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SPC and Project Management
u Critical Path
u Risk Analysis (Monte Carlo)
u Where is common-cause variation?



Process and Task

u Process: series of operations performed
to create a product

u Project Task: a unit of work in a project
that depends on other tasks

u Cost, schedule, and quality: the three
horns of the project manager’s dilemma

u Management by task: controlling the
project on a task-by-task basis



The Critical Path



The Leveled Critical Path



Variation

u Common causes of variation
– Latent rather than explicit causes

– Reduce variation by improving capability

u Special causes of variation
– Identifiable and controllable
– RISK

– Reduce variation by avoiding or mitigating
risk



Critical Chain Project
Management

u Leveled resources and managing
variation, not risk

u Remove unnecessary fudge time
u Add variation buffers
u No multitasking

u Late start scheduling
u Roadrunner behavior



The Critical Chain



Constructing the Chain
u Identify and estimate effort for tasks and

dependencies and a fixed-date project
completion milestone.

u Assign resources based on skills.
u Level resources to availability.
u Revise project to fit needs.
u Compute critical chain as path with

longest duration through the project.



Buffer the Tasks

u Project Buffer: Create a buffer for the
project.

u Feeding Buffers: Create a buffer for
each task that feeds into the critical
chain.

u Re-level the resources to account for
buffering changes to the plan.



The Buffered Project



Calculating Buffers

u Rule-of-thumb method:
one-half the length of the chain the
buffer terminates

u Sum of Squares method:
sum the squares of the task lengths,
then take the square root



Sum of Squares Example
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SQRT ( 8 * 8 + 8 * 8 + 2 * 2 ) = 11.5



Tracking the Project



Multitasking

u Decreases focus
u Decreases productivity
u Increases variation
u Increases impact of special causes

through additional dependency



Road Running

u Late start puts emphasis on priorities
rather than ever-changing start date

u Road running moves responsibility for
managing time to the resource instead
of the project manager



Improving Capability

u Process capability is the ability of the
process to meet a target with a certain
level of variation

u You can reduce common cause
variation by improving capability, not by
managing risk



Risk as Special Cause

u Risk is the probability of a significant
negative impact on the project.

u Special causes contribute the risk to the
project.



Managing Risk

u You manage special causes by
– Avoiding them

– Mitigating their effects

u You can use SPC tools to identify
special causes.

u You should identify risk long before the
task is ready to go.



Cause and Effect Diagram
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Pareto Diagram
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Scatter Plot
Experience and Effort Variance
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Run Chart
Cost Performance Index
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Control Chart
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Cusum Chart
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Questions?
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Buffers and Risk

Critical Chain Project Management

Robert J. Muller

Cytokinetics, Inc.

Abstract

Critical Chain Project Management uses statistical
process control to more clearly define the relationships
between tasks and the project end date by using buffers
to represent process variation in project tasks. This
paper shows how integrating effective statistical process
control with the use of function points and standard
processes can dramatically improve your ability to plan
and control projects. Using examples based on real-life
experience, it provides a simple method for controlling
variation and risk.

SPC and Project Planning

If you’ve managed many projects, you’re probably well
aware of the problems associated with schedule and
cost risk. What you probably don’t realize is that you’re
mostly not dealing with risk at all, but variation.
Manufacturing process professionals have the jump on
project managers here because they’ve been dealing
with process variation since manufacturing began five
thousand years ago.

For whatever reason, project managers are held to a
standard few are likely to reach—the perfect project,
under budget and on time. Project management theory
and practice [PMBOK] assumes a deterministic
approach to management that doesn’t reflect the
probabilistic reality we all face dealing with everyday
events. A critical path schedule is a plan that takes into
account the work to be done, the dependencies of one
task on another, and the carefully estimated time and
money it will take to do each task. You can use “risk
analysis” in the form of Monte Carlo simulation to figure
out how likely your estimates are. Once you know
where your schedule and budget risks lie, you can
increase the estimated time to eliminate the risk of
failure. Sometimes this approach works, and sometimes

it doesn’t. In software project management, mostly it
doesn’t, at least in my experience.

In the last few years, a new way of looking at project
management has been introduced—critical chain project
management.

