
What Test Designers Wish from Software Models

David Gelperin
Software Quality Engineering

sqegelp@aol.com

dgelperin@sqe.com

Introduction

Testing is getting harder. To keep up with the every growing complexity of software and
the testing task, newer approaches to test development must be used. One of these
approaches is automated test design based on precise models of software behavior and
usage.

Today, commercial support in this area is weak. There is a current and growing need for
a variety of commercial tools supporting automated design.

The purpose of this presentation is to provide insight into the information requirements
for automated test design to (current and potential) vendors of software modeling tools.
It is hoped that this information will catalyze a number of commercial development
efforts.

Functional Models — 3.1
© 1999 Software Quality Engineering v5.0

What Test Designers Wish from SW Models

David Gelperin
Software Quality Engineering

sqegelp@aol.com or
dgelperin@sqe.com

Functional Models — 3.2
© 1999 Software Quality Engineering v5.0

Wishes Support Automated Design

In scope:

Info reqs for automated test design

Out of scope:

* State info reqs (already adequate in UML)

* Info on automated test design process

Functional Models — 3.3
© 1999 Software Quality Engineering v5.0

Problem

• Today’s (and tomorrow’s) mission critical systems
require advanced test design techniques

• These techniques entail (1) development of a
behavior or usage model and then (2) automated
design or implementation from that model

• Commercially available support for these
techniques is weak to non-existent

• Testers of financial, insurance, industrial control
and other critical systems need automated design
support [The new market]

Functional Models — 3.4
© 1999 Software Quality Engineering v5.0

Opportunity

To provide a tester’s “modeling bench”
supporting multiple forms of:
– ultra-understandable modeling

– automatic model verification

– automatic test design

– automatic test implementation

Functional Models — 3.5
© 1999 Software Quality Engineering v5.0

Which Models interest Test?

Software aspects of interest to test include:

• actions

• behavior rules

• usage scenarios

• surface (black-box) structure
– interfaces

– input & output data

Functional Models — 3.6
© 1999 Software Quality Engineering v5.0

Some Choices

(1) Extend (23) UML modelers to support
test design and implementation

(2) Develop independent products

Functional Models — 3.7
© 1999 Software Quality Engineering v5.0

SQE Goals

• To promote preventative testing

• To drive automated support for
advanced test design

• To make a difference
– We make a difference, when

you make a difference

Functional Models — 3.8
© 1999 Software Quality Engineering v5.0

What Test Designers wish1 from SW Models

Wish 1 - Function Inventories
with Semantics

– Action Lists

– Post-conditions

What does the software do?

Functional Models — 3.9
© 1999 Software Quality Engineering v5.0

Action Lists

For a particular system or component
(being modeled), what are all of the functions
(methods) that it performs?

Wish for a hierarchically organized index with
unique identifiers for each action

Functional Models — 3.10
© 1999 Software Quality Engineering v5.0

Example of an Action List

RS. R 001,2,3 Add, Change, Delete Reservation
 Display, Report
RS. R 004,5 Single Reservation
RS. R 006,7 Res List by Customer
RS. R 008,9 Res List by Location and Date
 Report
RS. R 010 Reservation Changes and Deletions
RS. R 011 Reservation Agent Activity
RS. R 012,13,14 Add, Change, Delete Frequent Sleeper
 Display
RS. R 015 Single Frequent Sleeper
RS. R 016 Frequent Sleeper List
RS. R 017 Report Frequent Sleeper Activity
RS. R 018,19,20 Add, Change, Delete Motel Location
 Display
RS. R 021 Single Motel Location
RS. R 022 List of Area Motel Locations
RS. R 023 Report Motel Location Activity

Sleep-Sound Motels Reservation System Example

Functional Models — 3.11
© 1999 Software Quality Engineering v5.0

The “meaning” of an action (process)

Let R be a routine that inserts entries into a table of bounded capacity.
Each entry has an associated key which must be a non-empty string and
unique in the table.

