
Using Tolerance Bands on Test Related Metrics to Plan and Manage the “Crunch” 

Earl Burba and Jon D. Hagar 
Lockheed Martin Astronautics 

Denver, Colorado, 80201 
jon.d.hagar@ast.lmco.com 

(303) 977-1625 
Abstract: 

This paper examines the successful application of tolerances on process 
metrics used in management activities of an ongoing test project.  Statistical 
process control (SPC) is not new to environments such as a factory production 
line, but use of SPC and tolerances in software engineering is not well 
established.  We report the use of tolerance bands about a process plan and 
associated measurement.  The paper presents the implementation with some 
samples from our actual project.  The application of tolerances has worked for 
us in controlling processes.  We experienced a “smoother road” through the use 
of tolerances during schedule rush during the end of efforts.  Our team has 
been comfortable with the technique since they allow metrics with flexibility.  
The processes were managed and the system could handle some variation.  The 
result was a more stable system during the “crunch” at the end of the test cycle. 

 
 
1. Introduction 
For several years our Independent Verification and Validation (IV&V) project at 
Lockheed Martin Astronautics in Denver, Colorado has used metrics in a variety of ways 
to support the management, testing, and analysis of real-time embedded flight software. 
The software under test is responsible for the guidance navigation and control of rocket 
systems.  With the changes in software standards, customer focus, increasing software 
complexity (and associated issues), and failures like the Ariane 5 rocket system {1}, the 
interest in and criticality of our IV&V activities has increased.  We have always had 
varying kinds of metrics, but the scrutiny directed at them has now increased.   
 
In planning and metrics work in IV&V, we asked ourselves a variety of questions.  While 
management and customers are interested in metrics and many tools produce them, what 
do the working engineers, first level supervisory staff, and management do with them?  
What things can be done to benefit from them and improve their frequency of use?  What 
metrics contribute to successfully planning and controlling a software testing project? 
 
We have observed that there are a large number of metrics.  Today, every analysis tool 
seems to produce some set of metrics. And yet their true utility is often questioned.  For 
us in our practical world, a metric must be considered from the standpoint of usefulness 
in controlling a product or process.  This paper relates the recent experience and use of 
software metrics for technical and management purposes on our project.  We have 
observed the following: 
 
•   Metrics can be overwhelming in terms of numbers (one tool we use can produce 

hundreds of metrics)  and must be considered in a hierarchical fashion. 



•   Metrics that are used should change with program phase and activity. 
•   Metrics should be viewed differently depending on the perspective and should not be 

treated by a user as an absolute.  Three possible views are customer, management, and 
engineering, though customers and managers can view metrics from very similar 
perspectives. 

 
Our IV&V objectives were to produce quality software on schedule and within cost.  We 
also wanted to manage the schedule pressures that inevitably happen during a project 
(particularly at the end when the project is coming down to “wire”). We selected process 
related metrics to support those objectives.  We have found that a few select metrics can 
solve the metric overload problem and allow in-use measurements to change over time to 
best accommodate objectives.  The observation of “keep things simple” is not new.  
However, overcoming the tendency to treat metrics as absolutes required some 
innovation for us.  In our case, we introduced the use of tolerance about the measure to 
make a metric more flexible to engineers while at the same time increasing usefulness to 
overseers. 
 
In this paper/presentation we outline our situation, and we identify our use of tolerances 
about a metric citing data from several program areas.  The paper/presentation then 
examines the pros and cons of this. 
 
2.0 Views of Metrics: Management and Technical 
Our product area at Lockheed Martin Astronautics in Denver, Colorado, tests critical 
software systems used in flight control systems of booster rockets. Production systems 
are usually one of a kind that must work the first time or hundreds of millions of dollars 
may be lost. These systems are typically very complex, consequently failures or errors 
could be introduced from many sources. These software-systems have the following 
characteristics: real-time; spacecraft/booster flight control; minimal human intervention 
possible; and numerically intensive calculations of such critical items as, trajectories, 
flight dynamics, vehicle body characteristics, and orbital targets. Development programs 
are small—under 50,000 source lines of code.  We test from a unit level to an integrated 
level which includes much of the actual hardware driven by large simulations.  Overall, 
this approach and tool set has been successful {2} in taking input development products, 
doing IV&V, and generating test results (reports). In spite of success, we look for 
improvements in our processes and tools to save time and money.  We have found that 
metrics aid in gauging improvements, measuring performance, understanding test 
progress, test planning, calculating cost performance, and process control including risk 
management. 
 
