

F2
Concurrent Session
Friday 10/26/2007 10:00 AM

JUMP TO:

 Biographical Information

 The Presentation

 Related Paper

How Testers Can Help Drive
Agile Development

Presented by:

Lisa Crispin,
ePlan Services, Inc.

Presented at:
The International Conference on Software Testing Analysis and Review

October 22-26, 2007; Anaheim, CA, USA

330 Corporate Way, Suite 300 , Orange Park, FL 32043
888-268-8770 904-278-0524 sqeinfo@sqe.com www.sqe.com

mailto:sqeinfo@sqe.com
http://www.sqe.com

Lisa Crispin

Lisa Crispin co-authored Testing Extreme Programming (Addison-Wesley, 2002) with
Tip House, and is now collaborating with Janet Gregory to write Agile Testing (Addison-
Wesley, 2008). Lisa has enjoyed working as a tester on agile teams since 2000. Her
pre-agile experience included programming, testing, and technical support. She’s
currently part of an agile team at ePlan Services Inc. in Denver, developing web-based
financial applications using XP and Scrum.

Lisa regularly contributes articles about agile testing to publications such as Better
Software, Methods and Tools and IEEE Software. She has presented tutorials and
workshops on agile testing and the agile customer team at conferences in the U.S. and
Europe. She also enjoys helping teams make the transition from traditional to agile
development. For more about Lisa’s work, please see her website,
http://lisa.crispin.home.att.net.

1

... As Well As Traditional
Development!

Lisa Crispin

How Testers Help Drive
Agile Development

Copyright 2007: Lisa Crispin

2

What I hope you'll take with you

Why you should try to use tests to drive
development

When to write tests

Who should write tests

How to elicit requirements and turn them into
tests that guide development

The benefits of test-driven development –
even on traditional teams

Copyright 2007: Lisa Crispin

3

Why guide development with tests?

Prevent business and technical disconnects

Testers help team see big picture

Even with TDD, missed requirements

Define quality and success criteria, milestones

Prevent technical debt

• Missed requirements

• Poorly designed, untestable code

Copyright 2007: Lisa Crispin

4

Why guide development with tests?

Provides advance clarity

Provides a common language

Collaboration

Better quality code

Higher business value

Tight feedback loop critical

Copyright 2007: Lisa Crispin

5

Driving Development with Tests

Test-Driven Development

Unit tests before code

Design tool

Driving with business-facing tests

Examples show desired behavior

When all tests pass, you're done

Copyright 2007: Lisa Crispin

6

When to write tests?

High level tests

Before coding starts

Show big picture

Detailed tests

Concurrently with coding

Capture details in executable tests

Copyright 2007: Lisa Crispin

7

Who writes tests?
Programmers

Unit, integration tests

Help automate other tests

Testers, business experts, product owners,
analysts

Business-facing tests

e.g. Functional, usability, performance,
security...

Tester

ProgrammerDomain
Expert

Copyright 2007: Lisa Crispin

8

Building Requirements: Conversations
Ask open-ended questions:

Q. “What’s required in the address?”
A. “The user has to enter some numbers and

characters in the street address. The city,
state and postal code must match”.

Q. “What should the screen look like?”
A. “State should be a drop-down list. Postal

code should be a select list once the city
and state are entered.”

Q. “What if…”

Copyright 2007: Lisa Crispin

9

Eliciting Requirements

Flush out hidden assumptions

What business problem does this feature
solve?

How will end users use the feature?

Simplest programming implementation?

Any mismatches?

Copyright 2007: Lisa Crispin

10

Eliciting Requirements

Whiteboard discussions

Examples

• Appropriate to domain, e.g. spreadsheets
for financial apps

Examples of undesirable behavior, too

Pictures, diagrams, charts help!