Question: If as input, R is provided with an entry e having a valid key
e-key relative to the current state of the table and R executes correctly,
what are some things that must be true following execution i.e., what does
it mean for R to execute correctly?

Answers: Entry (e-key) = e

& end count = begin count + 1

& e-key is not empty

& 0 <= count <= capacity

Functional Models — 3.12
© 1999 Software Quality Engineering v5.0

Some conditions

For the table management routine R,
a successful insertion could be modeled as:

Pre-conditions

begin count < capacity

Post-conditions

 Entry (e-key) = e

& end count = begin count + 1

Invariants
 e-key is not empty

& 0 <= count <= capacity

Functional Models — 3.13
© 1999 Software Quality Engineering v5.0

4 types of conditions

1) pre-condition - Must be true at a specified
begin point for correct operation

2) intermediate condition - Always true at a specified
intermediate point if correct operation

3) post-condition - Always true at a specified
end point if correct operation

4) invariant - Always true everywhere if correct
operation

Functional Models — 3.14
© 1999 Software Quality Engineering v5.0

Post-conditions are meaning

• The proximate meaning of a process is its effect

• Conditions specify attribute values and relationships
as well as temporal constraints on inputs, results, and
system states

• Modeling systems should support easy specification
of pre & post conditions for each action / function /
process in a model

Functional Models — 3.15
© 1999 Software Quality Engineering v5.0

Post-condition References

Meyer, Bertrand “Applying Design by Contract”, IEEE Computer Vol 25
No 10 October 1992 pp 40-51

Meyer, Bertrand “Building bug-free O-O software: An introduction to
Design by Contract” [Available at
http://eiffel.com/doc/manuals/technology/contract/index.html]

Warmer, Jos and Kleppe, Anneke The Object Constraint Language:
Precise Modeling with UML Addison-Wesley 1999

Functional Models — 3.16
© 1999 Software Quality Engineering v5.0

What Test Designers wish2 from SW Models

• Wish 1 - Function Inventories with
Semantics

• Wish 2 - Behavior Rules
– Decision Tables

– Effect Tables

– Extended Action Tables

– State Models of Function (already in UML)

When does the software do?

Functional Models — 3.17
© 1999 Software Quality Engineering v5.0

What is a Functional Model?

• A consistent set of rules for correct behavior

• A behavior rule specifies:
– an input situation / condition
– the corresponding required response

Answers: When does the software act?

• Ultra-understandability implies familiar, but precisely
defined terminology (i.e., use of a data dictionary
for objects, attributes, values, conditions, and actions)

Functional Models — 3.18
© 1999 Software Quality Engineering v5.0

This is a Decision Table

Selections Selection Deposit Return Return Dispense

Available Amount Lever

 None not made > 0 --- Deposit

Some or All Not Made > 0 Depressed Deposit

 > 0 &

Some or All Made < Price Depressed Deposit

Some or All Made = Price --- Selection

Some or All Made > Price --- Change Selection

Otherwise, Return and Dispense nothing

Rules for vending machine behavior

Functional Models — 3.19
© 1999 Software Quality Engineering v5.0

What is a Decision Table?

• A tabular specification of a set of decision rules
• Each decision rule specifies a set of one or more actions

that should be performed when a specific conjunction
of simple conditions (e.g., A & B) is True

• A simple condition is a logical statement (i.e., one that
is either True or False) that contains neither “and” nor
“or”, but may contain “not”. For example, temp > 98.6,
payment not overdue, zip-code = 55427 are all simple
conditions

Functional Models — 3.20
© 1999 Software Quality Engineering v5.0

Dependent Conditions

• Truth values of two conditions (simple or compound) may
be dependent i.e., linked sometimes or always

• There are three forms of logical dependency:

Equivalence A = B i.e., two conditions always have the same truth
value e.g., (x GT y) and (y LT x)

Opposition C = not D i.e., two conditions always have opposite
truth values e.g., (x GT y) and (x LE y)

Implication A è C i.e., C must be True whenever A is True, but
may be either True or False, otherwise

• All dependencies should be documented and validated

Functional Models — 3.21
© 1999 Software Quality Engineering v5.0

Examples of Implication

1) (x GT 10) è (x GT 0)

2) If “order is valid” implies order quantity > 0 and
 “out of stock” implies on-hand quantity = 0 and
 “insufficient stock” implies

order quantity > on-hand quantity
then

order is valid AND out of stock è insufficient stock

Functional Models — 3.22
© 1999 Software Quality Engineering v5.0

Properties of Decision Tables

• A decision table is consistent if and only if every
situation is covered by at most one rule.