Our team views metrics from at least two view points: management and technical.  These 
views are associated with the different stakeholders:  supervisors, project management, 
planning personnel, accounting, and customers.  Much of the team tends to focus on the 
process related {3} metrics, concentrating on performance, cost, and schedule. In 
management, we measure things such as number of tests generated, number of 
requirements actually closed versus what was planned, cost in hours of doing work versus 
planned budget.   



 
Engineers use the process metrics in statusing efforts, but are often more interested in the 
technical considerations which can be correlated to product metrics {3}.  Engineers look 
at the size of the module, number of comments, complexity of the code, number of 
functions, and number of errors that have been found. We have found that hard and fast 
rules such as “a McCabe {4} complexity factor of less than ten shall be maintained”, 
need to be more of a guideline than a rule.   We have several commercial tools that 
produce product metrics on our code, which in one case is Ada.  The tool, Adatest {5} 
produces over 30 metrics every time we run a test, while the tool AdaMat {6} can 
produce hundreds of measures.  These are used in test inspections as well as a starting 
point for designing tests and test completion (number of paths covered).  Additionally, 
these metrics allow us to do better estimating and planning which is then fed into our 
process performance metrics.  So we have some overlap between the views of metrics. 
 
Each view of metrics is legitimate.  As part of program efforts, we began tracking metrics 
and then using them to plan and monitor progress. We did this by establishing a metric 
and projecting it into the future (a plan).  Then we charted actual progress and compared 
it with our projected estimate (see Figure 1).  This led to instances where the actual 
numbers did not match (fell below) the planned numbers.  The team then became 
“concerned” about performance.  This led to analysis, planning and recovery efforts.  
Many times a deviation from the projected metric was just a normal variation in 
production. At the end of planned efforts, when we completed schedule plans, we found 
that there was minimal reason for concern” about these “divots”.  Once we realized this, 
we came up with an idea:  Use tolerance bands around the projected metric to account for 
these variations in the system. We found it was better to use metrics as a quick reference 
point or as a indicator of some quality. 
 
3.0 Using Tolerance on a Process Metric  
Tolerance is not new in the production environment, but the application of tolerance to 
process metrics in a software engineering/test environment is just being established as 
reported in this paper.  Statistical process control (SPC) has been advocated for use in 
production environments for years.  Often in SPC, upper and lower control limits are 
employed around a norm {7}.  However, SPC is usually applied in factory and 
production environments where some known physical characteristic or large production 
rate is being measured.  The application to engineering (intellectual) activities and small 
lot products is less well understood or practices {8}, through written about in areas like 
the “personal software process” {9} and Statistical Methods for Software Quality{10}.  
Activities like the Software Engineering Institute Capability Maturity Model (SEI CMM) 
and ISO 9001, also contain elements that identify the use of statistics.  In the CMM, 
standard core metrics {11} are identified but there is minimal guidance or accepted 
standards on actually applying these.  Users are left with direction to have metrics, 
without the supporting techniques such as SPC provides in the factory production 
environment.  
 
In IV&V management, we decided to use metrics as a planning, scheduling and tracking 
tool.  To do this, we established an estimated planned measure on a key process we were 



doing.  The plan was based on historic production rates as well as estimates.  We then 
defined high and low bounds around the planning measurement (see Figures 1, 2, and 3).  
Then we tracked and measured our actual production rates for each time interval.  As 
long as our actual production rate was within the tolerance bounds, we determined that 
our process was within what we termed “normal” variance of our plan or in control.  No 
significant action by management or concern by customers was warranted until we hit a 
tolerance limit.  Once a tolerance was reached, some effort like re-planning or 
modification of a process became necessary to achieve completion. 
 
3.1 How Do We Calculate a Tolerance? 
This question does not have a well refined answer.  We ended up doing many tolerance 
estimates using engineering judgement to do the upper and lower curves.  A few 
tolerances were created by using a time varying percentage on the projected “nominal” 
metric (example 5%, 10%, 15%, and 20% over time of the nominal line over time) or a 
timing varying percentage based on allocated manpower.  We would like to have better 
techniques for calculating the tolerance.  Items to consider would be time varying 
functions, possibly parameter based on actual historic data, which we did not have since 
the in-use metrics had no historic base.  Additionally, we considered of methods to 
normalize the data based on product metrics such as complexity.  But, we have not yet 
implemented these ideas and research is still needed. 
 