Story + use case + example/test =
requirement

Copyright 2007: Lisa Crispin

11

Capturing Details in Executable Tests

Illustrate examples

Programmers may automate

Form useful documentation

Collaborative, iterative process

Flushes out misunderstandings

Provide daily feedback to business,
development team

Copyright 2007: Lisa Crispin

12

Capturing Details

Agile principles apply to tests

Start simple

Refactor as needed

Pair

Testable code design is key

Tests Thru UI

Tests Behind UI

Unit Tests

Copyright 2007: Lisa Crispin

13

How my team uses tests to drive coding

Prior to or first day of iteration

Product owner explains stories

• Talks through examples

• Draws on whiteboard

• May provide example spreadsheets,
sample documents

• May provide a few high level tests

Copyright 2007: Lisa Crispin

14

First few days of iteration

Testers write narrative requirements, high
level tests

• Wiki page for sprint links to wiki pages for
stories

• Review with product owner, programmers

• Too much detail can cloud picture

Copyright 2007: Lisa Crispin

15

When coding starts on a story

Tester writes detailed test cases on wiki

Basic, happy path functional test in FitNesse
if appropriate

Programmer automates basic test

Tester writes more test cases

• Sad, bad, ugly paths

• But just enough!

Copyright 2007: Lisa Crispin

16

Concurrently with coding

Other examples/tools/guidance from testers:

Spreadsheet to illustrate, verify results

Testers do exploratory testing

Different user expertise, roles

• Scenario testing

May flush out additional test cases

• Push automation down to lowest levels

Copyright 2007: Lisa Crispin

17

Coding complete

Suite of automated unit and behind-the-GUI
tests complete

All automated tests pass

GUI test automation completed, where
appropriate

Tests become part of regression suite, must
never fail again

Tests document functionality

Copyright 2007: Lisa Crispin

18

Another success story

“Acceptance Test Driven Planning”, Richard
Watts and David Leigh-Fellows

QA works with customers after each iteration
review to write tests for next iteration

They use these tests to guide planning,
estimation and task breakdown

Not “big up-front design”, but “just enough”

Copyright 2007: Lisa Crispin

19

Tools that can help

Fit/FitNesse type tools, test behind GUI

Promote tester-programmer collaboration

Requirements in narrative and executable
tests, interspersed

Xunit, Selenium, many other choices

Team chooses tools

Be open to experimenting

Copyright 2007: Lisa Crispin

20

Tools that can help

Brainstorming tools – can be low tech!

Mind maps

Drawing on whiteboard

Nothing can replace face to face
communication!

Testers should facilitate programmer-
business communication, but not block it

Copyright 2007: Lisa Crispin

21

What if I’m not on an agile team?

Write examples, executable tests ahead of
development

Engage business people early

Collaborate with programmers early

Review tests/examples together

Ask for small testable pieces early

Lots of face-to-face communication!

Copyright 2007: Lisa Crispin

22

Results of using tests to guide development

Code designed for testability

Code better matches business
expectations

Better end user experience

Joshua Kerievsky: “Following story test
driven development clearly enabled me to
produce designs I simply would not have
anticipated”.

Copyright 2007: Lisa Crispin

23

Resources

lisa.crispin.home.att.net
www.agilealliance.org
www.testing.com
agile-testing@yahoogroups.com
www.fitnesse.org
webtest.canoo.com
fit.c2.com

No Donkeys Were Harmed In the
Creation of This Tutorial

Copyright 2007: Lisa Crispin

24

Customer Team

User Stories
Applied

by Mike Cohn

Available on
Amazon

Copyright 2007: Lisa Crispin

25

Estimating

Agile Estimating
and Planning

By Mike Cohn

Available on
Amazon

Copyright 2007: Lisa Crispin

26

Collaboration

Collaboration Explained :
Facilitation Skills for
Software Project Leaders

By Jean Tabaka

Available on Amazon

Copyright 2007: Lisa Crispin

27

Implementing Change

Fearless Change: Patterns
for introducing new ideas

By Linda Rising and Mary
Lynn Manns

Available on Amazon

Copyright 2007: Lisa Crispin

28

Lean Development

Implementing Lean Software
Development: From Concept
to Cash

By Mary and Tom
Poppendieck

Available on Amazon

Copyright 2007: Lisa Crispin

29

Agile Testing

Testing Extreme
Programming

By Lisa Crispin and
Tip House

Available on
Amazon

Copyright 2007: Lisa Crispin

30

Coming in 2008!