• A decision table is relatively complete if and only if
every modeled situation is covered by at least one
rule and all required actions are included. Some
tables may be completed by an “otherwise” rule.

• Consistency and completeness should always be
checked

Functional Models — 3.23
© 1999 Software Quality Engineering v5.0

Another Decision Table Example

Briefing on

Pass Orders System

Decision Table

Functional Models — 3.24
© 1999 Software Quality Engineering v5.0

Usage of Decision Tables

• Application Domain -- Complete analysis of smaller
complex decision patterns or partial analysis of bigger ones

• Testing Levels -- Most appropriate for component and
component integration due to large table size at higher levels

• When to use -- Always use, when decision tables already
exist or when determining the completeness of a set of
decision rules is very important. Consider using when the
combinations of condition values fit on no more than two
pages and can be easily read.

• Prerequisites -- Table development requires time, analysis
skill, and availability of decision rule information

Functional Models — 3.25
© 1999 Software Quality Engineering v5.0

Decision Table Automation

• General Modeling

+ Logic Gem by Logic Technologies
www.logic-gem.com/lg.htm

+ TurboCASE/Sys by StructSoft
www.turbocase.com/features.html

+ Other older CASE tools (?)

Functional Models — 3.26
© 1999 Software Quality Engineering v5.0

Decision Table References

Beizer, Boris Software Testing Techniques Van Nostrand Reinhold 1990,
Chapter 10, pp. 322-332 [Traditional description]

Functional Models — 3.27
© 1999 Software Quality Engineering v5.0

What is an Effect Table?

• An effect condition is a set of conjoined simple
conditions sufficient to elicit a specific effect such
as an action, output, next state, or post-condition

• An effect rule specifies an effect condition and the
elicited effect (i.e., if effect condition, then effect)

• An effect set is a set of one or more effect rules

• An effect table is a set of effect rules for eliciting
a single effect

• A complete effect table is the set of all effect rules
for eliciting a single effect (i.e., effect if and only if
one or more of the effect conditions)

Functional Models — 3.28
© 1999 Software Quality Engineering v5.0

4-Rule Effect Table Example

Selections Deposit Return EFFECT
Available Lever

None Made --- Return Deposit

Some Made Pushed Return Deposit
Or All

Functional Models — 3.29
© 1999 Software Quality Engineering v5.0

Another Effect Table Example

Briefing on

Pass Orders System

Effect Tables

Functional Models — 3.30
© 1999 Software Quality Engineering v5.0

Intersecting Effect Sets

Two effect rules co-apply if and only if they have identical effect
conditions. Two sets of effect rules intersect if and only if their
union contains at least one pair of co-applying rules.

Selections Amount Selection EFFECT
Available Deposited

Some Too Much Made Dispense

 or Exact Soda

Some Too Much Made Return

 Change

Functional Models — 3.31
© 1999 Software Quality Engineering v5.0

Unifying Effect Sets

• Two sets of effect rules are disjoint if they do
not intersect

• Unification is the process of determining whether
two sets of effect rules intersect and either
providing all co-applying rules (the unification
set) or reporting that the sets are disjoint

• Unification of three or more effect sets starts
with the unification of two effect sets and
continues with the unification of the resulting
unification set with another effect set

