a 
system level (A-level “spec” or System “spec”, or 
Interface Control Document, according to military 
standards). Requirements are then allocated in a 
software requirements specification (or SRS). All of 
these requirement-based documents are written in 
English with some use of mathematical expressions. 
For example, the stability control laws of a booster 
will be expressed in mathematical terms. 

The responsibility to produce the higher level 
requirements documents lies with the systems group, 
particularly in this case, where a control expert is 
required. 

The SRS reflects a joint responsibility between 
systems and software engineering, with a software-
system requirements engineer (or team) having direct 
responsibility for each allocated software requirement. 
Traceability between requirements documents is 
maintained within databases or traceability matrices. 
Engineering support tools, such as, RTM (Marconi 
Systems Technology) or SEDB (a custom LMA 
database program), are commonly used. In fact, 
database systems such as these are used throughout the 
life cycle. 

Additionally, at this early point, use of simulations and 
software tools are employed to analyze the 
requirements. A variety of custom-built programs and 
commercial products may also be employed. A 
common one at LMA is MatLab (The Math Works). 
For example, math equations of the control laws for 
our booster system can be entered into a specialized 
simulation program and then subjected to a variety of 
input conditions to see how the equations (as a part of 
the overall system) will react. This allows for 
improvement or “tweaking” of the system. 
Approaches like this improve requirements. 

While we do this early analysis and simulation, we 
have discovered that there are no perfect requirements. 
After initial concept, analysis, and decomposition of 
requirements, production of design can begin. In a 
classical waterfall model of the software life cycle, 
design continues until complete and then 
implementation or coding begins. In practice, we find 
there is usually a rush to get past requirements, get 
into design and even into implementation. In fact, 
some or all of these go on simultaneously — to a 
certain extent. This is why the spiral or evolutionary 
life cycle models are now a standard at LMA. 
Engineers need to “get their hands on something” and 
in the case of software, that usually means code or 
logic that does something or can be executed. This is 
true whether we are dealing with systems or software 
teams. This iterative refinement goes on throughout 
the life cycle, so backtracking and revision of 



requirements at all document levels is (and required by 
our processes to be) an ongoing part of development. 

Ultimately, a set of consistent products — 
requirements, design, and code, is produced by the 
development team. These have been produced over a 
number of iterations, reviews, and analysis as well as 
some development team testing and evaluation. 
During development and independent from 
development, formal test has been under planning and 
development. 

3.1 Software Test - V&V and Environment 

Much of our test/V&V approach is common with 
industry, but the LMA test/V&V has some noteworthy 
aspects. 

As part of our process, test engineers are a team of 
both software and systems engineers. We use the same 
types of engineers, and on some projects a few of the 
very same people that define the system requirements 
also implement the system software-level testing. This 
is the “formal” testing that is done to ensure that 
software meets requirements. (Formal here means that 
tests are written, controlled with independent quality 
assurance organizations, reported, and retained in 
historic archives.) A test team that has members from 
the requirements development staff has both 
advantages and disadvantages. 

An advantage is that these engineers are responsible 
for defining testable requirements in the first place. A 
requirement that is testable is better than one that is 
not. These engineers also understand what the system 
should be doing and so can define testing and stress 
testing quicker that an engineer with no history with 
the requirements. However, prejudice and “blind-
spots” on the requirements and software are a real 
problem for the “reuse” of these engineers. 

To compensate, additional engineering staff, yet with 
the same skills, are used to support V&V. This 
additional staff is combined with the “reused” 
engineers to form the test team. On other projects the 
test team is completely independent from the 
development staff, but the skill base (or types of 
engineers) is the same. Additional to the skills base, 
projects should have on staff experienced or senior 
engineers, particularly in testing/V&V, as has been 
observed by [Deutsch 88 (and others)]. These 
requirements are considered when building a 
test/V&V team. This combination of software and 
systems as well as experienced and inexperienced 
engineers, enables a comprehensive V&V testing 
effort. This effort combines people, the verification 
and validation process, and test environment to show 
compliance of code to standards, but more 
importantly, to identify any anomalies in the software-
system. 

Many of our V&V testing concepts originated in Air 
Force programs that needed to achieve high reliability. 
We defined V&V in section 1 and here we expand the 
definition with some examples.  