Agile Testing

By Janet Gregory and Lisa Crispin

How Testers Help Drive Agile Development
Lisa Crispin

STARWEST, 2007

Like many agile software development teams, our team writes tests for each feature
before the feature is actually developed. We’ve found many advantages to using tests
and examples captured as tests to drive development, not only at the unit test level but at
the functional, system and acceptance test levels. Not only do we have tests which show
whether we’ve delivered the correct functionality, but we benefit from increased
communication and collaboration, increasing the chances that we will deliver exactly
what our customers want. Writing just the right amount of tests and level of detail has
proved difficult at times, as has the automation and timing of the automation effort. The
effort to overcome those problems has paid off and led us to devote even more resources
to driving development with customer tests.

Test-driven development or TDD is a widely accepted practice used by agile software
development teams of many flavors – not only Extreme Programming teams. For each
small bit of functionality they code, programmers first write unit tests, then they write the
code that makes those unit tests pass. TDD is seen as a design tool, since it forces the
programmer to think about many aspects of each feature before coding. It results in a
‘safety net’ of tests that can be run with each build, ensuring that new code doesn’t
‘break’ any existing code, or that refactored code maintains its functionality.

Why Drive Development With Tests?

I’ve been fortunate to work as a tester on three development teams practicing TDD as
they produce J2EE-based web applications. Code produced via TDD far outshines code
produced in a ‘traditional’ manner in quality and robustness. Testing code developed in
this manner, I don’t find the bugs I was used to finding in ‘typical’ projects, such as bugs
produced by boundary conditions or ‘invalid’ input. Don’t get me wrong, as a tester, this
makes me happy. So what more do I want?

What I still saw, even with TDD, are misunderstandings between the project’s customers
(also known as business experts or product owners), and the software developers. Even if
the deployed code was almost bug-free, it didn’t do everything the customer had
expected. We can enlarge on the concept of TDD and reduce the risk of delivering the
‘wrong’ code with what I call customer test-driven development.

Agile testers can help their development teams by driving projects with tests and
examples that illustrate the requirements and business rules. This is often called
Customer (or business) test-driven development (CTDD) or story test-driven
development. What do I mean when I say ‘customer tests’ or ‘business-facing tests’?
Programmers write unit and integration (also known as contract) testing, testing small
bits of code and making sure they work together. All other types of tests are business or
customer-facing. I use the term ‘customer’ in the XP sense, meaning product owners,

subject matter experts, and other people on the business side who specify features to be
delivered. Customer tests may include functional, system, end-to-end, performance, load,
stress, security, and usability testing, among others. These tests show the business
whether the delivered code meets their expectations.

How to Drive Development with Tests

How do we know everything that the customer expects ahead of time? On agile projects,
we make this easier by splitting features into small, manageable chunks, known as
‘stories’. Often written on a small index card, stories take a form such as this:

As a retail website customer, I would like to be able to delete items out of my
shopping cart so that I can check out with only the items I want.

For each story, we ask the customer to tell us how she will know when this story is
complete, in the form of tests and examples. Just as with TDD, before writing any code,
we write tests that, when passing, prove the code meets the minimum requirements.
These tests are ideally in a form that can be used with an automated tool, but they may
also be higher-level tests, or guidelines for later exploratory testing.

Who are these cooperative customers? They’re the people with the domain expertise,
who understand business priorities. They may be in sales or marketing, they may be
business managers or analysts, they may be end users, they may even be a development
manager or customer support. They will most likely need help in writing effective tests
that the programmers can use.

Testers provide this help, combining their understanding of the technical requirements of
the system with the big picture of what the business needs. Testers ask questions to help
elicit requirements and flush out hidden assumptions. For example, with the story above
to delete items out of the shopping cart, testers may ask:

Should there be a dialog for the user to confirm the delete?
Is there a need to save the deleted items somewhere for later retrieval?
Can you draw a picture of how the delete interface should look?
What should happen if all items in the cart are deleted?
What if the user has two browser sessions open on the same cart, and deletes an item
in one of the sessions?

By writing customer tests ahead of coding the features, we can bring hidden assumptions
to the surface. Frequent conversations with our customers, going over examples, enable
our product owners to get the best possible results. Whiteboard discussions and examples
in domain-appropriate form such as spreadsheets are invaluable.

