
P R E S E N T A T I O N

International Conference On

Software Management &
Applications of Software Measurement

February 15-19, 1999 • San Jose, CA

Presentation
Paper
Bio T13

Thursday, February 18, 1999
1:30PM

TOOLS OF THE TRADE:
HOW TO AUTOMATE A

SOFTWARE
REPOSITORY

James Heires
Rockwell Collins, Inc.

1

Tools Of The Trade

James T. Heires
February 18, 1998

How To Automate
A Software Repository

2

Agenda

Background

Process
Automation

Convincing
Your Audience

3

Background

ç 200 Added Projects

ç Use Of Repository

ç Benchmark

4

“Those Who

Cannot Remember The Past

Are Condemned To Repeat It”
George Santayana

5

Simple, But Not Easy

6

How We Did It

Data Collection Process

7

Configuration Management
Customer

Project 1

Project 2

Project n

Configuration
Management

Repository

...

8

Repository

Data Collection

User
Interface

Time

Effort

Attributes

9

Validation

ç Consistent
ç Complete
ç Correct
ç Confident

Independent Reviewer

10

Analysis

ç Product Family
ç Business Unit
ç Competition

Compare Project To:

11

Analysis

Project Product Family Business Unit Industry
Size 669 11001
Effort 8 246
Schedule 0.10 4.89
Defects 0 60.9

MS Access Query

MS Word Document

Mail-Merge

12

Feedback Report

– Summary
– Details

ç Recommendations

ç Analysis

13

Data Collection Process

Project
Completion

Configuration
Management

Data
Collection

Validation

Analysis

Feedback
Report

Release To
Database

14

Convincing Your Audience

ç Student’s T-Test
ç Control Charts
ç Capability Studies

15

Convincing Your Audience

Average Effort Per Project

60

70

80

90

1997 1998

E
ff

or
t (

S
ta

ff
 M

on
th

s)

82

70.2?

16

Convincing Your Audience

Student’s T-Test

NO

YES

17

Control Charts

Convincing Your Audience

18

Capability Studies

Convincing Your Audience

19

A Few Words About
Program Success

ç Support Business Goals
ç Start Simple

– Minimum Data Set
– Few Projects

ç Quick Success Story

20

Provide Value Or Perish

ç Customer Focus

ç Return On Investment

21

In Conclusion

ç Automate

ç Provide Value Or Perish

ç Measure Program Performance

ç Support Business Goals

1

James T. Heires

Abstract:
Building a historical software repository is critical to the success of cost estimation, process improvement and
metrics programs. Without a repository, there is no effective way to sanity-check estimates or measure
improvements. Actually collecting data, however, is not easy. Organizational and technical issues impede
efficiency and consistency needed for a first-rate repository. Automation can help solve these issues by
greatly increasing the quality and pace of the data collection activity. This paper describes a case study of
the Rockwell Collins approach to repository automation, specific examples of tools implemented and benefits
realized through automation.

Those who cannot remember the past are condemned to repeat it.1

Background:
Rockwell Collins began building its corporate software repository in 1994. A 16-project benchmark study
carried out by QSM Associates, Inc. established a corporate capability baseline to measure improvements. In
addition, the benchmark was compared with industry averages to establish the competitive position of
Rockwell Collins. Since 1994, historical data from over 200 projects has been added to the repository. Two
full-time and many part-time staff members were required to build and execute the program. Three University
of Iowa summer interns implemented the automation described in this paper. The repository was used to
evaluate the impact of process improvement efforts and to support achievement of SEI CMM2 Level III.
Estimates of new software development projects were also based upon repository data. The benefits of a
successful repository are apparent, but they do not come for free.

Simple, but not easy:
A starting set of core metrics constitutes only a handful of simple measures3, but building and maintaining a
historical repository can be very difficult. Organizational challenges such as funding, staffing and
achievement of business goals are vital to success but are beyond the scope of this paper (see
Romanowsky4 for a discussion of these challenges). The technical challenges, however, of selecting and
implementing the most beneficial automation are addressed. The vendor-supplied benchmark study jump-
started the repository by specifying a database and a methodology. The highly flexible QSM database is built
upon Microsoft® Access, which makes the collection process easier to automate5.

Tools Of The Trade

How To Automate
A Software Repository

Tools of the Trade: How to Automate a Software Repository James T. Heires

2

The Process:
The first step of the collection process occurs after the completion of development work. Rockwell Collins has
a configuration management (CM) office that archives and catalogs all software after development completes,
which provides a convenient point to collect data. Source lines of code (SLOC) is the primary measure to
collect at this point.

The traditional approaches to size counting within Rockwell Collins represented a large source of variation.
The numerous definitions of SLOC and the proliferation of homegrown counting tools attributed to the
variation. An automated line counting utility was integrated into the existing tool suite operated by the CM
office. The result of this size measurement is the count of new, modified and unmodified SLOC. Important
aspects of a size counting tool include:
• The use of industry standard definitions6

• The support of multiple languages and platforms
• The auto-detection of source language
• The measurement of lines modified from a previous version

Next, project performance data is collected from the project leadership. Time and effort are the primary
quantitative values to collect, but qualitative attributes (e.g., application type, customer type and programming
language) are also sought. The electronic data collection program provided by QSM simplifies this step. This
program is the data entry interface of the repository. By using this program, consistency in data definitions
and attribute classifications was directly achieved. It also eliminated the recurrence of manual data entry,
indicative of using paper forms. The data entry application was distributed over the nationwide computer
network at Rockwell Collins to simplify remote data collection as well.

