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Command and Control Automated Testing (C2AT) 
Capabilities 

 
Abstract 

Command is the legal authority to issue orders. Control is the management of assets to accomplish 
mission objectives. Automated command and control systems assist the commander and the 
commander’s staff in issuing orders and controlling assets. The Theater Battle Management Core 
System (TBMCS) is the Command and Control (C2) automated system used to assist commanders and 
their staffs (planners, operations, special operations, intelligence, and logistics) in managing all aspects 
of the air war. 

The testing of TBMCS and other C2 systems is vital. We must ensure that automated C2 systems work 
properly to help ensure effective command and control. Command and Control Automated Testing 
(C2AT) ensures that the C2 software operated properly and performs well under full system load. If 
there are problems with the C2 automated system, the problems are identified and corrected with 
computer precision. Once the C2 system is corrected, the entire test can be re-run, to ensure that a 
correction to one part of the C2 system does not cause a problem in another part of the C2 system. 

C2AT provides Automated Developmental Testing (ADT), Automated Operational Testing (AOT) and 
Automated Regression Testing (ART) in the Microsoft Windows and Sun Solaris, Linux, and HP-UX 
operating systems environment. Automated Test Management (ATM) testing tools are used to chronicle 
testing requirements, document test events, and execute automated test scripts. The description section 
of the automated test plan describes each test event. Test steps are developed to provide a detailed 
description of how each test event is performed. Skilled users perform the test events and their actions 
are recorded and saved as ADT test scripts. Data Base queries and/or user screen integrity checks are 
inserted into the ADT test scripts to provide more detailed test scripts for AOT/ART testing. The 
Automated Test Management software executes the automated test plan on a minimal hardware suite 
without human interaction. After the automated test is completed, an automated test report is generated 
into a Microsoft Word document. Automated Performance (load) Testing (APT) can also be 
accomplished on a small suite of computers simulating the load of hundreds of simultaneous users. 
Monitoring database servers, web servers, and computer networks using these automated test tools can 
give a complete picture of the entire computer system and confidence about its readiness for operational 
testing. Automated 24/7 System Monitoring (A24/7SM) can be accomplished using the C2AT tools. 
When discrepancies are found, automated test scripts can be re-run exactly how they were performed 
earlier to help further identify the cause of the problem(s). Once discrepancies are corrected, an ART 
can be run in a few hours to ensure that corrections did not cause other problems.  

Traditionally, developmental and operational test events are often combined. Military and civilian 
personnel are sent to the test site, trained for one to two weeks, then asked to perform rote test scripts in 
a certain order and write down anything that they think is not correct. If discrepancies are identified, 
they are corrected and the software is assumed to be ready for fielding. During traditional test events, if 
response time seems slow to the test users, testers speculate about network performance, server 
performance, or a particular module of code. Often the real problem is not identified. Automated tools 
allow testers to identify problems without guesswork, including network delay problems, server memory 



 

2 2653.1 

allocation and paging problems, CPU problems, database problems, web server problems, and problems 
that may occur under maximum load. Best of all, tests can be re-run at any time (even off duty hours), 
accurately, without sending personnel on temporary duty. Another benefit of using automated testing 
tools, when the next version of the software is ready for testing, the automated scripts can be re-run 
(often with little or no modification). Well-trained personnel cannot identify many performance, 
database, network, and programming issues with computer accuracy. Once accurate problem 
identification occurs, problem resolution can occur. This automated process greatly reduces 
development time and helps improve the fielding of applications.  