Teams doing TDD, especially those trying it for the first time, may tend to do only the
more obvious, “happy path” tests. Misunderstood requirements and hard-to-find defects
may go undetected. Writing customer tests first provides navigation for our project ‘road
trip’. The tests help the team identify milestones and landmarks to know if they’re on
track. When the tests all pass, we know we’ve reached our destination.

Real Life Success Stories

 The basic process of driving development with customer-facing or business-facing tests
sounds simple. Once stories are identified for an iteration, we can specify business-
facing tests, write the fixtures which automate the tests, then write the code that makes
the tests pass.

First, you need some way to specify the tests and then automate them. Our team uses a
tool called FitNesse (http://www.fitnesse.org). FitNesse is an open source software
development collaboration tool which enables customers, testers and programmers to
specify test cases as simple tables of inputs and expected outputs. It is a wiki, which
means it is easy to create and edit pages in a web browser without having to know
HTML. Programmers find it easy to write test fixtures which operate the code and return
the results, using the same language as the application under test (for example, Java).

Even with an appropriate lightweight tool such as FitNesse, specifying and then
automating tests can be a huge challenge, as my team found when we decided to try
CTDD. First of all, no matter how easy it is to specify tests in the tool, it’s hard to make
time to write tests in advance of, or even at the very beginning of an iteration. We were
already struggling with TDD, and felt short of resources. When we faced a big upcoming
theme to develop, our customer and I made writing tests in advance a priority. The
customer wrote detailed examples in spreadsheet form, and I turned these into FitNesse
test tables. Not surprisingly, we made some big mistakes.

When the programmers started writing the automated fixtures for the first story, they
found the large number of highly detailed level of the tests overwhelming. It was hard
for them to get a big picture of what how the highly complex business rules should work.
Also, once they started writing the fixtures to automate the tests, the programmers needed
a major redesign to the test cases. Since I had written so many tests in advance, it was a
big and tedious job to go back and refactor all the tests. We also had disagreement in
where business logic should be located. The programmers originally wanted to put much
of the logic into the SQL that retrieved records for processing, but this made test
automation more difficult. This turned into a bit of a crisis, and we wondered if CTDD
was worth the investment. In spite of this, the FitNesse tests which finally emerged
proved to be valuable.

In hindsight, even this small crisis and ensuing discussion proved a valuable learning
experience. We finally agreed that putting the complex business logic into the Java code
was the safest course of action. It could be tested more easily and thoroughly. We also
agreed that, at least for our project, writing detailed tests well in advance of coding didn’t
serve the purpose of helping the programmers know what to code. It also led to wasted
time refactoring tests later.

We decided to write only high level tests in advance of each development iteration, or
during the first couple days of each iteration (we use two week iterations). These test
cases, written by the business experts and/or testers, usually consist of bullet points,
narrative and/or examples on a wiki page. Often, our business experts will explain the
story to the team and write examples on a whiteboard. Customer tests don’t replace direct
communication between programmers and customers, they enhance it and document the
story requirements. The programmers use these high-level tests to understand each story
and help with the design. The high level test wiki page might look something like this:

Story: As a retail website customer, I would like to be able to delete items out of my
shopping cart so that I can check out with only the items I want.

Notes:
A delete box is displayed next to each item in the shopcart. An ‘update cart’ button is
at the bottom of the list. If the user marks the delete box for one or more items and
clicks the ‘update cart’ button, a window pops up giving the user the option to delete
or move the item(s) to his wishlist. This popup window also has a cancel button.

Test cases:

• Click the update cart button without checking any items. Should refresh the
page.

• Delete one item. Verify it is gone from the cart and not in the wishlist.
• Move one item to the wishlist. Verify it is there and no longer displayed in the

cart.
• Delete all the items. The “keep shopping” button should appear.
(and so on – you get the idea).

As the iteration gets underway, we write FitNesse tests for each story. The other tester on
the team and I do this, collaborating closely with our business experts, who often prepare
examples and test cases in spreadsheets We use the build-operate-check pattern for our
tests. Each test page starts off with tables that build inputs to the story. These inputs may
be global parameters, data stored in memory to be used by the test, or if necessary, actual
data in the database. Then we invoke a method (not written yet) which will operate on
the inputs with the actual code. Last, the test contains tables which verify the results,
again either reading data from memory, or from the database itself. Each test also has a
setup and teardown method.