Functional Models — 3.32
© 1999 Software Quality Engineering v5.0

Differencing Effect Sets

• Two effect rules are disjoint if they do not co-apply

• Differencing one set S of effect rules with respect to
another set T of effect rules (S-T) is the process of
determining whether S has any rules that are disjoint
from those in T and either providing all such rules (the
difference set) or reporting that all rules in S co-apply
with those in T i.e., S is a unification set for S and T

• Differencing of three or more effect sets starts with the
differencing of two effect sets and continues with the
differencing of the resulting rule set with another effect
set

Functional Models — 3.33
© 1999 Software Quality Engineering v5.0

Picture of Unifying & Differencing

If A, B, & C are effect tables,
then

• Unifying A+B+C yields
all the rules in 7

• Differencing A-B yields
all the rules in 1+5.
Differencing (A-B)-C yields
all the rules in 1

• Differencing (B-C)-A yields
all the rules in 2

• Differencing (C-A)-B yields
all the rules in 4

Note that any of these
unification or difference
sets may be empty i.e.,
contain no pairs of co-
applying rules

C

B

2

3

5
6

7

4

A

1

Functional Models — 3.34
© 1999 Software Quality Engineering v5.0

What is an Extended Action Table?

• An action table is an effect table where the single
effect being elicited is an action

• An extended action table (or effect table) includes
post-conditions as well as pre-conditions

Functional Models — 3.35
© 1999 Software Quality Engineering v5.0

Extended Action Tables Example

Briefing on

Pass Orders System

Extended Action Tables

Functional Models — 3.36
© 1999 Software Quality Engineering v5.0

Usage of Effect Tables

• Application Domain -- Larger complex decision
patterns

• Testing Levels -- Appropriate for interoperability,
system, component integration, and component testing

• When to use -- Always use, when effect tables already
exist. Consider using when the combinations of
conditions (i.e., a decision table) will not fit on two
pages and be readable.

• Prerequisites -- Table development requires time,
analysis skill, and availability of effect rule information

Functional Models — 3.37
© 1999 Software Quality Engineering v5.0

Effect Table Automation

• Test Generation

+ SoftTest by Bender & Associates
www.softtest.com

 Input model is cause-effect graph. SoftTest translates to limited
 entry decision table and generates tests

Cause-effect graphs can be developed from effect tables and vise versa.

Usage Models — 4.1
© 1999 Software Quality Engineering v5.0

What Test Designers wish3 from SW Models

• Wish 1 - Function Inventories with
Semantics

• Wish 2 - Behavior Rules

• Wish 3 - Explicit Usage Patterns
– Refined Use Cases (partially in UML)

– State Models of Usage (already in UML)

– Grammars

Usage Models — 4.2
© 1999 Software Quality Engineering v5.0

Usage Classification Schemes

For most products, even those with a modest number
of functions, the number of possible (effective and
ineffective) usage scenarios is enormous, while the
number of scenarios actually tested can be quite
large (in the hundreds or thousands)

This means that understanding and management of
a suite of usage test scenarios require a clear
organizational framework

Usage Models — 4.3
© 1999 Software Quality Engineering v5.0

Classification Hierarchies

Usage scenarios should be hierarchically organized
(i.e., tasks and subtasks) at differing levels of
abstraction and be complete at each level
 E.G. [Travel Information and Reservation System]

 User goal: Arrange trip to grandmas

 US 1.0 - Arrange air

US 1.1 - Determine air options and prices
US 1.2 - Make reservations for family

US 1.3 - Choose seats

US 2.0 - Arrange hotel

US 2.1 - Determine hotel options and prices
US 3.0 - Arrange ground transportation

Usage Models — 4.4
© 1999 Software Quality Engineering v5.0

Developing a Usage Classification

Development involves the successive decomposition of a usage
description resulting in a series of nested profiles (sub-models)
with increasing granularity of detail.

