
34 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

A A

C

E F

B

D
AA

C

FE

B

D

A AC B

D
F

E

AABC

D
E

F

A
A C

B

A
A

C

B

IT TAKES

TWO TO



E
F

D

C

F
E

D

TANGO

F
E

AABC

E
F

A
A

C
B

A
A

B
C

What every software manager should know 
about pair programming and how to implement it 
without missing a step.

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 35

by Rachel Davies



Even the best programmer will make
mistakes—defects are inevitable. Your
strategy for deploying programmers in the
most productive way needs to recognize
this. Research has shown that program-
ming in pairs can significantly improve
code quality with a relatively small
trade-off in development time. (See the
StickyNotes for reference.) While this
sounds counter-intuitive (surely, solo
programmers working in parallel will be
able to implement more features in the
same time), productivity cannot be sus-
tained purely by maximizing output
without attention to quality control.
This article explains the ins and outs of
pair programming and what factors you
need to consider before rolling it out in
your organization. 

Pairing Up
Pair programming is not one person

passively watching the other typing.
When engaged in pair programming,
each programmer plays an active role in
determining the design, implementation,
and tests. The pair analyzes strands of

typically lasts a couple of hours (includ-
ing natural breaks) and ends with code
being integrated and checked into ver-
sion control. 

In addition to switching roles during a
pair programming episode, programmers
typically change partners more than once
a day. Exposing code to other program-
mers improves code quality in at least
two ways. First, each programmer who
reads the code can illuminate previously
unrecognized blind spots that could
cause defects. Second, peer pressure can
improve pride in work and attention to
design. The success of the open source
movement hinges on the effect of “many
eyes,” and pair programming takes that
effect to its logical conclusion. 

Don’t Miss a Beat
The scientific management principles

that might be used to optimize a produc-
tion line are not directly applicable to
software development because program-
ming is not a manufacturing task. Each
development task needs to satisfy some
unique feature requirement that must be
woven into the complex fabric of a larg-
er system without disrupting the existing
behavior. Programming is knowledge
work, and software development needs
to be managed with knowledge transfer
in mind.

It has long been established that code
inspections are cost-effective ways to re-
duce defect rates. (See the StickyNotes for
reference.) However, industry adoption of
formal inspections remains low. Pair pro-
gramming provides an alternative way to
implement design and code reviews. The
peer review that takes place during pair
programming prevents poorly designed
code from ever being checked in. Since
the pair talks through several design ap-
proaches, the individual programmer is
less likely to form an emotional attach-
ment to her design, an attachment that
might impede future rework.

Fixing defects found in the QA phase—
or even worse, after deployment—is costly.
Leaving code defects to be picked up
downstream eventually slows down the
software development effort as program-
mers try to build new features on over-
complicated and possibly malfunctioning

the problem while passing the keyboard
back and forth between them, writing
code and tests as they go.

Pair programming is a primary practice
of Extreme Programming (XP), one of the
increasingly popular Agile software devel-
opment methods. (See the StickyNotes for
more on Extreme Programming.) XP is
built on the idea that a focus on quality
will decrease project risk. An XP team will
typically write all production code in pairs.
But you don’t have to implement XP to
benefit from pair programming. Even pro-
grammers on non-XP teams naturally grav-
itate toward working in pairs when faced
with difficult problems. It is possible to
integrate the practice of pair program-
ming within other approaches, Agile or
traditional.

How does a typical pair programming
episode work? The pair sits at a single
workstation. The person at the keyboard
is the driver and directly implements the
solution; her partner is the navigator and
thinks at a strategic level about the next
steps and looks for pitfalls. Pairs switch
fluidly between these roles. Each episode

36 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

The Evidence
You may be convinced by the claims listed in this article, but what empirical data is there to
support them?

1. A 1975 study of “two-person programming teams” reported a 127% gain in productivity
and an error rate that was three orders of magnitude less than normal for the organization
under study. (See the StickyNotes for a link to the study.) 

2. In 1992, Larry Constantine wrote about a team, set up by author P.J. Plauger, which developed
code that was nearly 100% bug free. (See the StickyNotes for a link.) 