For the sample story above, about deleting items from a shopcart, the test might be
organized this way:

1. Build a shopcart into memory, adding all the fields for the item such as item
number, description, price, quantity.

2. Operate on the shopcart, specifying one item to delete.
3. Check to see that the shopcart contains the correct remaining items.

Unless we’re fairly certain of the test design, we only write one or two test cases, so that
we don’t lose a lot of work if we need a big refactoring later. We show the test to a
programmer and discuss whether it’s a good approach, making changes if needed. In true
customer test-driven development, the programmers would write the test fixture to
automate these tests before writing the production code, the same as they do with unit
tests. In our project, the programmers usually look over the high level test cases and
write their first draft of the code. Then they take on the task to automate the FitNesse
test. Often, the test case shows a requirement that they neglected or misunderstood, and
they go back and change the code accordingly. Once the methods for the FitNesse tests
are working, we can go back and add test cases, often uncovering more design flaws or
just plain bugs.

Once our FitNesse tests are passing, they become part of our daily regression test suite,
catching any flaws introduced later. But their most important function has already been
served: Writing the tests has forced communication between customers and testers,
customers and programmers, testers and programmers. The team had a good
understanding of the story’s requirements before starting to write any code, and the
resulting code has a good chance of meeting all the customer’s expectations.

Building on Test-Driven Success

Despite the success whenever we write customer tests first, we can become complacent
or get in too much of a rush and neglect this practice. Recently we had a fairly simple
story (we thought) that only a couple of internal customers would use. We did write test
cases in advance of coding, but as the internal customers were always busy and we
thought we understood it well, we neglected to go over the test cases with the customers.
After deploying to production, one of the customers tried to use the new functionality,
and found it was not at all what he wanted. Now we have an unhappy customer, who has
to write new stories to get what he wanted in the first place.

When our business was at its peak time of year and we were all busy, sometimes the tasks
to automate tests got pushed towards the end of the sprint, making a time crunch for
testing. We made ‘writing FitNesse fixtures early’ a team goal for a few iterations, until
this became a habit. We use a task board to monitor progress for each story, and if the
‘write FitNesse fixtures’ task doesn’t move into the Work In Progress column by a
certain point, someone will ask about it during the standup meeting.

Our company has experienced the benefits of driving development with business-facing
tests, and has made its use a company-wide goal. Although our company is quite small
(only around 20 employees), we have a product owner (who is also our ScrumMaster)
who works with our team full time. In addition, a senior vice-president who is the most
knowledgeable about the domain has been given the time and directive to work closely
with our engineering team. He writes test cases for at least one story in advance of each
iteration. We have a goal to finish high-level test cases for all stories of an iteration by
the fourth day of the two-week iteration. This new commitment to CTDD, along with

our commitment to early test automation, makes us talk to each other when we need to –
before and during coding.

What if I’m Not On an Agile Team?

“It sounds great”, you say, “but I’m stuck in a traditional waterfall process. How I drive
development with tests, and how can that benefit my project?” After being on XP teams
for a couple years, I had to go back to the “dark side” and work on a less agile team for a
time. They wanted to implement agile development, but couldn’t quite make the
commitment. I asked the managers where they felt the most pain on projects. They
immediately responded that requirements were their biggest problem. Either too much
time was spent gathering requirements, which were changed and out of date right away
and thus useless, or the programmers were forced to start coding with no requirements at
all.

“What if we write customer tests ahead of development?” I proposed. They agreed to try
it, and our results were good. We were able to get people on the business side working
more closely with us, and the programmers appreciated having some direction before
they started writing code. Even though the programmers didn’t assist directly with test
automation (all automation was done by my test team), writing customer tests first did
help guide development. The resulting software was closer to the customer’s
requirements. This success led to trying more agile practices on ensuing projects, again
with good results.

Writing tests ahead of development is something a test team can implement without a
major effort, it just requires a bit of cooperation from the business side. There’s no
substitute for face to face communication, and meeting around a whiteboard can be the
best way to explain a feature in concrete terms. Guiding development with tests can
change a team’s culture just a bit, so that it may be open to more practices that will
improve development, and improve life for the developers!

	TITLE PAGE
	BIO
	PRESENTATION
	PAPER