For example:
– 1. Acquiring groups (Brokerage Back Offices, Bank Trust Depts)

– 2. User groups (Head Traders, Compliance Officers, Traders)

– 3. Usage purposes (enroll customers, process complaints)

– 4. Usage/System modes (naïve vs. experienced, normal vs. overloaded)

– 5. System functions (find customer, report activity, enter complaint)

– 6. Operations (search, setup, update)

Usage Models — 4.5
© 1999 Software Quality Engineering v5.0

Usage Classification References

Musa, John D “Operational Profiles in Software-Reliability Engineering” IEEE Software, March
1993, pp. 14-32

Musa, John Software Reliability Engineering McGraw-Hill 1999, Chapter 3

Usage Models — 4.6
© 1999 Software Quality Engineering v5.0

Example of Use Cases

Briefing on

The Pass Orders System

Use Case Model

Usage Models — 4.7
© 1999 Software Quality Engineering v5.0

Who’s Who in Use Cases

• Complete Characters

• Partial Characters

• Actors: People or specific systems
that play one or more characters

• Users: Refers to either actors or
characters

Usage Models — 4.8
© 1999 Software Quality Engineering v5.0

Characters

• Complete Character: An actual position responsible for
specific actions on specific objects to meet enterprise objectives

• Two complete characters are disjoint if either (1) their action
sets are disjoint or (2) for each common action, the associated
object sets are disjoint. If two complete characters are not
disjoint then they are overlapping

• Partial Character: An abstract position that encompasses the
common part of two or more overlapping characters

Usage Models — 4.9
© 1999 Software Quality Engineering v5.0

Character Overlap

Usage Models — 4.10
© 1999 Software Quality Engineering v5.0

Character Profile

Specification that includes:

• Name

• Category [Person, System, or both; Complete or
Partial]

• Abstract of responsibilities

• Relationships (e.g. for partial characters, the
complete characters that contain them)

• Enterprise Locations (where on the org chart?)

• Systems Used and Actions & Roles per system

Usage Models — 4.11
© 1999 Software Quality Engineering v5.0

Components of a Use Case

• Set of one or more users
• Set of one or more system activities

• Relationship between the system and users during
an activity

• Pre- and post-conditions for the use case (i.e., a
post-condition behavioral model). For example,
preconditions assuming successful completion of
other use cases.

Usage Models — 4.12
© 1999 Software Quality Engineering v5.0

Typing Users by Interactivity

Distinguish 3 types of users based on the
interactivity of the system relationship

• P -- providing users (only provide input or
cause trigger events)

• I -- interactive users (both provide & receive)

• R -- receiving users (only receive output)

Usage Models — 4.13
© 1999 Software Quality Engineering v5.0

Describing Activities

Use case activities can be described with
increasing granularity and precision of
detail using one or more of the following:

– Natural Language

– Decision/Effect Tables

– State Models

– Pseudo Code

Usage Models — 4.14
© 1999 Software Quality Engineering v5.0

Usage of Use Case Testing

• Application Domain -- Software having a variety of
users, usage modes (e.g., internet usage) or usage styles
(e.g., novice vs. power user)

• Testing Levels -- Most appropriate for acceptance,
interoperability, system, and component integration testing

• When to use -- Always use, when use cases already exist.
Consider developing cases as a means of identifying,
specifying, and testing critical scenarios.

• Prerequisites -- Use case development requires time,
analysis and specification skill, and the availability of
usage information. Automation helps.

Usage Models — 4.15
© 1999 Software Quality Engineering v5.0

Use Case Automation 1

• Test Generation

+ Validator by Aonix
www.aonix.com/Products/SQAS/sqas.html

 Input model is a use case spec from which the product generates
 executable scripts, data sets, requirements and test specs and suite
 profile reports

+ Test Mentor / UML Designer Connection
by Silvermark
www.silvermark.com/STM/umlconn.htm

Usage Models — 4.16
© 1999 Software Quality Engineering v5.0

Use Case Automation 2

• Use Case Modeling

+ HOW by Riverton Software

www.riverton.com/product/model.htm

+ ObjectModeler by Iconix Software

www.iconixsw.com/Spec_Sheets/ObjectModeler.html

• General Modeling in UML
– References on next 2 pages

Usage Models — 4.17
© 1999 Software Quality Engineering v5.0

Use Case References

Berard, Edward Be Careful With “Use Cases”
(www.toa.com/pub/html/use_case.html)