4.0 Application Of Tolerances Around A Process Metric 
Presented in this section are some samples from our use of metrics with a tolerance. The 
actual data presented includes the number of requirements tested, number of software 
programs generated, and number of units tested (unit testing).  The data was from an 
ongoing test effort and represents both work that has been completed and things, that at 
the time of the writing of this paper, were actively in use.  Additionally, we have other 
metrics in use that we have considered for tolerance metrics but have not established the 
upper and lower limits yet.  These include software problem report rates and product 
complexity levels (like Halstead and McCabe). 
 
4.1 Requirements And Functions Tested 
One measure of a test group’s progress is to count the number of individual requirements 
under test, and then track the testing to these.  As a test demonstrates one or more 
requirements, a requirement can be said to be tested or closed.  Once all requirements 
have been tested, this functional type of testing can be considered completed.  There is 
always a debate about what an individual requirement is, but for the purpose of this 
discussion, the definition is not the issue. 
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 Figure 1 - Requirements Closed by Testing   Figure 2 - Test Tool Production 
 
In Figure 1, each time period (month) has a planned number of requirements to be tested.  
This is represented by “Nominal Plan”.  Above this is a line indicating an “Upper Limit” 
scenario.  When we achieve more requirements closed than initially projected, we must 
ask ourselves such questions as, “Are we being as complete as we’d planned or did we 
just over scope the job (allowing for better planning next time)?”  The “lower limit”  is a 
minimum production rate that must be maintained and indicates the point above which 
our test team must stay to avoid corrective action.  When we reach or exceed this 
minimum line, re-planning, additional budget, reduced test scope, or other action may 
need to be considered.  If we are within the upper and lower lines, we consider that the 
testing is progressing within acceptable limits.  The limits are large but were established 
based on estimated minimum and maximum production rates.  In Figure 1, we can see 
actual progress is within tolerance.  We can also watch the trend line (extension of the 
actual slope) and determine at what point in the future we may cross a tolerance.  This 
allows a guess at the prediction of when an effort might get into trouble.   
 
Finally, to account for requirements change traffic, we allow at the end of the project, a 
range of requirements (between about 1600-1900) on the upper and lower limits.  This is 
our plan and we expect our actual number of requirements closed to be within this range. 
Then, we track the “Current Total RQMT Count”, which is the number of actual 
requirements at the current time point.  We will be 100% complete when the actual 
production count equals the “Current Total RQMT Count”.  And, as along as the “Current 
Total RQMT Count” falls within range of 1600-1900 at the end, we do not need any 
additional planning due to requirements growth/reduction.  This approach allows us to 
expand or reduce numbers of requirements to be tested without having to “rebaseline” 
plans. 
 
4.2  Number Of Software Programs Generated  
In support of testing, we generate test support software.  These software programs 
generate things like inputs to tests, analysis of test outputs, static analysis, or direct 
support of test execution.  The generation of the test support software adds significant 
efforts to any test program and can be a major source of cost or schedule time. 



 
During the development of these test programs we established a measure on their 
production (similar to units of code produced or functions generated).  We did not 
measure lines of code, instead we measured whole programs that satisfied one or more 
functions.   So, in Figure 2, each item being measured is a standalone program of varying 
size, function, and complexity. 
 
We again established a planned production rate based on software characteristics.  Next, 
we estimated the tolerance of what our high and low rates of production might be (upper 
and lower lines).  We then tracked our actual production rate.  In this case, we reached a 
“lower” tolerance in February, and had to analyze why.  In this example, it turned out we 
had under estimated the size and complexity of a couple of programs, thus they took 
several months longer.  This impacted when we could start other programs (resources 
weren’t available), which “blew” the metric.  We solved the problems by working 
overtime, getting some added resources, and rescheduling some activities to eliminate 
resource and/or time constraints on the critical path (note: the graph of Figure 2, where 
there is a reduction in total tool count).  This allowed the completion of test support 
programs “on time” relative to when we needed them.  This also pointed out the 
observation that metrics often must change and evolve with a program to be really useful.  
Have in use metrics allowed better control to avoid and/or minimize the final crunch at 
the end.  Casting them in stone may mean they do not get used. 
 