Process Variation in Project Tasks

A process is a series of operations you perform in the
creation of a product. Statistical process control (SPC)
is the application of mathematical statistics to
controlling variation in processes in pursuit of
continuous improvement [Bissell]. Processes have
inputs and outputs, and the variation in the inputs and
the process affects the quality of the outputs.

A project task is a special kind of process that takes
place in the context of a project. The project manager
breaks the overall project down into a series of tasks,
units of work, connected by dependencies based on
inputs and outputs.

Project managers must control three aspects of the
project: cost, schedule, and quality.

A common way of controlling these variables is to
manage them at the task level. That is, project managers
look at how much a task costs, how long it takes, and
how much value the outputs contribute to the project in
order to control the ultimate result of the project.

Comparing this to manufacturing, a manufacturing
supervisor would control his or her processes by
controlling each piece of work. But that’s not really
possible or useful, as SPC points out. Individual pieces
of work, like almost any system, have an inherent
variation based on the capability of the process,
ultimately due to entropy (the second law of
thermodynamics). SPC defines process control as
controlling variation and improving capability.

Moving from manufacturing back to the project, how
does the concept of statistical process control apply to
tasks? Tasks, like any dynamic system, have an inherent
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variation with respect to their control variables of time,
money, and quality. You cannot control this variation by
sitting on each task individually because of the nature of
variation: it varies. Trying to control each element in
manufacturing leads very quickly to over-control, which
in turn leads to low process capability, longer and
costlier projects, and lower quality. In the case of
projects, this translates to tasks that take too long, cost
too much, and yield mediocre quality at best. Instead, if
you use some basic tools from SPC, you can control
your project at a higher level. Before getting into details,
however, you need to understand a couple of different
kinds of variation.

Special Causes versus Common Causes of

Variation

Shewhart, Deming, Juran, and all the other gurus of
SPC distinguish between two basic sources of variation
in systems: special causes and common causes.

Special causes are factors that you can identify as direct
causal agents of variation and that you can control by
correcting or eliminating the cause. In manufacturing,
special causes take the form of broken machines,
untrained operators, and poor quality lots of input
materials. In software projects, special causes are things
like tool defects, immature technologies, lack of
effective requirements elicitation, and so on. Special
causes are the risk events that software project
managers assess and mitigate or eliminate through risk
management.

Common causes are latent or uncontrollable factors that
perturb the system; thus, common causes are not
controllable through correction or elimination of the
cause. You either don’t know the cause, or you can’t
control it. Common causes are relative to the state of
the art of the process—the technology, the level of
automation, or whatever affects process capability.
Within the current capability, these common causes
produce the level of variation you must accept. To
improve, you must improve the capability of the system.
In software projects, the technology level and choices
you make, and the architectures within which you
operate, impose direct limits on cost, time, and quality
of the project tasks. Common causes are the fudge
factors, project budget set-asides and reserves, and
“good-enough” quality criteria that software project
managers use even though they often feel badly about
doing so.

Process Variation, Buffers, and

Capability

Critical chain project management [Goldratt, Leach]
formalizes the SPC approach to controlling schedule
and cost (but not quality) through the adoption of
several control techniques:

• Calculating a critical chain (not a critical path)
based on leveled resources (not just task
dependencies) and managing variation relative
to that chain

• Removing unnecessary “fudge” time and effort
from task estimates

• Adding project, resource, and feeding buffers
to projects to control common cause variation
in schedule and budget

• Eliminating multitasking in projects

• Using late start task scheduling and
“Roadrunner” responsibility management

Resource Leveling, Buffers, and the Critical Chain

After constructing the logical network of tasks and
dependencies, critical path project management is done:
you’ve identified the critical path through the tasks.
Unfortunately for project managers, knowing the critical
path doesn’t help very much, for a simple reason: it
doesn’t take resource availability and skill into account.

Consider these tasks, typical of a software project:

Subsystems A and B are Enterprise Javabean (EJB)
systems that access a relational database. Subsystem C
is an application that provides a user interface for A and
B and that is developed in parallel with A and B. The
system test integrates these systems and tests them
against the requirements. The figure shows the critical
path after initially estimating duration: Subsystem A,
Subsystem C, and System Test. The conclusion: focus
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your efforts on subsystem A and the system test and
your project will complete on time.