Firesmith, Donald Use Cases: the Pros and Cons
(www.ksccary.com/usecjrnl.htm)

Jacobson, Ivar et.al. Object-Oriented Software Engineering Addison-
Wesley 1992, Chapter 7, pp. 153-174 [Original description]

Korson, Tim Misuse of Use Cases
(www.software-architects.com/publications/korson/Korson9803om.htm)

Schneider, Geri and Winters, Jason P. Applying Use Cases Addison-Wesley
1998

Usage Models — 4.18
© 1999 Software Quality Engineering v5.0

This is a Toy Grammar

 S → NP + VP + .

NP → Art + Adj + N

VP → (Vt + NP) | (Vi + Adv)

Art → the | a

Adj → green | small | expensive

 N → package | boy | idea

 Vt → carried | lost

 Vi → snored | grew | ran

Adv → quickly | furiously

3
0

Usage Models — 4.19
© 1999 Software Quality Engineering v5.0

What is a Grammar?

A set of production rules that describes/defines a language.
Each rule has a non-terminal symbol on the left and a set of
one or more alternative (|) strings on the right. A non-
terminal symbol is an abstraction that does not appear in the
language. A string is composed of one or more concatenated
(+) symbols. Strings are either terminal (i.e., contain only
terminal symbols) or non-terminal. The language contains all
terminal strings generated by the grammar (and nothing else).

NP → Art + Adj + N

VP → (Vt + NP) | (Vi + Adv)

Art → the | a

Adj → green | small | expensive

 N → package | boy | idea

3
0

Usage Models — 4.20
© 1999 Software Quality Engineering v5.0

This is another Grammar

LocalMNPhoneNumber → Prefix + - + Number

Prefix → 377 | 546 | 591

Number → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

377-7777 is in the language of this grammar

4

Usage Models — 4.21
© 1999 Software Quality Engineering v5.0

• Subscripts on a symbol denote a minimum
number of repetitions of that symbol. Zero
means that it may be omitted. Without a
superscript, one is the default.

• Superscripts denote the exact number of
repetitions, when they appear alone, and the
maximum number of repetitions when they
appear with a subscript. One is the default.

Subscripts & Superscripts

Usage Models — 4.22
© 1999 Software Quality Engineering v5.0

Usage Modeling with Grammars

• A set of input event sequences can be
viewed as sentences in a usage language

• This usage language can be described by a
grammar

• The grammar can then be used to generate
both valid and invalid input event
sequences

Usage Models — 4.23
© 1999 Software Quality Engineering v5.0

Example of a Usage Grammar

User Session → LogOn + Applications + LogOff

Applications → StartApp1 + App1Seqs + StopApp1 | …..

App1Seqs → findTask_Alt | updateTask_Alt | …..

updateTask_Alt → updateTask&Check + Interrupt

updateTask&Check → updateTask1 + Check_updateTask1 | …..

Interrupt → App1Seqs | Applications

Check_updateTask1 is a non-terminal for immediately checking
task results, i.e., an embedded oracle

3
0

10
05

1
3
1

1
0

Usage Models — 4.24
© 1999 Software Quality Engineering v5.0

The process of

(1) selecting a production rule with a “start
symbol” on the left (S in our example) and

(2) continuing to use other production rules to
replace the non-terminals in the developing non-terminal
string (i.e., contains at least one non-terminal symbol)
until only terminal symbols remain

Different rule choices lead to different terminal strings.
The set of all strings that can be generated by a grammar
define the strings in the “language” of that grammar.