4.3 Number of Software Tests (Units) Generated 
This metric tracks the number of test procedures generated.  A test procedure may test 
one or more requirements, functions, or units of code.  In this case, each test covers one 
unit of code.  Each unit is tested at test levels of: 100% statement executed, 100% 
branches taken, and 100% decision coverage.  Additionally, each unit is tied to one or 
more design level specifications. 
 
In Figure 3, the “plan” line indicates the number of tests allocated to each increment 
(month) of time.  It is not unusual for tests to take differing amounts of time based on the 
complexity of the unit and the number of requirements implemented.  This means that not 
all tests are equal in terms of such things as effort.  Engineers used product metrics like 
Halstead and McCabe {4} to estimate when a module could be completed.  These were 
totaled over time to produce the plan line.  We then applied a tolerance to get high and 
low production rates in the same fashion as the requirements tolerances used.  In this “in 
work effort”, we can see that the “actual” line is trending below the planned line.  Some 
action will be needed by the team when the actuals cross the “must meet” line. 
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Figure 3 - Module Test Cases 

 
5.0 Our Experiences 
We have applied these concepts in several situations with positive results from both 
views, management and technical, of a metric.  People with either view found: 

• Up front planning is important. 
• Allocation of metrics so that all planned tests are covered by a metric is 

important. 
• Creating metrics with an “owner” (someone who is responsible for it ) is 

important. 
• Coordination between owners is important, so the right testing is done. 
• Have automated methods for collecting metrics. 
• The approach allowed inevitable deviation from the nominal baseline. 
• The use of tolerances established “hard” threshold lines that once exceeded 

indicated the need for some management and/or engineering action. 
• Tolerances accounted for the inevitable variation in a process and minor schedule 

slips. 
• This system provided a metric based planning tool that engineers were 

comfortable with and met management/customer needs for visibility into the 
engineering activities. 

• Re-test or requirement growth factors (as shown in Figure 1) could be built into 
the metric/metric plan.  

 
Overall metrics with tolerances contributed to a better working environment.  We also 
found that the team did less re-planning, accounting, justification, and other activities 
related to dealing with a metric that wasn’t exactly met at a given time point. We still 
had “management by the numbers”, but the system became more stable.  We were able 
to use metrics to assist in planning and status tracking by providing information in a 
format that was useful to all team stakeholders.  And as the life cycle progressed use of 
trending  and exceeded tolerances allow management of the “crunch” before the end 
because process, resources or other changes could be introduced early enough to make 
an impact. 
 



There were areas we found a need for improvement in the future.  These were: 
• Process metrics can indicate trouble early to avoid later failures and the “crunch”. 
• The planning function is an estimated line that needs to be more closely coupled 

to historic data.  No attempts were made to use any kind of standard parametric 
model  since we felt that this did not apply to our process details. 

• The tolerances were done mostly by “hand”.  No formal method was known or 
found to allow a “scientific” balancing of upper and lower control limits, other 
than planning estimates. 

• The inclusion of requirement growth factors (or additional “lines”) caused 
confusion which needed added explanation.  We found the rule of “keep it 
simple” applied so that the users of a graph were not overwhelmed. 

• In general, the application of things like SPC to engineering/software process 
metrics is not well understood or documented.  Additional research on the 
application of tolerance to metrics as viewed by technical and management people 
in software should be considered by the research community. 

• Metrics can mislead if you are measuring only parts of the process or if they are 
measuring the wrong thing. 

• Metrics and measurement plans potentially will change over time and this should 
be part of the planning and control process. 

• Choose a few simple metrics and the “buy in” by the stakeholders. 
 
6.0 Conclusions and Summary 
We have outlined a successful application using tolerances about process metrics which 
are used in management activities on an ongoing project.  We presented some examples 
from our actual project.  Summary observations include some of the limitations of what 
we did, lessons learned, and successes.  The application of tolerances has worked for us 
in controlling processes as related to scheduling.  We learned it was not enough to have a 
metric but it must be integrated with up front planning, situation analysis, rescheduling, 
engineering and management.  We have experienced a smoother road in the beginning, 
middle, and end by using tolerances.  Our engineers, customers and managers are 
comfortable with the technique.  The process was still managed, but the system could 
handle variation without immediate over reaction and consequence.  The result was a 
more stable system of planning and control. 
 
There is a need for more research into how to calculate and apply SPC type metrics to 
engineering and software processes.  Additional validation also seems in order.  We may 
not need more measures, but better techniques that employ what we have. This might 
allow more uses of metrics in a productive fashion. 
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