Table 1 - Standard Sample Tools 

 Activity Tool Function Benefit 
Verification Battlemap Coverage Measure -

ment of test 

Scientific 
Validation 

Booster 
Utility 
Program 

3-degrees 
of freedom 
simulation 

Assessment 
of data 
values 
testing  

Validation  Test 
Environment 

Execution 
of software 

Assessment 
of software 
realistically 

In verification, we test to show compliance of the code 
to design, design to requirements, and even a binary 
executable configuration to its source files. We treat 
the higher level product as “truth” and test to show it 
is correctly transformed into the next level. Validation 
on the other hand tests that the requirements, design, 
or code does what “works”. This is a much harder 
question and requires the human expert to quantify 
“works”. For example, in validation, we look to see if 
the control system has sufficient fuel to perform the 
mission orbit conditions, given things like vehicle and 
spacecraft characteristics. 

Our verification efforts concentrate on the detection of 
programming and abstraction errors. Programming 
faults have two subclasses of computational or logic 
errors and data errors. In Verification, we practice 
“white box” or structural testing to very low levels of 
the computer, including a digital simulator or a 
hardware system, such as, an emulator. At this level, 
verification testing is done to ensure that the code 
implements such things as, detailed software 
requirements, design, configuration controls, and 
software standards. This testing is usually done at a 
module-level or on small segments of the code which 
are executed somewhat in isolation from the rest of the 
system. For example, as shown in Table 1, we use the 
Battlemap tool [McCabe and Associates] to define our 
test paths so that we get complete coverage at a 
statement and branch level. This type of testing is 
aimed at detecting certain types of faults and relies on 
the coupling effect [Offutt-92]. A complication of this 
level of testing is the comparison to success criteria 
and the review of results. These are human intensive 
and time consuming although some use of automated 
comparisons based on test oracles has been achieved 
[Hagar-95]. 

Verification testing detects compiler-introduced errors, 
as well as human programming faults. Our test aid 
programs (tools) and computer probes allow the 



measurement of various types of program code 
coverage (statement up to logic/data paths). Success 
criteria are based on higher level requirements in the 
form of English language specifications and/or design 
information, as well as an engineer’s understanding of 
how software should behave. Verification is conducted 
primarily by software engineers or computer scientists 
with some aid from other members of the team, such 
as, systems engineers. This is possible because the 
higher level “requirement” that is being verified to is 
taken as whole, complete, and good. Transformation 
of requirements-to-design, design-to-code, code-to-
executable, and hardware-to-software interfaces, all 
can experience deductive errors that may result in 
failure. Verification at LMA has found anomalies in 
and is targeted at each of these development steps. 
Validation continues where verification leaves off. 

Validation is conducted at several levels of “black 
box” or functional testing. We test the software 
extensively in a realistic, hardware-based, closed-loop 
feedback, test environment. The other validation level 
is requirements-based or design-based analysis 
programs or what we call “scientific validation” tools. 
Validation has a larger (than verification) 
concentration of manpower, time, and testing. This is 
because the validation question (“Did we build the 
right software?”) is much harder to answer. Validation 
staff are mainly systems engineers, and their skills 
mirror development. 

In scientific validation, we use extensive computer 
simulations to analyze requirements and serve as 
oracles for the actual “black box” results of the 
software. Each simulation or model is specifically 
designed to concentrate on one error class (deductive 
or abstraction) and the level of the system. These 
simulations are higher order, non real-time models of 
the software or aspects of the system. Our validation 
efforts start at what would be considered integration 
testing within the industry. At this level, our 
simulations are design-based tools, and they simulate 
aspects of the system but lack some functionality of 
the total system. These tools allow the assessment of 
software for these particular aspects individually. 

The simulations are done in both a holistic fashion and 
on an individual functional basis. For example, a 
simulation may model the entire boost profile of a 
launch rocket with a 3-degrees of freedom model (e.g., 
Booster Utility Program), while another simulation 
may model the specifics of how a rocket thrust vector 
control is required to work. This allows system 
evaluation starting from a microscopic level up to a 
“macroscopic” level. Identical start-up condition tests 
on the actual hardware/software can be compared to 
these tools and cross checks between results made. We 
use the scientific validation tools as oracles for the test 
environment as well as “stand-alone” analysis aids.  