After collection, the data is validated to ensure consistency, correctness and completeness. Only
independently validated project data is allowed into the repository. This minimizes dysfunctional behavior by
project personnel attempting to “game” the system to look good. Validation consists of a 30- to 60- minute
interview with project leadership. Sources of data, incomplete information, lessons-learned and significant
factors are discussed in the interview. Michael Mah calls these interviews “mini post-mortems” in his article
on software metrics. 7 Once a level of confidence about the validity of the data has been reached, analysis
can begin.

Analysis of project data compares the target project to similar projects in the repository. Size, time, effort and
quality are compared quantitatively across the following domains:
• Product family
• Business unit
• Industry averages

The comparison is summarized on the first page of a feedback report that goes to project leadership. A
detailed analysis appears later in the report. This comparison was time-consuming, which made it a prime
candidate for automation.

Tools to accomplish this analysis include database queries coupled with the Microsoft Word mail-merge
feature. Figure 1 illustrates this concept. The Microsoft Access query shown is populated with project and
business unit data from the repository (project on the left and business unit on the right). The project portion
of the query simply regroups appropriate data from individual project records. The business unit portion of the
query summarizes data from projects belonging to the same business unit. Product family and Industry data
is similarly populated, but not shown here. The Microsoft Word document represents a portion of the
feedback report and imports data from the query in a meaningful fashion.

Tools of the Trade: How to Automate a Software Repository James T. Heires

3

Figure 1 – Feedback Report Automation

To import the data from the query to the report, open a document created from a prepared template that is
connected to the query, then select the name of the project to analyze. All the data from the query is
automatically mail-merged into the document like a form letter.

This feedback report serves to confirm the importance of the data collection program and to provide a simple
analysis of project performance in comparison with similar projects.

After the feedback report has been completed, the data is released to the repository. The data is then
available to support estimation and other analysis activities—ending the collection process.

Project Product Family Business Unit Industry
Size 669 11001
Effort 8 246
Schedule 0.10 4.89

Defects 0 60.9

Microsoft Access Query

Microsoft Word Document

Mail-Merge

Tools of the Trade: How to Automate a Software Repository James T. Heires

4

The data collection process is summarized in Figure 2 below:

Figure 2 – Data Collection Process

Convincing an audience:
Simple analysis of a project against average performance of a domain is satisfactory for feedback and
validation, but not when attempting to influence pivotal business decisions! Fortunately there are several
sophisticated statistical tools available to help.

The student’s T-test, control charts and capability studies can be used to determine:
• If significant change has occurred
• if a process is in statistical control
• if business goals are being achieved

The Student’s T-test:
The student’s T-test is based upon a t-distribution. The test can be used to make inferences about a
population mean8. First, start with a null hypothesis (usually the mean of one sample is equal to another
sample mean). The results of the test determine whether to accept or reject the hypothesis based upon the
results of the test. As an added bonus, the student’s T-test accounts for small sample sizes.

Suppose a senior manager wants to know if the development cost (measured in staff-months) of software has
decreased since last year. The first method that comes to mind might be to measure and compare the
average cost for all projects in each of the two time periods (last year and this year). If the average cost of
this year is less than last year, one might claim an improvement. The magnitude of the improvement is the
difference between the two average values (see Figure 3 below). However, if the averages are similar,
sample sizes are small or variation is large, confidence in the analysis falters.

Figure 3 – Simple Analysis

Average Effort Per Project

E
ff

or
t (

S
ta

ff
 M

on
th

s)

60

70

80

90

 1997 1998

70.2

82 ?

Configuration
Management

Data
Collection

Validation

Analysis

Feedback
Report

Project
Completion

Release To
Database

Tools of the Trade: How to Automate a Software Repository James T. Heires

5

At this point, student’s T-test comes in. This same set of data analyzed with the T-test shows no significant
cost difference between the two years.

The T-test also provides a confidence level result to further understand the underlying data. If an important
business decision was dependent upon the results of this analysis, costly mistakes could be avoided by using
this test.

Control charts and capability studies:
Control charts are used to determine if a process is in statistical control (e.g., predictable), and who should be
assigned to address process issues. The applications of control charts to software engineering are many and
varied. Some examples include:
• determining the impact of process improvement efforts on productivity9

• understanding whether the defect detection process is consistently finding defects (see Figure 4)
• whether management or engineering should be called upon to address a perceived issue with project

cost.