3. Dr. Laurie Williams, author of Pair Programming Illuminated, has carried out the main 
research on this topic. Much of her research can be found on the pair programming 
website www.pairprogramming.com. Williams found in her studies that in exchange for a
15% increase in development time, pair programming improved design quality, reduced 
defects by an average of 15%, and was reported as more enjoyable by programmers at 
statistically significant levels. A less well-known finding was that pair programmers generated
more concise output—implementing the same functionality in fewer lines of code.

The conditions under which academic research is carried out are unlikely to be an exact
match for your software development organization, so perhaps the best way to evaluate pair
programming is to try this practice on a small, low-risk project.



code. Pair programming can prevent this
slowdown by keeping code clean and well
organized at all times. 

Company Benefits
A pair programming team creates a

collaborative environment that supports
knowledge sharing. As they pair with one
another, programmers pick up design tips
and new language features. Code inspec-
tions also support knowledge sharing
but, because they typically happen weeks
apart, they have a built-in latency. Dis-
cussing a technique in a formal meeting is
not the same as actually trying it out.
When you are pair programming, you
learn by implementing the new concept
on real code with your pair on hand to
give guidance. Information rapidly dif-
fuses through a pair programming team
as pairs switch and learn from each other.
Ken Auer, one of the early adopters of
XP, calls this knowledge transfer effect
the “pair-vine.” The advantage to the
company is that each member of the team
becomes more versatile, better adapted to
absorb any curve ball thrown.

An additional benefit of pair program-
ming is that there are fewer bottlenecks
caused by holidays or absences because
all code is developed by more than one
programmer. You stop having to plan
around key people on the critical path.
Jim Coplien coined the term “truck num-
ber” for the total number of people on a
project that, if one of them got hit by a
truck, the project would be in trouble.
When you rely too heavily on experts,
you are betting on their continued avail-
ability for work. If these experts get to
know how much you rely on them, they
can become prima donnas—getting picky
about what they will work on and ex-
pecting to be well remunerated in return.
Pair programming spreads expertise
across a team and is one way to reduce
the project’s truck number.

When programmers work alone, it
can be difficult to tell whether they are
actually working on the planned tasks.
Here are some problems with the 
traditional solo-programming model:

■ A solo programmer may get distracted
and start “gold-plating” code—inventing

When programmers write code in
pairs, they keep each other on task and
on process.

Programmer Benefits
Many of the company benefits also

turn out to be programmer benefits.
Working with a partner means there is
always someone there to help you get
unstuck. By staying focused on the task
at hand, you are likely to have working
code at the end of the day, so you can go
home with a warm glow of achievement.
Curbing programmers with bad habits—
those who create work for the rest of the
team by checking in broken code—can
be a relief to those programmers who
were cleaning up in their wake.

Another benefit to programmers is

things that were not asked for because
the inventions are more interesting than
the task at hand. 

■ A lone programmer may get stuck.
The temptation is to surf the Web or stop
working on that task and start another
rather than lose face by asking for help.
This meandering can lead to a state
where several tasks are paused at “90
percent done.”

■ A lazy programmer may skimp on
parts of the development process with her
short cuts going undetected. For example,
she may check in code without unit tests
or include code that does not build, which
may have the effect of slowing down other
programmers on the project.

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 37

No Silver Bullet

After reading this article it might appear that pair programming is going to have a positive
effect on every software development team. But as the mighty Frederick Brooks said, “there
is no silver bullet.” (See the StickyNotes for reference.) Here are some scenarios in which
pair programming is unlikely to deliver the full set of benefits:

Flextime and Telecommuting

For pair programming to get off the ground successfully, you need to have 
programmers available for work in the office for core hours. This may be an issue if your company
explicitly offers employees the option to work from home and programmers on the team do not
wish to give up this benefit. Contractors may be accustomed to putting in their hours as they please.

Distributed Teams

It may not make sense to attempt pair programming if the team is split across different company
sites. To implement distributed pair programming, you may need to invest in more specialized
tools to support remote desktop sharing and voice communication. (For more on this topic,
see the article “Remote Control” in the April 2004 issue of Better Software.) An alternative is
to pair program only within the subteams at each site, then implement code reviews of 
selected work products across boundaries. 