C2AT Environment 
C2AT uses Mercury Interactive software products to perform developmental, operational, 

regression, performance, and system monitoring testing (see Figure 1). Mercury Interactive products 
work in the Microsoft Windows, HP-UX, Sun Solaris, UNIX, and LINUX operating systems 
environments. Mercury products are fully integrated within the family of products and are Open Test 
Architecture (OTA) compliant. Programs written in all major languages, using Oracle, Sybase or 
Microsoft Access, or Microsoft SQL Server databases, and all the major web servers are compatible 
with Mercury Interactive software products. C2AT test tools include TestDirector (Microsoft Windows 
environment), WinRunner (Microsoft Windows environment), QuickTest Pro (Web Testing 
environment) XRunner (UNIX, HP-UX, and Solaris environments), LoadRunner (UNIX, Microsoft 
Windows, and LINUX environments) and Topaz (UNIX, Microsoft Windows, and LINUX 
environments). TestDirector, LoadRunner, and Topaz require one additional computer each to be added 
to your C2 network. WinRunner, QuickTest Pro and XRunner fit on actual C2 workstations. When 
possible it is better to put WinRunner, QuickTest Pro, and XRunner on a separate hard drive on a typical 
application workstation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TestDirector
Automated Test Mgt

MS Windows

QuickTest Pro 
Script writing/execution

Web Environment 

Topaz 
24/7 System monitoring 
Windows UNIX LINUX

XRunner 
Script writing/execution 
UNIX Solaris Linux 

WinRunner 
Script writing/execution

MS Windows 
LoadRunner

Performance Testing 
Windows UNIX LINUX 

ADT/AOT/ART

APT A24/7SM 

ATM



 

2653.1 3 

Figure 1—C2AT Schematic 
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Automated Developmental Testing Process 
The Automated Developmental Testing process using automated tools is outlined in Figure 2. This 
process is test requirement driven. Test requirements are studied, then listed in TestDirector software. 
After listing requirements, the test plan is written in and/or copied to TestDirector software. Test scripts 
are developed based on client workstations (running WinRunner, QuickTest Pro, and/or XRunner). Test 
Scripts are written automatically in Test Script Language by recording user input. Integrity and database 
quality control checks can be added to WinRunner and/or XRunner test scripts. Then test scripts are 
imported into TestDirector. Test scripts are organized in the Test Lab module of TestDirector. Test 
Script execution is initiated and controlled by TestDirector. Test scripts run on client workstations 
(WinRunner, QuickTest Pro and/or XRunner). TestDirector software compiles the results. Test defects 
are detailed in the Defects module of TestDirector. Once defects are corrected, the entire test can be re-
run, ensuring that a fix in one area does not cause a problem in another area of the automated system. 
Once all defects are eliminated, the developmental test is completed and archived for future releases of 
the Command and Control software. The diagram below demonstrates the developmental process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2—Automated Developmental Testing Process 
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Automated Operational Testing 
The Automated Operational Testing follows the same process as outlined in the Automated 
Developmental Testing Process outlined in Figure 2. An Automated Operational Test has more complex 
test scripts. The additional complexity occurs as a result of programming in quality control checks. 
These quality control checks mimic the same quality control checks a person would perform in an 
Operational test, but the occur with computer speed and precision. We expect test personnel to check 
every screen and every database entry for correctness during an operational test. This can be very time 
consuming and tedious. For example the following scripts shows a three-step process to log into a C2 
system and select a web link:  

         Automated Developmental Login       Automated Operational Login 

 

# Step 1 Activate Internet Explorer  

tl_step_once(1,0,Activate Internet Explorer); 

web_browser_invoke (IE, “website URL"); 

 wait (4); 

 

 

# Step 1 Activate Internet Explorer  

web_browser_invoke (IE, “website URL"); 

If (win_exists (“Main”,4) ==E_OK) 

        { 

 tl_step_once(1,0, Web Activated); 

         } 

else 

tl_step_once(1,1, Web Not Activated); 

# Step 2 Logon 

set_window("Main",19); 

edit_set("username","tester1"); 

password_edit_set("password","cd0bb947e"); 

web_image_click("submit", 44, 8); 

 wait (4); 

 

 

 

# Step 2  

set_window("Main",19); 

edit_set("username","tester1"); 

password_edit_set("password","cd0bb947e")
; 

web_image_click("submit", 44, 8); 

 

If (win_exists (“Main1”,4) ==E_OK) 

        { 

 tl_step_once(2,0, Logon Successful); 

         } 

else 

tl_step_once(2,2, Logon Not Successful); 



 

6 2653.1 

 

# Step 3 Select SiteA From Main 1 

tl_step_once(3,0, SiteA from Main1); 

set_window("Main1",8); 

web_link_click("SiteA"); 

wait (4); 