In the other major aspect of validation, we develop a 
comprehensive test environment. This is very 
important in our experience and we attempt to 
replicate some or all of the actual hardware of the 
system whose software we are trying to V&V. These 
environments can be very expensive to create (cost 
figures are directly dependent on the complexity and 
size of the system) but are the only way to test the 
software in a realistic environment. Some of our test 
facilities at LMA include ground operation systems, 
ground cabling, and vehicle configuration. However, 
there are aspects of the critical systems that cannot be 
fully duplicated in a test environment and thus must be 
simulated.  

Typically these test environments are done using the 
supporting computers, workstations, and programs that 
replicate the functions that a completely hardware-
based test system cannot. There are always questions 
of fidelity and accuracy of these models, and we have 
had problems in these areas in the past that have 
resulted in lost time and efforts. Consequently, we 
take great care in the test environment set-up area. 

V&V/testing on the hardware-based test bed is done in 
nominal and off-nominal scenarios (stressing testing). 
This “real world” systems-based testing allows a fairly 
complete evaluation of the software even in a 
restricted domain. In addition, unusual situations and 
system/hardware error conditions can be input into the 
software under test without actually impacting 
hardware. For example, we can choose to fail attitude 
control thrusters so that the control software we are 
testing is forced to react to a set of hardware failures. 
Thus, after requirements based “acceptance” testing, 
which we must do, the concentration of our testing is 
directed at finding the significant and catastrophic 
failures that result in mission loss or unacceptable 
degradation of system performance. Failures in 
software at this “system” level receive the most 
visibility and publicity, and we seek to have 100% 
mission success. [Howden 91] argues that the goal in 
V&V is not correctness but the detection of errors. We 
agree with this and practice testing consistent with it. 
Each of the tools shown in Table 1 has been successful 
at detecting errors that would have impacted system 
performance. Thus, they are credible test aids. 
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3.2 N-Version Testing 

Our approach can be likened to a multiple version (or 
N-version) based testing methodology. This is because 
we have simulations and partial implementations of 
the system which have been generated separately from 
the software development team and are used in our 
V&V. Figure 4 depicts the different levels commonly 
found on our projects. We have the hardware test 
environment at the bottom of the figure that was 
previously talked about. We also mentioned above that 
we create design based simulation tools that replicate a 
function or groups of functions of the software. And 
finally, at the top we have the software programs that 
are based on requirements including possibly several 
different levels of requirements documentation. In our 
view, these form the equivalent of an N-version 
programming system. This is because these tools are 
compared at different points to each other. In one of 
our project areas, we have a minimum N=3, and a 
maximum N=8 during all test phases. Thus, we 
compare and check points of at least “N” different 
programs and/or levels. These numbers of versions 
represent a typical test program for us and has 
remained constant over the years, though individual 
tools and checks have changed. 

N-version programs have been criticized for not 
significantly aiding in reliability [Knight and Leveson 
- 86]. Knight’s and Leveson’s experiments indicate 
that different teams tend to make the same mistakes in 
“independent” versions of software. The underlying 
assumption of N-version is that independently coded 
programs fail independently and Leveson’s 
experiment proved this to be incorrect in the general 
case. This has been, and continues to be, a concern to 
us. However, our use of the N-Version program-based 
testing has been successful in detecting errors. And we 
and others like [Houden] judged the value of tools on 
their ability to detect errors. 

For example, one program area can be characterized 
as: 

• long term - over 15 years 
• multiple numbers of missions - 13 flights 
• critical and complex - responsible in real-time 

for all flight guidance, navigation, and 
controls activities of booster system 

• size - nearly 10,000 lines of source code. 