Diverse and Small Teams

A classic situation in which pair programming does not work well is when you have hetero-
geneous system architecture and the team made up of a small number of specialists, each
proficient in only one technology used in the system. An example of this situation is the 
specialized database programmer. It may not make sense for an Oracle programmer to pair
with a Java programmer because the skills required to work proficiently in their respective
technologies are not easy to absorb via pair programming alone, and separate training 
support may be required.

Very small teams (one to three programmers) may find that they do not benefit from formal
pair programming as they already have a high level of interaction and might find working
with the same person too claustrophobic.



that it releases them from being pigeon-
holed, held back from developing their
skills because they are too precious to
release from specialist work that no one
else knows how to do. 

But not all programmers embrace the
idea of working in pairs. Fearing that any
gaps in coding skills will be quickly 
exposed, programmers may be reluctant
to try pair programming. My experience
is that once programmers try pair pro-
gramming this concern quickly evaporates.
Because you are learning from your 
programming partners, gaps in coding
skills are quickly filled. When pairing, a
programmer has to keep on her toes, and
most developers enjoy this challenge.

Implementation
First, you will need to address the

working environment. To pair program,
the two programmers need to be able to
program at one workstation in comfort.
Each workstation must have a large

skills, it is vital that you articulate your
ideas and listen to the pair. There are
various hands-on training courses that
provide an introduction to Agile soft-
ware development techniques, but it is
more common to bring in experienced
people to work with your team as 
player-coaches. 

Programmers who are new to pair
programming may need to be reminded
to take turns at the keyboard. There are
some simple techniques that can be used
to keep pairs on track. I have heard of a
team that uses a chess clock to ensure
that each partner takes an equal turn at
driving and navigating. Another team
uses a kitchen timer to synchronize pair
programming episodes and break time. 

The team needs to come to some
agreement on coding standards. Consistent
naming and layout conventions help
make the code more readable and thus
reduce the time that it takes to get up to
speed working on unfamiliar code. Each

screen area so that both partners can
read the code without having to lean in
close. Dual screens are becoming a popular
way to implement this. Additionally, a
cordless keyboard and mouse may be
easier to pass between partners. 

Many offices are equipped with desks
designed for a single programmer to sit in
an inset. It is impossible to pair program
at these desks without crowding your
partner. Instead, you will need either
straight-sided tables or, even better, convex
curved desks. (See this issue’s Sticky
Notes for an example of an effective setup.)
Some teams install a “bullpen” with a
central island of tables set up for pair
programming. If you do this, remember
that teams still need some space to check
personal email and make telephone calls.

Practice Makes Perfect
It takes time to become skilled at pair

programming. Because the technique
hinges on improving communication

38 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

Serving Up 
Clean Code 

What do you get when you cross Test Driven Development with pair
programming and add a dash of competitive fun? A technique called
Ping-Pong programming—something that software developer and
ThoughtWorks consultant Dave Hoover finds to be helpful for structur-

ing the pair programming effort.

“A lot of times with pair pro-
gramming,” says Hoover, “you

get situations with long sessions of one person driving the program-
ming and one person watching and helping. Sometimes that’s appro-
priate. But it can also get boring.” Ping-Pong programming is a way
to keep the keyboard moving back and forth between the two. As
Hoover has experienced, this not only facilitates the flow but also
tends to draw reluctant collaborators into the process by introducing
a game-like element to the mix.

Here’s how it works. Test Driven Development is based on small
steps—devising a test the intended code should pass, writing the
code to pass the test, and so on. For example, picture a pair of devel-
opers—Fred and Jo. Fred writes a test and then passes the keyboard
to Jo, who then writes the code to pass the test. Jo writes the next

test and passes the keyboard back to Fred, who writes the code to
pass that test. Back and forth the keyboard slides as Fred and Jo build
the functionality, refactoring throughout. Hence the term “Ping-Pong.”

But, as Hoover explains, it’s not just about employing a more interest-
ing, interactive way to pair program. “The person writing the code
tries to pass each test with as little code as possible. This leads the
person writing the test to make each test more rigorous and more dif-
ficult to pass.” The result is simple, testable code—and that makes
for good design.

There are other benefits to Ping-Pong programming, too. Hoover finds
the active interaction, more so than simple observation, is a great
way to pick up on the design experience of the person with whom he
pairs. He has also noticed that the element of fun tends to keep peo-
ple more engaged.