Figure 4 – Control Chart

Tools of the Trade: How to Automate a Software Repository James T. Heires

6

Capability studies are used to determine whether a process is able to produce product within specifications
(e.g., capable) and what percent of product will meet specifications in the future. Some examples of capability
studies in software engineering include:
• projecting the reliability of an incomplete product based on defects detected to date (see Figure 5)
• determining whether an underway project will meet its cost and/or schedule budgets
• understanding what portion of a current product meets customer expectations

Figure 5 – Capability Study

This short illustration of the use of statistics in software engineering is meant to highlight a few ways to
analyze data from a repository. These techniques (if correctly used) can increase confidence and convince
an audience. See the references to learn more about statistical process control 10, 11, 12.

A few words about program success:
To ensure success, a repository program should consider a simple start:
• Concentrate on a minimum data set and a small, but significant set of projects
• Make a strong connection to business goals
• Achieve a quick success story to catapult your program to higher levels of success

Provide value or perish:
Data collection programs are doomed to failure if they do not provide value to customers. The program
personnel must continually measure the value they provide from the customer’s point of view, quantify this
value and produce a return on investment ratio (ROI) to share with stakeholders.

The investment portion of ROI includes all costs to establish and maintain the program. This information is
normally available from accounting or time-keeping records.

Tools of the Trade: How to Automate a Software Repository James T. Heires

7

The benefit portion of ROI is more difficult to determine, but should only include direct benefits. This avoids
the embarrassing scenario of having to wave one’s hands excessively while explaining. Direct benefits
typically fall into the cost-avoidance category. Some direct benefits include:
• avoiding underbidding a new program (and leaving money on the negotiating table)
• avoiding lost contracts due to overbidding or CMM requirement underachievement
• reducing the cost to produce an estimate
• avoiding the unnecessary purchase of tools

Conclusion:
A software repository program can truly thrive by connecting business goals with program goals, measuring
program benefits and minimizing repository-related expenses through automation. A program should strive to
select the most beneficial automation, analyze repository contents to find truth and provide value at a
reasonable cost.

About the author:
James Heires is a 13-year veteran of the software industry. His current professional interest lies in
engineering cost estimation using historical project data. Contact Mr. Heires via e-mail at
jtheires@collins.rockwell.com

About Rockwell Collins:
Rockwell (NYSE:ROK) is a global electronic controls and communications company with leadership positions
in industrial automation, avionics and communications, and electronic commerce. In late June Rockwell,
announced that it planned to spin off to shareowners its Semiconductor Systems business at calendar year
end. Rockwell’s continuing businesses will have projected fiscal 1998 sales of approximately $7 billion and
38,000 employees. Visit Rockwell Collins at http://www.collins.rockwell.com.

1 Santayana, George, The Life of Reason, Volume 1, 1905.
2 Paulk, Mark, et at., The Capability Maturity Model: Guidelines for Improving the Software Process, Software
Engineering Institute, Carnegie Mellon University, Addison-Wesley, 1995.
3 Carleton, A., et al., Software Measurement for DOD Systems: Recommendations for Initial Core Measures,
(CMU/SEI-92-TR-019, ADA 258 305), Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, September 1992.
4 Romanowski, Helen, Building A Measurement Program Foundation: “Behind the Scenes”, Applications of
Software Measurement Conference, 1996.
5 Heires, James, Measuring QSM's repository and analysis tool, Application Development Trends Magazine,
Volume 5, Number 6, Software Productivity Group, Natick, MA, June 1998. See also:
http://207.121.151.13/Pub/jun98/pr601-2.htm.
6 Cruickshank, R. & J. Gaffney, Code Counting Rules and Category Definitions/Relationships, Version
02.00.04, Software Productivity Consortium, April 1991.
7 Mah, Michael C., and Putnam, Lawrence H., Software by the Numbers: An Aerial View of the Software
Metrics Landscape, American Programmer, November 1997.
8 Ott, Lyman, An Introduction to Statistical Methods and Data Analysis, Duxbury Press, 1977.
9 Bechtold, Richard, and Sheckler, John, Quantitative Management, Software Productivity Consortium, SPC-
96020-MC, March 1997.
10 Wheeler, Donald, Understanding Variation: The Key to managing Chaos, Knoxville, TN, SPC Press, 1993.
11 Wheeler, Donald and Chambers, David, Understanding Statistical Process Control, Knoxville, TN, SPC
Press, 1992.
12 Wheeler, Donald, Advanced Topics in Statistical Process Control, Knoxville, TN, SPC Press, 1995.

James T. Heires
James Thomas Heires is a 13-year veteran of the software industry, the majority with
Rockwell Collins, Inc. His professional experiences include design of consumer
electronics, Electronic Flight Instrumentation Systems (EFIS), Engine Indicator and Crew
Alerting Systems (EICAS) and Flight Management Systems (FMS). Five years of software
process improvement followed, illuminated by the achievement of SEI CMM Level III in two
Rockwell Collins business units. Mr. Heires is currently working to improve the state-of-the-
practice of project cost estimation.

Mr. Heires received his bachelor’s degree in Electronics Engineering Technology from the
University of Nebraska and has pursued postgraduate studies in Software Engineering and
Computer Science at the University of Iowa. He received recognition in 1998 from WHO’S
WHO of Information Technology.

Mr. Heires writes software product reviews for Application Development Trends and
delivers technical presentations at national conferences.

	Title Page
	Presentation
	Paper
	Bio
	Return to Main Menu