Unfortunately, subsystems A and B require a special
developer, one who understands EJBs and database
programming. Subsystem C requires a Java user
interface programmer. You have one EJB engineer and
one new hire who wants to learn Java GUI
programming, and the EJB engineer spends half of his
time training other engineers in the company in the new
technology. Also, marketing insists on a product launch
date of December 15 to coincide with a major industry
trade show at the North Pole.

If you managed your schedule according to the critical
path in this project, you’re doomed from the start. Here
is the project with “realistic” estimates and resource
leveling (adjusting task starts based on the actual
availability of resources given conflicting tasks):

As you can see, this project plan bears little relation to
the standard critical path project plan. A and B have
much longer durations because their resource is only
available 3 hours a day. B must happen after A rather
than in parallel because there is only one EJB
programmer. The duration of C is longer because the
novice programmer will need twice as much time to
figure things out. The critical path is now B and System
Test, not A and System Test, and notice there is no
critical path at all for the month of December. This is
where critical chain planning starts.

First, reduce the estimates for the tasks back to the
industrial effort estimates, eliminating the fudge factors
and the allowance for training. For example, the safe
estimate of 20 days of full-time work for Subsystem A
given the EJB programmer's schedule should really be
the median estimate of 12 days. Level the tasks,
delaying the start of subsystem B until A is done. Also,
extend the duration of Subsystems A and B to
accommodate the half-time availability of the EJB
engineer, as the company can’t afford to dispense with
her training activities. Finally, start the tasks at the last
possible start date that will allow finishing by the desired
date.

The result is this schedule:

Now, mark the tasks along the path through the network
that has the longest duration. That is the critical chain,
as the chart above shows: Subsystems A and B and
System Test.

Next, create a project buffer for the critical chain and a
feeding buffer for the connection of non-chain tasks
into the chain:

The project now starts at the beginning of November.
The Project Complete milestone is on 11/30, and there
is a project buffer from 11/30 to 12/15 of 11.5 days.

Note: Cost budgeting works just like schedule
budgeting: add buffers (reserves) to the critical chain
based on cost as opposed to duration and to tasks
feeding into the cost critical chain after allocating
resources. Similarly, manage value by measuring output
and quality and buffering the critical chain that adds the
most value to the project.

Constructing Buffers Statistically

The buffers you add to the project let you manage the
common causes of variation in the tasks on the critical
chain. Therefore, the best way of allocating time to
these buffers is to base the size of the buffer on the
variance of your processes.

The rule of thumb is to make each buffer one-half the
length of the chain of tasks it terminates. For example, if
your critical chain is 60 days, you should construct a
30-day project buffer.



Buffers and Risk: Critical Chain Project Management December 6, 2000

4

A slightly more sophisticated approach requires some
additional calculation.  First, you need to estimate two
durations for each task: the low-risk duration and the
50% duration. The low risk duration is the one you
would commonly use in a regular critical path project,
and is usually something like 90% probable. The 50%
duration is the duration that has 50% chance of
occurring. Take the difference between the two
durations. This value is proportional to the standard
deviation of the task. Assuming that the proportion is
the same for all tasks, you then take the square root of
the sum of squares of the values and use that for your
buffer size.

In our continuing example, Subsystems A and B and
system test are the three critical-chain tasks. This table
shows the 90% and 50% estimates in days for each
task:

A B Test

50 90 50 90 50 90

12 20 4 12 1 3

Note that these estimates take into account the
resources assigned to the tasks; it is essential to work
with estimates that reflect the availability and skill of the
resources. (We'll ignore C and our poor Java novice for
now, but we'll return to her later.)

The differences are 8, 8, and 2, respectively. The square
root of the sum of squares is 11.5:

SQRT ( 8 * 8 + 8 * 8 + 2 * 2 )

So the project buffer is 11.5 days. Using the rule of
thumb, the buffer would be one-half of the 50%
estimates: (12+4+1)/2 = 8.5 days.

Obviously, the better your estimates and their
probabilities, the better your buffer sizing will be.
Improving your estimation capabilities will improve your
ability to reduce task and buffer estimates and deliver.
As you gather data, you can develop estimating
equations that will give you real probabilities based on
frequency analysis and/or Bayesian posteriors that you
can use to provide accurate medium- and high-risk
estimates.