String Generation

Usage Models — 4.25
© 1999 Software Quality Engineering v5.0

Systematically Break Rules 1

• At multiple sites within multiple rules

• But just a little (e.g., only one site in one rule)

Examples using

NP → Art + Adj + N

1) Wrong Order Bugs - Exchange any two symbols and
block omissions

NP* → Art + N + Adj 1 of 3

2) Omission Bugs - Delete a symbol that can not be
omitted

NP* → Art + Adj 1 of 2

3
0

3
1

3
0

Usage Models — 4.26
© 1999 Software Quality Engineering v5.0

Systematically Break Rules 2

3) Extraneous Bugs

a. More of the same -- Increase superscript by 1
NP* → Art + Adj + N 1 of 3

b. Outsiders -- Put any valid symbol not already in
the rule at the beginning, end, or any position in the
middle

NP* → Art + Adv + Adj + N 1 of BigNum

b. Foreigners -- Put any invalid symbol at the
beginning, end, or any position in the middle

NP* → Art + Adj + N + end 1 of HumNum

3
0

2

3
0

3
0

Usage Models — 4.27
© 1999 Software Quality Engineering v5.0

Generate patterns of usage event sequences

– valid usage -- with the valid grammar

– invalid usage -- with “broken rule” grammars

• Choose a rule in the valid grammar and
substitute one of its broken rules

• While always using the broken rule, generate
strings

Usage Grammars Can

Usage Models — 4.28
© 1999 Software Quality Engineering v5.0

Usage of Usage Grammars

• Application Domain -- Software having a large
number of usage scenarios

• Testing Levels -- Most appropriate for acceptance,
interoperability, system, and component integration
testing

• When to use -- When determining a grammar for
the usage patterns is feasible

• Prerequisites -- Grammar development requires
time, analysis skill, and the availability of string
generation automation

Usage Models — 4.29
© 1999 Software Quality Engineering v5.0

Tool for Usage Grammar Modeling

• Test Generation

+ CleanTest (prototype)
by Cleanroom Software Engineering, Inc

www.cleansoft.com/cleansoft/cleantest.html

 Input model is a usage profile specified as a tree of activity nodes from
 which the product generates test input in the form of activity sequences

• General Modeling with Grammars
No known commercial products that generate “language strings” for

arbitrary grammar specifications

Usage Models — 4.30
© 1999 Software Quality Engineering v5.0

Usage Grammar References

Maurer, Peter M. “Generating Test Data with Enhanced Context-Free
Grammars” IEEE Software July 1990 pp. 50-55

Miller, B.A. and Pleszkoch, M.G. “ A Cleanroom Test Case Generation
Tool” in Poore, J.H. and Trammell, C.J. Cleanroom Software
Engineering: A Reader, NCC Blackwell 1996 pp 269-286

Usage Models — 4.31
© 1999 Software Quality Engineering v5.0

What Test Designers wish4 from SW Models

• Wish 1 - Function Inventories with
Semantics

• Wish 2 - Behavior Rules

• Wish 3 - Explicit Usage Patterns

• Wish 4 - Surface Structure
– UI Maps

– Data Dictionaries

Usage Models — 4.32
© 1999 Software Quality Engineering v5.0

User Interface Maps

• GUI maps

• Web-site maps

Usage Models — 4.33
© 1999 Software Quality Engineering v5.0

Graphical User Interface Maps

• Access map for the set of windows in a
GUI showing which windows are
accessible from which other windows and
the set of ways to accomplish this access

• Property lists showing the objects in each
window and their types

This is essential navigation information

Usage Models — 4.34
© 1999 Software Quality Engineering v5.0

Data Specs

• Data grammars - can describe
any data structure, but best used for
data with significant structural
variation

• Hierarchic data definitions -
used for data with few structural
variations (they are really simple
grammars)

Usage Models — 4.35
© 1999 Software Quality Engineering v5.0

Example of a Data Grammar

message → header + body + trailer

header → msgid + formcode

body → packet

trailer → packetcnt + hashtotal

msgid → digit

digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

formcode → BIN | INT | HEX

packet → base + extension

5

7
1

3
0

Usage Models — 4.36
© 1999 Software Quality Engineering v5.0

Hierarchic Data Definitions

A description of a fixed data pattern
(i.e., a fixed parse tree)

