
Seven Deadly Sins of Software Reviews
Karl Wiegers
Process Impact
716-377-5110

www.processimpact.com

A quarter-century ago, Michael Fagan of IBM developed the software inspection technique, a method for
finding defects through manual examination of software work products by a group of the author's peers.
Many organizations have achieved dramatic results from inspections, including IBM, Raytheon,
Motorola, Hewlett Packard, and Bull HN. However, other organizations have had difficulty getting any
kind of software review process going. Considering that effective technical reviews are one of the most
powerful software quality practices available, all software groups should become skilled in their
application.

This article describes seven common problems that can undermine the effectiveness of software reviews
of any type (inspections being a specific type of formal review). I describe several symptoms of each
problem, and I suggest several possible solutions that can prevent, or correct, the problem. By laying the
foundation for effective software technical reviews and avoiding these common pitfalls, you too can reap
the benefits of this valuable quality practice.

Participants Don't Understand the Review Process
Symptoms: Software engineers don't instinctively know how to conduct and contribute to software
reviews. Review participants may have different understandings of their roles and responsibilities, and of
the activities conducted during a review. Team members may not know which of their software work
products should be reviewed, when to review them, and what review approach is most appropriate in
each situation.

Team members may not understand the various types of reviews that can be performed. The terms
"review", "inspection", and "walkthrough" are often used interchangeably, although they are not the same
beast. A lack of common understanding about review practices can lead to inconsistencies in review
objectives, review team size and composition, forms used, recordkeeping, and meeting approaches. Too
much material may be scheduled for a single review, because participants are not aware of realistic
review rates. It may not be clear who is running a review meeting, and meetings may lose their focus,
drifting from finding defects to solving problems or challenging the author's programming style. Results
from these points of confusion are typically missed defects, frustration, and an unwillingness to
participate in future reviews.

Solutions: Training is the best way to ensure that your team members share a common understanding of
the review process. For most teams, four to eight hours of training will be sufficient, though you wish to
obtain additional specialized training for those who will play the role of moderator in formal inspections.
Training can be an excellent team-building activity, as all members of the group hear the same story on
some technical topic and begin with a shared understanding and vocabulary.

Your group should also adopt some written procedures for how reviews are to be conducted. These

A day you’ve anticipated— and perhaps feared— has finally arrived: You ...robably received little or no training or mentoring in the arts of proj

file:///C|/Send/Wiegers - Seven Deadly Sins of Software Reviews - Download Article.htm (1 of 5) [2/8/2001 2:45:32 PM]



procedures will help review participants understand their roles and activities, so they can consistently
practice effective and efficient reviews. Your peer review process should include procedures for both
formal and informal reviews. Not all work products require formal inspection (though inspection is
indisputably the most effective review method), so a palette of procedural options will let team members
choose the most appropriate tool for each situation. Adopt standard forms for recording issues found
during review meetings, and for recording summaries of the formal reviews that were conducted. Good
resources for guidance on review procedures and forms are Software Inspection Process by Robert
Ebenau and Susan Strauss (McGraw-Hill, 1994) and Handbook of Walkthroughs, Inspections, and
Technical Reviews, 3rd Edition by Daniel Freedman and Gerald Weinberg (Dorset House, 1990).

Reviewers Critique the Producer, Not the Product
Symptoms: Initial attempts to hold reviews sometimes lead to personal assaults on the skills and style of
the author. A confrontational style of raising issues exacerbates the problem. Not surprisingly, this makes
the author feel beaten down, defensive, and resistant to legitimate suggestions that are raised or defects
that are found. When authors feel personally attacked by other review participants, they will be reluctant
to submit their future products for review. They may also look forward to reviewing the work of their
antagonists as an opportunity for revenge.

Solutions: When helping your team begin reviews, emphasize that the correct battle lines pit the author
and his peers against the defects in the work product. A review is not an opportunity for a reviewer to
show how much smarter he is than the author, but rather a way to use the collective wisdom, insights,
and experience of a group of peers to improve the quality of the group's products. Try directing your
comments and criticisms to the product itself, rather than pointing out places the author made an error.
Practice using the passive voice: "I don't see where these variables were initialized, "not "You forgot to
initialize these variables"

In an inspection, the roles of the participants are well defined. One person-not the author-is the moderator
and leads the inspection meeting. In the review courses I teach, students often ask why the author does
not lead a formal inspection meeting. One reason is to remove the confrontational nature of describing a
defect directly to the person who is responsible for the defective work product. I have found the best
results come when both reviewers and author check their egos (and weapons!) at the door and focus on
improving the quality of a work product.