Again, these buffers represent the common cause
variation in your project. They do not represent special
causes; that requires risk analysis and management.

When you track the project, as you increase the actual
duration of tasks and delay tasks past their late start
dates, the chains push into the buffers.

When a buffer is one-third consumed, you need to start
assessing risks for the task; when a buffer is two-thirds
consumed, you should start implementing your risk
mitigation plan. The special causes are winning at this
point.

Multitasking, Late Starts, and Road-running

Multitasking in the project context occurs when a
resource works on two tasks at once, switching
between tasks as needed. Most project managers faced
with resource limitations level their projects assuming
people will be working on more than one thing at a time.

Critical chain project management prohibits multitasking
for two reasons. First, multitasking leads to a lack of
focus and reduces productivity. Think of the overhead
of multitasking programs and their context switching.
Projects are real-time environments that simply cannot
afford context-switching overheads. More to the point,
overlapping tasks increases the variation in the tasks,
often leading to much longer task times and certainly
leading to much longer projects than might otherwise be
the case.

I add a third reason for not multitasking: good project
design. Multitasking renders two tasks interdependent,
coupling them based on the fact that one person is
working on them simultaneously. Problems in one task
then affect the other through the medium of the assigned
resource. Good design uncouples the tasks by
eliminating such multitasking. This makes risk analysis
much easier.

Critical chain project management also schedules the
start of a task as late as possible. Critical path project
management usually schedules tasks to start as early as
possible on the assumption that earlier is better than
later because you get done earlier. What happens is just
the reverse: because early-start tasks have slack at the
end, the Peter Principle kicks in to allow the resource to
think that the duration is not critical and therefore they
can go easy until the task runs up against the critical
path.

Instead, critical chain project management removes any
notion of post-task slack time, buffers the tasks for
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control, and emphasizes personal responsibility for
resource time management: road-running. The
Roadrunner mentality looks at the set of assigned tasks
and immediately starts charging ahead on the most
critical. In projects I’ve managed, many tasks get done
long before they were scheduled to start. That leaves
time to manage the buffer-eating tasks, often leaving key
resources free that you can move onto a task without
fear of incurring Brooks’ Law and making the late task
later.

Improving Process Capability

Before moving on to the specifics of constructing a
critical chain project, it is worth spending a little time on
continuous improvement.

As with any application of SPC, the process assumes
that you first eliminate special causes, then manage your
process to get it under statistical control. This strategy
has two implications for software process capability.

First, you must do risk analysis, or you won’t be aware
of your special causes and your buffers won’t be
effective.

Second, once you’ve eliminated the special causes,
you’re now left with your common causes. This may
seem obvious, but there’s a problem. It may be that
your process capability is simply insufficient to get you
where you need to go. Project management can manage
variation, but it can’t reduce it beyond the common-
cause variability. If this isn’t good enough for your
projects, you have a capability problem. Your process
can’t deliver the goods with the variation you need to
succeed.

For example, if you work through the estimates and
construct your buffers, and your start date comes out
as sometime last year or your budget put a man on the
moon in 1968, you are facing two choices: deliver a lot
less value, or improve your capability to reduce the
estimated effort or cost. Whether you use the Capability
Maturity Model, Weinberg’s Laws, or any other method
[Muller], improving capability is required to reduce
common cause variation. There are some specific
techniques that will improve common-cause variation
discussed in the remainder of the paper, along with the
risk management techniques necessary to dealing with
special-cause variation.

Processes and Projects

Improving process capability has many different
aspects [Muller]. Building a critical chain plan benefits

the most from those improvement techniques relating to
process formalization and repeatability. Software
technologists will immediately recognize this as reuse,
the ability to use components again to reduce cost and
improve quality.

This section gives you some basic tools that you can
use to produce effective Critical Chain project plans:
reusable processes, work breakdown structures, and
project boundary determination.

Reusing Standard Processes: the

WBS

Processes are not in themselves reusable, because they
by definition happen only once. You can, however,
base a task or a set of tasks on a process model, a
template that identifies and standardizes tasks and
workflow dependencies. The process model is what
people usually refer to as a process document or a
standard operating procedure (SOP). These models are
reusable in the same sense as software components and
provide much the same benefits: lower costs and better
quality. Having written processes is one of the key steps
in achieving the ability to repeat your performance in a
project.