# Step 3 Select SiteA From Main 1 

set_window("Main1",8); 

IF (web_link_valid(“SiteA,valid) 

          { 

web_link_click("SiteA"); 

tl_step_once(3,0, SiteA is Available); 

           } 

else  

tl_step_once(3,3, SiteA is not available); 

As you can see the additional quality control checks perform the same type checks operational testers 
would perform; however they are performed with computer precision and accuracy. The Error 
statements in the AOT are more precise and are more helpful in identifying problems. Additional checks 
are also added to AOT scripts to replace testers analyzing databases. We use the following methodology 
for testing database adds, edits, and deletes that are part of an automated Command and Control System 
We establish the state of the database prior to running each test script. Then we determine the databases 
exact state once we have added records. Then we edit the records we added and determine if our edits 
were correct. Then we delete the same records to reestablish the exact state of the database before the 
each script was run. Using the powerful script development tools, in the record mode, we can either 
perform a Graphic Users Interface (GUI) check or a database (db) check. The GUI check looks at the 
page of data displayed on a user workstation and takes an image of the screen that is displayed. It 
compares this image with a previously saved image with accuracy to one pixel. To accomplish this we 
add the following lines of code to our test script where we want the GUI check to occur: 
  set_window (“main”,1); 
  obj_check_gui (“OK”, “list.ck1”, gui1,1);  
When we play back the script, the script run sand takes a checkpoint look at the screen and compares it 
to the saved screen in the record mode. If there is a 100% match, the script continues without displaying 
error information. If there is not an exact match to the pixel level and error message is generated. In this 
error message we receive a screen with the expected view, the view that has errors, and a view or the 
errors only. This helps us understand and document what went wrong.    

When we record in the database method we run a SQL query of the database using Microsoft Query. 
The test recording software helps us log into the database itself and gives us an easy to use SQL query 
tool. We build our SQL query and receive our answer in a data table. The application captures the data 
table and compares future runs to the captured data table. The following code is added to the test script: 

  db_check (“list1.cell”, “dbuf1”); 
When we play back the test script the SQL query runs in the background and compares the result data 
table with the data table generated in the record mode. If there are any discrepancies and error message 
is generated and a view of the data table with highlighted errors is displayed to help us understand what 
went wrong.  
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Automated Regression Testing Process 
Traditionally about fifteen percent of all software errors are found during regression testing. It is very 
important not to let these errors go undetected throughout the software development process. In 
automated Regression Testing we use the same process we established during Automated 
Developmental Testing. We use the same test scripts we ran during the Automated Operation Testing. If 
the corrections/additions to the application require we add and or modify existing test scripts. ART can 
be run at anytime and requires very little human interaction. The reason this works so well is the test 
plan and test scripts are automated. They can be run at any time without having to bring in and train 
testers from all over the world to perform a controlled test. Every time a patch is put on the database or 
on workstations the automated regression test can be re-run and test reports can be completed in a few 
hours. 

For example, Using ART techniques we ran a regression test for Spiral 6 TBMCS-Unit Level. The 
C2AT team tests scripts and test plans used during the Automated Operational Test for spiral 6 of 
TBMCS-Unit Level. These test scripts running on one test management workstation and two client 
workstations exercised each of the 224 web links. The entire test ran in about 90 minutes and the 
automated test report was completed and printed in about two hours.  
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Performance Test Process 
The performance test process using automated tools is outlined in Figure 3. This process is test 
requirement driven. Requirements are documented in TestDirector. The number of virtual users, virtual 
test scripts (LoadRunner) and GUI test scripts (WinRunner, QuickTest Pro, and/or XRunner), and 
performance test monitoring specifics are written into the LoadRunner test plan. LoadRunner executes 
the test scripts. During test execution, monitoring the performance of servers, database servers, web 
servers, network, transactions per second, and many other key factors is accomplished. Test results are 
sent to the LoadRunner analyzer and then finalized in TestDirector. This capability to perform detailed 
testing gives us a clear indication if the software will perform within detailed performance specification. 
If corrections need to be made, re-running the same performance test is a routine event requiring little or 
no preparation time. Using these processes, developers will know how well their application performs 
when the maximum numbers of users fully utilize the capabilities of their workstations.  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 
 