Reviews Are Not Planned
Symptoms: On many projects, reviews do not appear in the project's work breakdown structure or
schedule. If they do appear in the project plan, they may be shown as milestones, rather than as tasks.
Because milestones take zero time by definition, the non-zero time that reviews actually consume may
make the project appear to slip its schedule because of reviews. Another consequence of failing to plan
the reviews is that potential review participants do not have time to take part when one of their peers asks
them to join in.

Solutions: A major contributor to schedule overruns is inadequate planning of the tasks that must be
performed. Not thinking of these tasks doesn't mean that you won't perform them; it simply means that

A day you’ve anticipated— and perhaps feared— has finally arrived: You ...robably received little or no training or mentoring in the arts of proj

file:///C|/Send/Wiegers - Seven Deadly Sins of Software Reviews - Download Article.htm (2 of 5) [2/8/2001 2:45:32 PM]



when you do perform them, the project will wind up taking longer than you expected. The benefits of
well-executed software technical reviews are so great that project plans should explicitly show that key
work products will be reviewed at planned checkpoints.

When planning a review, estimate the time required for individual preparation, the review meeting (if
one is held), and likely rework. (The unceasing optimism of software developers often leads us to forget
about the rework that follows most quality activities.) The only way to create realistic estimates of the
time needed is to keep records from your reviews of different work products. For example, you may find
that your last 20 code reviews required an average of 6 labor-hours of individual preparation time, 8
labor-hours of meeting time, and 3 labor-hours of rework. Without collecting such data, your estimates
will forever remain guesses, and you will have no reason to believe that you can realistically estimate the
review effort on your future projects.

Review Meetings Drift Into Problem-Solving
Symptoms: Software developers are creative problem solvers by nature. We enjoy nothing more than
sinking our cerebrums into sticky technical challenges, exploring elegant solutions to thorny problems.
Unfortunately, this is not the behavior we want during a technical review. Reviews should focus on
finding defects, but too often an interesting defect triggers a spirited discussion about how it ought to be
fixed.

When a review meeting segues into a problem-solving session, the progress of examining the product
slows to a halt. Participants who aren't equally fascinated by the problem at hand may become bored and
tune out. Debates ensue as to whether a proposed bug really is a problem, or whether an objection to the
author's coding style indicates brain damage on the part of the reviewer. Then, when the reviewers realize
the meeting time is almost up, they hastily regroup, flip through the remaining pages quickly, and declare
the review a success. In reality, the material that is glossed over likely contains some major problems that
will come back to haunt the development team in the future.

Solutions: The kind of reviews I'm discussing in this article have one primary purpose: to find defects in
a software work product. Solving problems is usually a distraction that siphons valuable time away from
the focus on error detection. One reason inspections are more effective than less formal reviews is that
they have a moderator who controls the meeting, including detecting when problem-solving is taking
place and bringing the discussion back on track. Certain types of reviews, such as walkthroughs, may be
intended for brainstorming, exploring design alternatives, and solving problems. This is fine, but don't
confuse a walkthrough with a defect-focused review such as an inspection.

My rule of thumb is that if a problem can be solved with no more than 1 minute of discussion, go for it.
You have the right people in the room and they're focused on the issue. But if it looks like the discussion
will take longer, remind the recorder to note the item and ask the author to pursue solutions off-line, after
the meeting.

Rarely, you may encounter a show-stopper defect, one that puts the whole premise of the product being
reviewed into question. Until that issue is resolved, there may be no point in completing the review. In
such a case, you may choose to switch the meeting into a problem-solving mode, but then don't pretend
that you completed the review as intended.

A day you’ve anticipated— and perhaps feared— has finally arrived: You ...robably received little or no training or mentoring in the arts of proj

file:///C|/Send/Wiegers - Seven Deadly Sins of Software Reviews - Download Article.htm (3 of 5) [2/8/2001 2:45:32 PM]



Reviewers Are Not Prepared
Symptoms: You come into work at 7:45AM and find a stack of paper on your chair with a note attached:
"We're reviewing this code at 8:00AM in conference room B." There's no way you can properly examine
the work product and associated materials in 15 minutes. If attendees at a review meeting are seeing the
product for the first time, they may not understand the intent of the product or its assumptions,
background, and context, let alone be able to spot subtle errors. Other symptoms of inadequate
preparation are that the work product copies brought to the meeting aren't marked up with questions and
comments, and some reviewers don't actively contribute to the discussion.

Solutions: Since about 75% of the defects found during inspections are located during individual
preparation, the review's effectiveness is badly hampered by inadequate preparation prior to the meeting.
This is why the moderator in an inspection begins the meeting by collecting the preparation times from
all participants. If the moderator judges the preparation time to be inadequate (say, less than half the
planned meeting time), she should reschedule the meeting. Make sure the reviewers receive the materials
to be reviewed at least two or three days prior to the scheduled review meeting.