It is possible to use process models to better structure
your projects for critical chain planning [Muller]. By
reusing standardized tasks and workflows, you enable
the better collection of cost, effort, and quality
statistics. You can then use these statistics to better
estimate future projects.

As well, you can use process models to build your
project plan through the Work Breakdown Structure
(WBS). A WBS is a list of tasks, often relating the tasks
to a cost accounting or schedule management system.
You need a WBS of some kind to begin the critical
chain planning process; process models give you a clear
and easy way to produce the WBS.

First, you need to determine what kind of process life
cycle you want to use: waterfall, modified waterfall,
spiral, iterative, hacking, or whatever suits your
organization and production needs.

Next, you need to develop standard process models for
the steps of the life cycle, specifying the processes with
their inputs and outputs and the workflow dependencies
between those processes.

Now you're ready to build a project plan. Each project
has a set of deliverables. A deliverable is a complete,
working system that the project delivers to its
stakeholders. You can't do better than to plan your
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project around the deliverables, since that's what the
project is all about.

For each deliverable, you figure out what process
models to apply to build the product. Given the process
models linked together, you can generate the tasks
required to produce the deliverable along with the
workflow dependencies between them. You can then
add in special tasks required for specific deliverables,
adapting the process model to the specific product.
This is the point at which you do your risk analysis, as
the next section discusses, and add in tasks that mitigate
risk, such as inspections, tests, and reviews.

Knowing Where to Stop Defining

Tasks

Critical chain project management works best when you
have a level of detail that exhibits reasonable statistical
properties. Unless you're sending people to Mars, your
project shouldn't have more than a few dozen activities.
The WBS provides a starting point, but if you want to
manage effectively, you have to have tasks that
represent a reasonable variation.

You should treat meetings and other very short tasks as
zero-effort milestones, excluding them from task sizing
and variance calculations. If the meeting represents a
real milestone, include it in your project management
software, but don't include it in buffer calculations. That
leaves the tasks with a relatively large amount of time.

To size tasks in a project, you need two numbers: the
average accuracy of effort estimation and the average
estimated effort per task for the project. You should
collect statistics on your planned versus actual effort to
obtain the first number. A rule-of-thumb estimate is
±10%. Some do better, some do worse; the worst
situation is not knowing the real number when you've
been doing it for years because you haven't kept track
of how well you've done.

The total effort estimate for the project is the sum of all
the effort estimates for the tasks in your WBS. You can
then divide the total effort by the number of tasks in
your WBS to get the average effort per task. Apply
your range estimate to this number by subtracting; if the
result is less than zero, your average task size is too
small. You can compute the desired number of tasks by
reversing the equation, dividing your target average
effort by the total effort estimate. Combine smaller tasks
into larger ones until you are at or below this target
number of tasks.

Alternatively, you can break up your project into
multiple projects. Because the project is the place where
you manage the project buffer, by breaking a project
into pieces you are effectively breaking up your
variation tracking into pieces. The only constraint is that
a project must deliver a complete deliverable, so it's not
totally arbitrary where you draw the boundaries of the
project:

• You want the project to deliver at least one
major deliverable to the stakeholders.

• You want to have enough tasks to provide
random behavior, usually at least 20-30.

• You want to have no more tasks than you can
comfortably manage (7 ± 2 concurrent tasks is
a good cognitive limit).

• You want to have tasks at a level of detail that
does not exceed your estimation accuracy, as
discussed above.

How to Generate a Critical Chain from

a WBS

Now that you've defined your tasks, you can figure out
the critical chain and the buffers.

1. Enter the tasks and the dependencies into your
project management software, creating a
schedule task with start and end dates for each
WBS task. The dependencies between
schedule tasks should converge on a single
milestone task, the end-of-the-project
milestone. Assign a fixed date to this milestone
(usually the must-have date from marketing or
your other stakeholders). This fixed date
becomes the basis for your resource leveling
and task scheduling. Set the tasks to start as
late as possible (ALAP to the cognoscenti).

2. Assign resources to schedule tasks from your
resource pool.

3. Level your resources backward from the
project finish date. Make sure that no resource
is working on more than one task at a time
(including tasks in other projects, see the later
section on multiple projects for more
information).