A team has tested and analyzed this system in a 
redundant Independent V&V effort (IV&V). This 
effort has yielded over 1,500 errors. Error counts are 
spread out over many revisions of the software and 
higher error counts, as expected, occurred during the 
early development phase of the program. 
Approximately 1 percent of these errors, if undetected, 
would have significantly affected mission performance 
or mission success. This data is typical of our other 
program areas. Some of these errors have been found 
by the N-Version testing approach in all phases of the 
software’s maturity. The approach has found the 
following specific kinds of errors: 

• compiler-generated logic problems 
• differences between requirement-

specification and code equations 
• differences in logic between requirements 

and control logic 
• differences in numeric representation of 

floating point values 
• differences in requirements-to-design 

deduction 
• problems between development products and 

test products 
• incorrect data load and initialization values 
• differences in tools between development and 

test groups.  

Most of the 1500 errors were uncovered early during 
initial testing. But the comparison process shown in 
figure 4 has continued to expose software anomalies 
even after 10 years of testing. Most of these in the later 
years have been classified under the last two of the 
above factors. 

The production of the N-Versions of software tools 
serves the following functions: 

• as oracles to aid the human in judging when a 
software unit under test has worked by 
providing comparison data points; 

• as error identifiers when differences between 
versions occur, they must be resolved; and 

• as part of a process that requires the human 
engineer to rigorously think about the 
problem that is being solved. 

Thus, while N-Version Programming is in question, 
our use of different programs in testing has detected a 
variety of errors. We would argue that the statement 



for N-Version should be “that independently coded 
programs fail independently sometimes”. And this is 
sufficient to allow their use as test tools, if we 
recognize their limits, i.e., not all errors or failures will 
be found. 

We employ supporting methods to ensure some of the 
problems of N-version are partially mitigated. We use 
numerous cross compares where differences must be 
resolved. Tools or simulations are developed in a 
controlled software development process and are 
subject to peer reviews to add an improvement over 
just having a human read or review the code or 
products. Thus, we have always looked for 
improvement. This has included increasing levels of 
automation and data “inter-changers” (between 
programs), and limited application of formal methods 
[Hagar-95]. We recognize the limits, and would not 
claim N-version based testing is a complete answer in 
and of itself, however, it is one “trick” in our bag for 
testing and has been successful at aiding in error 
detection on real software versus academic 
experiments. 

4. EXPERIENCES, ADVANTAGES-
DISADVANTAGES 

The basic approach to critical software outlined in this 
paper has many advantages. The first advantage is that 
it works. The basic approach has been in use and 
evolving since the first space flights. It has been 
documented in our company standards. Further, the 
approach is adaptable. Variations on this theme have 
proved possible over the years. Finally, the approach 
eliminates some types of problems and has checks and 
balances that successfully detect problems introduced 
during development. Additionally, since the software 
and systems engineers are a composite of people who 
both defined the initial system and/or have similar 
domain knowledge of what the software should be 
doing from a concept stand point, we can detect faults 
in the software that are associated with missed or 
poorly abstracted software requirements. This is 
accomplished by detailed inspection and review of 
analysis results from the automated tools and software 
under test runs. This is a subjective activity, but we 
establish as much objectivity as possible with rigorous 
controls over the test process. 

Despite the advantages, things are not perfect. We 
have already outlined the issues of N-Version. Our 
approach has dependency on humans. In a purest 
world of “process, process, process”, this dependency 
is disconcerting to some in the software community. 
However, we feel less worrying should be done  about 

removing every aspect of the “human equation” and 
more interest should be directed toward the things in 
software engineering that get done and those that 
produce working systems. 

As noted in the previous discussions, the process is 
dependent on a thorough, consistent development 
process as well as engineering judgment. 
Requirements are sometimes open to interpretation 
and interactions between subsystems can be difficult 
to predict. To compensate, extensive testing/V&V is 
required as well as picking the right people to 
minimize the chances of errors.  

Availability of skilled software and systems engineers 
continues to be a challenge for the industry. This is the 
well-known “software crisis”.  

The evidence that our approach works in a large part is 
anecdotal. We find problems. We fix problems. We fly 
systems. The software and associated systems work. 
Does this say we have an optimal solution to building 
systems? Perhaps more importantly, what is the 
optimal solution? Does our approach work in the more 
academic theoretical world? Are there better “mouse 
traps” that will work for us, our process, and 
engineering staff? We have metrics now, but will they 
allow us to answer these questions and know if we 
actually are getting better? There still seems to be a lot 
of questions unanswered. 
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