When reviews come along, most people don't want to interrupt their own pressing work to carefully
study someone else's product. Try to internalize the fact that the time you spend reviewing a co-worker's
product will be repaid by the help you'll get from your friends when your own work comes up for review.
Use the average collected preparation times to help reviewers plan how much time to allocate to this
important stage of the review process.

The Wrong People Participate
Symptoms: If the participants in a review do not have appropriate skills and knowledge to find defects,
their review contributions are minimal. Participants who are there only to learn may benefit, but they
aren't likely to improve the quality of the product. Management participation in reviews may (but doesn't
always) also lead to poor review results. If the team feels the manager is counting the bugs found to hold
against the author at performance appraisal time, they may hesitate to raise issues during the discussion
that might make their colleague look bad.

Large review teams can also be counterproductive. I once participated in a review (ironically, of a draft
peer review process) that involved 14 reviewers. A committee of 14 can't agree to leave a burning room,
let alone agree on what's an error and how a sentence should be phrased. Large review teams can
generate multiple side conversations that do not contribute to the review objectives and slow the pace of
progress.

Solutions: Review teams having 3 to 7 participants are most effective. The reviewers should include the
work product's author, the author of any predecessor or specification document, and anyone who will be
a victim of the product. For example, a design review should include the designer, the author of the
requirements specification, the programmer, and whoever is responsible for integration testing. On small
projects, one person may play all these roles, so ask some of your peers to represent the other
perspectives. It's okay to include some participants who are there primarily to learn (an important side
benefit of software reviews), but focus on people who will spot bugs.

A day you’ve anticipated— and perhaps feared— has finally arrived: You ...robably received little or no training or mentoring in the arts of proj

file:///C|/Send/Wiegers - Seven Deadly Sins of Software Reviews - Download Article.htm (4 of 5) [2/8/2001 2:45:32 PM]



I'm not dogmatic on the issue of management participation. As a group leader, I also wrote software, so I
needed to have it reviewed (thereby setting an example for the rest of the team), and I was able to
contribute usefully to reviews of other team members' products. This is very much a cultural issue,
dependent on the mutual respect and attitudes of the team members. A good rule of thumb is that only a
first-line manager is permitted in a review, and only if it is acceptable to the author. Managers can never
join in the review "just to see what's going on."

Reviewers Focus on Style, Not Substance
Symptoms: Whenever I see a defect list containing mostly style issues, I'm nervous that substantive errors
have been overlooked. When review meetings turn into debates on style and the participants get heated
up over indentation, brace positioning, variable scoping, and commenting, they aren't spending energy on
finding logic errors and missing functionality.

Solutions: Style can be a defect, if excessive complexity, obscure variable names, and coding tricks make
it hard to understand and maintain the code. This is obviously a value judgment: an expert programmer
can understand complex and terse programs more readily than someone who has less experience. Control
the style distraction by adopting standard templates for project documents and coding standards or
guidelines. These will help make the evaluation of style conformance more objective. Use code
reformatting tools to enforce the standards, so people can program the way they like, then convert the
result to the established group conventions.

Be flexible and realistic about style. It's fine to share your ideas and experiences on programming style
during a review, but don't get hung up on minor issues and don't impose your will on others.
Programming styles haven't come to Earth from a font of Universal Truth, so respect individual
differences when it is a matter of preference, rather than clarity.

Any software engineering practice can be performed badly, thereby failing to yield the desired benefits.
Technical reviews are no different. Many organizations have enjoyed excellent results from their
inspection programs, with returns on investment of up to 10 to 1. Others, though, perceive reviews to be
frustrating wastes of time, usually because of these seven deadly sins, not because review are inherently
time-wasters. By staying alert to these common problems of reviews and applying the solutions I have
suggested here, you can help make your technical review activities be a stellar contributor to your
software quality program.

(This article was originally published in Software Development, March 1997. It is reprinted here with permission from
Software Development magazine.)

A day you’ve anticipated— and perhaps feared— has finally arrived: You ...robably received little or no training or mentoring in the arts of proj

file:///C|/Send/Wiegers - Seven Deadly Sins of Software Reviews - Download Article.htm (5 of 5) [2/8/2001 2:45:32 PM]


	Local Disk
	A day you’ve anticipated— and perhaps feared— has finally arrived: You have been “promoted” from the engineering staff to a software project leader or team leader position. You have probably received little or no training or mentoring in the arts of proj