4. If the resulting start date is in the past, you'll
need to do some revisions to the WBS to
reduce the amount of effort in the project. Bear
in mind that you'll be adding a buffer, probably
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somewhere between ¼ and 1/3 of your total
project time, so add that in to get the real start
date estimate.

5. Identify the chain of tasks and dependencies
with the longest duration. This is the critical
chain.

6. Create a buffer for the critical chain, inserting it
as a task between the last critical chain task
and the end-of-project milestone. Size the
buffer using the approaches from the prior
section on buffers.

7. For each task that connects to a task on the
critical chain, create a feeding buffer. Size the
buffer by adding up the tasks on the feeding
chain. These feeding buffers tell you when a
non-critical chain task is going to affect the
critical chain.

8. Level the resources for the project again, as the
buffer scheduling may have rearranged task
schedules and created conflicts.

9. Update the project as the project progresses,
delaying tasks or increasing duration to reflect
reality. As you do this, track the amount of
buffer consumption to manage and control the
project.

If you use project management software that fully
supports critical chain project management, the software
will do most of the work for you. I use Scitor
Corporation's Project Scheduler 8. It automatically
computes the buffers and shows buffer consumption
with special graphics. The resource leveling in most
systems is not very good, though; you may find it better
to do this manually, another good reason to keep the
number of tasks to a reasonable level.

Multiple Projects versus Multiple

Processes

The only fly in the ointment of this perfect project
management world is the fact that almost all software
shops engage in more than one project at a time.
Introducing multiple projects with resource sharing
makes it more difficult to level a project and to compute
buffers. It also increases the pressure to use
multitasking for key resources.

The difference between a project and a process is
minor: a project always delivers a deliverable and is
separately managed, while a process may deliver only an
intermediate result and may be part of a larger effort.

Nevertheless, for most purposes other than project
management, projects and processes pretty much look
like the same thing. A project is really a kind of process.

The last section described a decision process to use to
size your project to your capability. Once you've done
that, you are confronted with the need to manage
resources across multiple projects.

I've found two approaches you can take to such
management: cross-project leveling and drumbeat
management.

Cross-project leveling is the practice of leveling all of
the projects together as one big project. Most project
management software lets you do this. After leveling,
you then compute buffers project-by-project, then level
again across all projects.

The problem with cross-project leveling is that it doesn't
scale very well. If you are managing hundreds of tasks
in dozens of projects that share resources, you will find
it very difficult to do this kind of leveling at the global
level. The obvious solution is to not share resources, or
at least to minimize such sharing. Effective staffing
techniques that optimize projects around available
resources and provide new ones as required improve
both your software production capability and your
project management capability.

Real-world situations always arise, however, to make
short work of your best intentions. In these
circumstances, you can use the practical technique of
drumbeat management to share resources. This is
similar to concurrency management techniques in
software development using a locking approach.

Leach intimates that the phrase comes from the old
Roman practice of using a drumbeat to organize the
proper workings of a galley [Leach]. Since those
involved had little choice in the matter, I suspect the
implications are not all that congenial, particularly with
the other aspects of the directive forces. Leaving
historical metaphor aside, you should focus on the
resources that drive sharing across the projects. In
software projects, these are usually the most valuable
team members: architects, gurus, and other repositories
of countless years of experience and knowledge.

When sharing between projects is more or less
restricted to a few resources, you can focus leveling on
those resources and ignore the others—hence, the
drumbeat. The resources that share their time between
projects become the driving force for scheduling,
budgeting, and creation of value. Others revolve around
them. You don't want your drumbeat resources
multitasking under any circumstances; instead, you
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make sure that projects organize their time around the
availability of these resources.

As in the Roman galleys, however, it's wise to
understand the limitations of your drumbeat resources
when confronted with the unexpected: risk.

Managing Project Risk

Project risk is the potential for an event that has a
negative impact on the project mission. Compare this
definition with variation, the random values around a
central tendency due to common causes. Risk has to do
with identifiable or special causes of variation. Before
you can manage your project variation with buffers, you
must first manage your project special causes of
variation with risk management.

Special Causes as Risk Events

The process expert, dealing with the ordinary
manufacturing process situation, first looks to see what
crazy things are going on. In manufacturing, if you stand
around for awhile looking at how everybody does their
job, you can quickly see a dozen things that are
"obvious" about the work patterns that, unaccountably,
no one actually doing the job had seen.