 
Figure 3—Performance Test Process 

This process can be adapted to the specific needs of the customer. All internal computer processes can 
be studied to give a complete picture of system performance. In many cases, database configuration 

changes can be revealed that will improve system performance to meet performance specifications. If 
the rework necessary to meet specifications is extensive, a re-running of the automated developmental 
test and performance test may be required. This can be accomplished using existing automated testing.
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Automated Test Management Tool 
TestDirector software runs in the Microsoft Windows environment on a networked Pentium II 

computer with 64 MB RAM and a 1 GB Hard Drive. TestDirector has four modules inside each test 
plan—a Requirements module, a Test Plan module, a Test Lab (execution) module, and a Discrepancies 
module. TestDirector is Microsoft Word compatible and imports and generates Word documents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4—TestDirector 
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The Requirements module is a listing of all the test events that require testing. The requirements 
are linked to specific test scripts. The status of the current test and details about test requirements are 
viewed from this window. Additional descriptions of requirements can be attached to this listing via 
attached Microsoft Word documents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5—TestDirector Requirements  
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The Test Plan module is an automated version of the standard test plans written by the 46th Test 
Squadron. The standard test plan can be imported/modified into the Test Plan module. Each test 
described in the 46th Test Squadron appendices becomes a test script. The “test card” instruction 
becomes steps in the TestDirector Test plan. Test Scripts following the steps in the test plan are 
developed using WinRunner in the Microsoft Windows environment or XRunner in the UNIX (Solaris) 
environment. Each test script is linked to test requirements so that testing is focused on requirements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6—TestDirector Test Plan 
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The Test Lab executes the test in a specified manner and links test script pass/fail to each 
specified requirement. Test scripts can be executed at a certain time, in a prescribed order, randomly, 
and on specific workstations or randomly selected workstations. Test execution can be designed in the 
Test Lab to meet the needs of the test customer. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7—TestDirector Test Lab 
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Test Script failures are identified and placed in the Discrepancy module. The Discrepancy 
module helps identify, prioritize, and assign responsibility to each error that occurs during testing. A 
complete test report is generated as a Microsoft Word document, which can be edited if necessary. 
Recently we ran a 224 script developmental test and the test report completed in less than four hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8—TestDirector Defects Manager 
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ADT/AOT/ART Tools 

WinRunner software runs in the Microsoft Windows environment on a networked Pentium III 
computer with 128 MB RAM and a 10 GB Hard Drive. WinRunner is installed on the same workstation 
as your application. Each “test card” is executed on a user workstation and captured by Win Runner’s 
record capability. Recorded inputs are saved as test scripts. Database checks and user screen integrity 
checks can be added to recorded scripts to improve their value. The test scripts are saved in TestDirector 
and played back as part of an automated test. WinRunner uses Test Script Language, which is similar to 
C++ for recording scripts and playing back scripts. Script can be saved in TestDirector and played back 
using the test lab execution feature in TestDirector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9—WinRunner 
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QuickTest Pro software runs in the web development environment on a networked Pentium III 
computer with 128 MB RAM and a 10 GB Hard Drive. QuickTest Pro is installed on the same 
workstation as your application. Each “test card” is executed on a user workstation and captured by 
QuickTest Pro’s record capability. Recorded inputs are saved as test scripts. Database checks and user 
screen integrity checks can be added to recorded scripts to improve their value. The test scripts are 
saved in TestDirector and played back as part of an automated test. QuickTest Pro uses Microsoft Visual 
Basic as its test script language for recording scripts and playing back scripts. Script can be saved in 
TestDirector and played back using the test lab execution feature in TestDirector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10—QuickTest Pro 
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XRunner is the “x-windows” UNIX equivalent of WinRunner. XRunner runs on HP-UX 11, 
generic UNIX, and Solaris 2.51 or higher. A minimum of 500 MB of storage plus 5 MB per test script is 
required. 64 MB RAM is the minimum memory requirement. Each “test card” when executed by an 
XRunner user, is recorded and saved for playback as part of an automated test. Database checks and 
user screen integrity checks can be added to recorded scripts to improve their value. These scripts are 
saved in TestDirector and can be played back by TestDirector as part of automated testing. 