So what do managers need to know about how and when this form of
pair programming works best? Hoover suggests explaining the princi-
ple to your developers and encouraging them to try it for awhile. “It’s
a good tool if your developers are in a rut or if you’re trying to get pair
programming going and want to give them a model to follow rather
than just saying ‘do it’.”

It may not be long before your developers are volleying for cleaner
and better code.—PY

Dave Hoover has joined the ranks of our StickyMinds.com weekly columnists. Catch the first of his columns in June; log on
to www.StickyMinds.com.

PERSPECTIVE



workstation should have the same set of
development tools so that a pair can use
any free workstation.

As with any change, it is important
to communicate to the team the reasons
for adopting pair programming and
agree how the approach is to be evaluat-
ed. Remember, it is perfectly natural to
resist change. You may need to start
gradually with programmers pairing for
only part of the day. Programmers may
be concerned that sharing knowledge
will lead to loss of status, so you should
be clear that performance reviews will
not be based on completion of individ-
ual tasks alone but also will take into
account contributions to team goals.

Selecting Partners
If you presently work to project plans

that allocate tasks on an individual basis,
then you may be intrigued to know how
pair programming will affect task allocation
and resourcing in your planning tool.
Task allocation may remain unchanged
on the assumption that each programmer
pairs on her own tasks for part of the
time and for the remaining time makes
herself available to work with other 
programmers. Remember that task 
durations will be slightly longer (say 20
percent, based on the empirical studies
and taking into consideration that the
team is adopting a new development
technique). You should make up time later
because there will be less time spent fixing
bugs found by the QA effort.

At the start, the team lead may prefer
to assign partners to ensure each pair
has the right experience for the task.
Many Agile teams allocate pairs at a
stand-up meeting at the start of each
day. I worked on a team where we used
a simple pair rotation rule: Each day the
pair would split, leaving one person on
the task for continuity and releasing the
other to pair on another task. You may
anticipate that when inexperienced pro-
grammers pair with expert programmers
then the experts will be frustrated by
having to slow down for their partner. It
turns out that novices can complement
experts and quickly learn new skills. 
Experts benefit from broadening their
skills and picking up tips on newer 
libraries, etc. Be aware that pair 

try the team’s work practices. This
should help weed out programmers with
poor communications skills and those
who prefer to work solo.

To be assured that the practice is
delivering results, keep tabs on the 
reported defect rate—you should start
to get fewer critical bugs reported. After
the first few weeks, hold a retrospective
with the team to explore how the 
technique is working. {end}

Rachel Davies is an independent Agile coach
in the UK, a frequent presenter at industry
conferences, and a director of the Agile Al-
liance. Contact her at Rachel@agilexp.com.

programming should not be used as a
substitute for training. To avoid pair
cliques forming and to ensure that each
team member gets the opportunity to pair
with all the others, it may be wise in the first
few weeks to track pairing combinations.

Going Solo
There are times when solo programming

is appropriate. When developing a tempo-
rary solution or prototype, code quality is
not so important, so splitting a pair makes
sense when exploring alternative technical
solutions or bug-busting where different
causes need to be eliminated. There will be
days when you have an odd number of
programmers. Most programmers find it a
little claustrophobic to be locked into pair
programming all the time and appreciate
some time to work on their own now and
then. Just make sure any production code
written without a pair is peer reviewed 
before being checked in. 

When recruiting new team members,
consider including a pair programming
session as part of your interview process.
This will allow your existing programmers
a good opportunity to assess the candidate
and will give the candidate a chance to

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 39

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware

■ More on Extreme Programming
■ More on Inspections
■ Link to two-person programming

team study
■ Link to Constantine paper
■ Suggested workstation layout

"I HAVE NEVER RECEIVED AN ISSUE … 
WHERE I DID NOT FIND AT LEAST TWO, AND
OFTEN AS MANY AS FIVE OR SIX, ARTICLES
THAT I STRONGLY ENCOURAGED SOMEONE
ELSE TO READ. AND I SAVE EVERY ISSUE 
FOR REFERENCE.
—respondent to our Subscriber Survey

WHAT ABOUT YOU? Tell us what you like—and don't like—about this or any
other issue of Better Software. Email your comments to editors@bettersoftware.com
or fax them to us at 904-278-4380.

Comments may be edited for space and readability and published in a future issue of 
Better Software.