The slightly more experienced process expert, before
presenting his conclusions to the boss, asks the workers
a simple question: "Why are you doing that?" The
answers are usually illuminating and humbling. The
expert has missed something basic about the
manufacturing process, the workers have developed
massive workarounds for material inadequacies, or
(sometimes) you find something that nobody's thought
about.

For some reason, in software the last situation seems to
emerge more often than in manufacturing. Why that's
true, I don't know—nevertheless, it's a staple of
software process reengineering. If you review the
process, you'll easily find dozens of things that
nobody's thought about. Maybe that's why software
patent law is such a lucrative arena right now.

In software processes, risk plays a big role. Many
aspects of the process lifecycle—requirements and
design documentation, testing, reviews, and fudge
factors, for example—are all ways of dealing with risk.

Translating this into an SPC worldview, software
process reengineering is all about managing special
causes—risk assessment and risk management. This
paper makes the distinction between special and

common causes because it is important for software
project managers to understand the difference. That
difference leads to very different styles of management.
When you're managing the inherent variation in your
process, you are managing common cause variation.
When you're managing risk, you're managing special
cause variation. SPC tells us that you cannot manage
common cause variation effectively until you eliminate
special causes. What that means is that, if you're not
doing risk analysis, you aren't going to be able to
manage your process using SPC techniques such as
buffers.

For example, you can set up your project with estimates
and buffers and a critical chain, and then watch in
horror as that new technological solution you've bought
turns into a nightmare of wasted time, bugs, and
workarounds. You can hire resources and put them to
work on tasks only to discover that they have forgotten
every scrap of computer science they learned in school
five years before because they've been working for e-
commerce shops for several years without a thought for
design or requirements engineering. You can spend a
year developing a system only to discover that the
hardware you're intending to run it on is too
underpowered for the huge number of transactions that
descend on the software.

In our previous example, we had a novice Java
programmer untrained in using the Java user interface
framework. A task that might normally take 5 days
could take this novice as long as 20 days, transforming
the task into a critical chain task and making it
impossible to meet your deadline. This is not common
variation; it's a special cause. You deal with it by
training the programmer before the task needs to start or
by replacing that programmer with a more experienced
one, should that be an option. Most of these options
disappear if you didn't identify the special cause long
before the task began.

There are, of course, solutions for all of these
problems. The underlying problem is that you failed to
realize that there was a problem early enough to do
anything about it. That's what leads to special causes of
variation—not paying attention and not thinking about
risk.

Assessing Risk as a Special Cause

To assess risk in software projects, you develop
through brainstorming a set of risks that may affect
various parts of your project. For each risk, you assess
the probability of the risk event occurring and the
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degree of impact the event will have on your project
[Jones, Roetzheim].

Recasting this process as dealing with special causes in
an SPC framework is easy. Once you identify the
processes or systems that you are going to measure and
control, you brainstorm possible special causes of
variation for each. You then assess the probability and
impact of the event and decide on that basis whether to
eliminate the special cause or ignore it.

Ignoring a special cause transforms it into a common
cause. By ignoring the specific risk, you account for the
variation as part of your normal control efforts. These
causes are not interchangeable, however. If a risk event
is going to affect your project enough to cause control
problems, ignoring it just makes your project fail. You
should ignore only risks that have very low probabilities
or minimal impact on the systems you're measuring.
You should also keep track of events that happen in
your projects and feed the risk information back into
your risk assessments as time goes on.

Fortunately, SPC brings some tools to the party that
you can use to help decide whether a risk is worth
managing: Pareto diagrams, run charts, scatter plots,
cause-and-effect (fishbone) diagrams, and control and
cusum charts. What tools you use depend largely on the
amount of data you have and the nature of the system

you are evaluating. Some techniques let you determine
risk before it happens; others focus on analyzing
historical data to identify risk that has happened and is
preventable in future projects.

Cause-and-Effect Diagrams

The fishbone diagram gives you a tool to organize your
thinking about causal chains.