 

Figure 11—XRunner 
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Automated Performance Testing Tool 

LoadRunner runs in the Microsoft Windows, UNIX, HP-UX, Solaris, and LINUX environments. 
Current user licenses allow 250 virtual users, 250 web users, 5 GUI users (WinRunner and XRunner), 
Server Monitor (Microsoft Windows, UNIX, Solaris, HP-UX, and LINUX), Network Delay Monitor, 
Oracle Monitor, SQL Server Monitor, and web server monitors. With LoadRunner we can simulate 
heavy user loads to monitor server performance, network performance, and system performance. This 
tool provides a complete picture of the entire system under stress with minimal preparation for testing 
time required. Complete test script work up can usually be accomplished in less than one day. Detailed 
database server monitoring determines how well the relational database management system performs 
under the full load that the system is designed to accommodate. We recently ran a performance test that 
included 130,000 transactions in a two-hour period performed by 100 virtual users. With the enhanced 
monitoring capabilities we have we were able to determine whom well the entire system performed 
under the prescribed load. 

 
Figure 12—LoadRunner Controller 
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Automated 24/7 Monitoring Tool 
Topaz runs in the Microsoft Windows, UNIX, HP-UX, Solaris, and LINUX environments. The 

Topaz website workstation run on Pentium III PCs with 256 MB Ram Current and 10 GB HD under MS 
Windows 2000 Server with Microsoft SQL Server 2000 database. Our current user licenses allow 25 
user defined business transactions. Topaz user workstations (Microsoft Windows, UNIX, HP-UX, 
Solaris, and LINUX) generate test scripts using Astra QuickTest (similar to QuickTest Pro). Monitoring 
conditions, early warning conditions, and notification procedures are setup in the Topaz Controller 
(Pentium III PC w/ 128 MB RAM, 10GB HD, running Windows 2000). Topaz can passively monitor 
the entire Command and Control Information and provide early warning of problems with either e-mail 
or pager alerts without running a process on any server in the network. The Topaz web site keeps a 
repository of performance data in a Microsoft SQL Server database. Using the power of the Topaz 
interface we can drill down using Topaz’s easy to use website and determine the cause of problems if 
they occur. We are able to specifically monitor every major database (DB2, Sybase, Oracle, Informix, 
and SQL Server), server (Windows, Unix, and Linux), web-server, the local area network, beyond the 
firewall, and link to other Open Test Architecture (OTA) compliant monitors such as BMC patrol and 
Tivoli.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 13—Topaz Web Site 
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Future Development 
The Freeman Computer Sciences Center is committed to providing our customers the best automated 
developmental testing of computerized Command and Control systems. Once developmental testing is 
complete, we can load test the application to determine how well it performs with the maximum number 
of users it is designed to service. All future automated command and control systems can be tested in 
this manner. Better and more complete testing will lead to faster and more effective system 
development.  

 

Conclusion 
C2AT is the most effective way to perform automated developmental testing, automated operational 
testing, automated regression testing, automated performance testing and automated 24/7 monitoring of 
automated command and control systems. Currently 75% of the Fortune 500 companies in the United 
States use these same tools to test their automated information systems. Using the power of automated 
tools to perform ADT, AOT, ART, APT, and A24/7SM gives a complete testing framework to a 
Computerized Command and Control system. Automated tools cannot answer the questions plan: Does 
the user like it? Does the application meet the user’s needs? Other than these questions automated 
testing is more accurate and complete than human testing of C2 systems. It frees up people to better 
answer the two important questions mentioned above. Increased testing effectiveness helps speed up the 
deployment time and reduces risk associated with deploying systems that have not been properly tested. 
This is especially true for applications that are developed using the spiral development process model.  

 

To request current information on our C2AT capabilities; please see the Contact List at the front of this 
document. 
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