The diagram shows how a series of factors cause some
event. For risk assessment, the event is the risk event
you're assessing—the schedule slip for the user
interface, for example. That's the box to the right of the
line. The diagonal lines coming out of the backbone
show the independent causes of the event, and the lines
coming out of those causes show additional causal links
or possibly ways to mitigate or avoid the cause. By the
time you've finished drawing this diagram in a
brainstorming session, you will have a pretty good idea
of how an event could happen and how to control it.
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Pareto Diagrams

The Pareto Principle states (loosely) that 20% of the
systems cause 80% of the problems. The Pareto
diagram gives you a way to prioritize systems through
measurement.
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This diagram shows the classic Pareto diagram that
compares different software subsystems in terms of
number of defects. The first subsystem has twice as
many defects as any other, and the cumulative curve
shows the percentage of defects is around 40%. That
translates into a clear indication of a high risk of failure
due to some special cause, such as inordinate
complexity, poor design, or inadequate unit and
integration testing. The second system is big enough
that you should probably look at it as well.

Scatter Plots and Run Charts

Sometimes the simplest techniques yield the best
results. Just plotting your measures against each other
(scatter plots) or over time (run charts) can give you a
clear indication of special causes.
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This scatter plot shows a straightforward graph of effort
overrun versus technology experience for each task. As
experience decreases, effort overruns grow. If there
were no relationship (a random scattering of points),
there would be no special cause indicated here.
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This run chart shows the cost performance index
(baseline cost of work performed divided by actual cost
of work performed, an earned-value metric) over
calendar time in a project. You can clearly see that there
are events occurring in this project that are resulting in
large changes in cost efficiency at specific times.
Looking into those efficiency valleys should give you an
idea about the special causes of the budget overruns.
You can use a moving average to smooth the curve in a
run chart if the too-frequent peaks and valleys obscure
the changes over time.
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Control Charts and Cusum Charts

The classic method of determining whether a process is
under control is to use a control chart. These charts
show the upper and lower control limits calculated from
the normal probability distribution for the process
metric you're using.
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This example shows a control chart for defects as the
proportion of number of defects in Java classes to total
classes produced in a given week. Sampling the classes
and doing a thorough code walkthrough, for example,
could produce this measure.

This chart is an example of a u control chart; there are
several different kinds of control charts, varying by the
kind of measure (continuous verus attribute), the kind of
sampling (fixed-size versus variable-size samples), and
the nature of the control variable. The u chart, for
example, is a chart for proportions of varying-size
collections, with the proportion relating one kind of
object (a defect) to another kind of object (a Java
class). The upper control limit (UCL) is statistically
derived from the mean and standard deviation of the
samples. The lower control limit is 0 in this case, the
minimum value for the proportion. There are two signals
of special causes where the sample exceeds the upper
control limit.

Each type of chart has a slightly different variation on
the statistical techniques for computing the control limits
[Bissell, Burr, Wetherill].

There are several guidelines for identifying special
causes from control charts [Bissell, Burr]:

• Any point outside a control limit indicates a
potential special cause.

• A run of 7 points in succession above or
below the central line shows a potential special
cause.

• An unusual pattern (a regular cycle, for
example) or a trend (from low to high over
time, for example) shows a potential special
cause.

• The proportion of points inside the middle
third of the area within the control limits being
less than 2/3 indicates a special cause.

Another statistical chart you can use to identify special
causes of variation is the cusum chart. Cusum is short
for cumulative sum; the chart shows the cumulative sum
of differences from a target value over time. Cusum
charts are useful for determining short-term changes in
your processes.
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This chart shows the cusum of effort variances over
time. The V mask drawn around the points at the last
task observation shows the cusum control limits. The
narrow part is 5 standard errors around the target and
the wide part is 10 standard errors. You look for two
things in these charts: direction changes in the slope of
the lines through the points and points outside the
control limits. A slope change means that there was a
change in the process, potentially a special cause; a
point outside the control limits indicates a short-term
variation due to a special cause.

Conclusion

Critical chain project management gives you a
sophisticated method for combining statistical process
control with project management. It lets you clearly
distinguish between common and special causes of
variation and provides buffering techniques for
managing common variation in project costs, schedules,
and quality.

Using feeding, resource, and project buffers, you can
much more readily see where your project is under
control and where it isn't. Using SPC techniques, you
can identify and avoid or mitigate special causes of
variation as risks, cleanly separating the management of
the usual from that of the unusual.
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