1 Packed Message

2 Header

2 Body

3 Packets (1 to 7)

2 Trailer

Traditional input to test data generators

Usage Models — 4.37
© 1999 Software Quality Engineering v5.0

What Test Designers wish5 from SW Models

• Wish 1 - Function Inventories with
Semantics

• Wish 2 - Behavior Rules

• Wish 3 - Explicit Usage Patterns

• Wish 4 - UI Maps & Data Dictionaries

• Wish 5 - Linkage between Model and
Implementation

Usage Models — 4.38
© 1999 Software Quality Engineering v5.0

Name Association

• Specification of relationship between
model names and implementation names

• Reports in both directions

• Analyzers to report unrelated or
ambiguous names

Usage Models — 4.39
© 1999 Software Quality Engineering v5.0

5 Wishes about SW Models

To Support Automatic Test Generation
• Wish 1 - Function Inventories with

Semantics

• Wish 2 - Behavior Rules

• Wish 3 - Explicit Usage Patterns

• Wish 4 - UI Maps & Data Dictionaries

• Wish 5 - Linkage between Model and
Implementation

Usage Models — 4.40
© 1999 Software Quality Engineering v5.0

Automatic Generation - Today

Software
Model

Construction

Automatic
Procedure

 Generation

Test Procedures
Mercury
Rational
Segue

.

.

Use cases and
state models

Natural Language
description of usage

and behavior

Usage Models — 4.41
© 1999 Software Quality Engineering v5.0

Automatic Generation - Tomorrow?

Software
Model

Construction

Automatic
Procedure

 Generation

Test Procedures
Mercury
Rational
Segue

.

.

Semi-formal
descriptions of usage,
behavior, & structure

Natural Language
description of usage,
behavior, & structure

Functional
Test Case &
Procedure
Language

FTCPL
Translators

This part is
Wishware

Style Sheet for Unlimited Entry Decision Tables

Limited Entries Considered Harmful

Use Unlimited Entries

Condition Columns (header & entries)

– Name object attributes or attribute relations (e.g., stock level vs reorder
point) in the header. Object attributes can be named explicitly (e.g.,
Customer type is) or implicitly by listing mutually exclusive values of the
implied attribute with the object (e.g., Customer is: Person, Non-Person).

– Place mutually exclusive values of attributes or relationships (e.g., Below or
At) as disjunctive conditions that can be TRUE in the individual entries

– When possible, combine all conditions that result in the same set of actions
into a single column using disjunctive entries

– Never use [1, 0], [T, F] or [Yes, No] in an entry. When the situation is
binary, use explicit condition names (e.g. Switch is: Open, Closed)

– Every possible condition should appear in some entry -- perhaps implicitly
in an empty entry (see below) or an ‘otherwise’ rule

Action Columns (header & entries)

– Name individual actions or groups of actions in the header in <verb, object>
format and indicate inclusion with verb or name specific action modifiers in
the individual entries

e.g., Reorder stock Reorder Reorder
 or e.g., Pack order Full Partial

– Group actions that are mutually exclusive i.e., at most one at a time

– Group actions that are completely independent i.e., can occur in any
combination

– Prefer groups of actions

Decision Rules

– Use precise application terminology

– When the truth values of one or more condition entries implies the truth
value for another (dependent) condition, that implied value should be
specified and then marked as dependent in some way.

– Develop a dictionary to provide precise definitions for application objects,
attributes, values, relationships, actions, and conditions as well as
dependencies between sets of conditions.

– For a decision rule, if no condition associated with a specific header is
relevant to the rule, then the entry for that header should be empty. This
empty entry is interpreted as the disjunction of all possible conditions for
that header. The empty entry may be represented by a blank cell or one
containing a symbol for emptiness to signal that the value has not been
overlooked, but analyzed to be empty.

– Each condition should correspond to an appropriate set of actions i.e., the
rules should be correct

– Every possible situation should have an applicable rule i.e., the set of rules
should be complete

– No two decision rules should apply to the same situation i.e., the set of rule
conditions should be mutually exclusive

– When constructing or modifying a decision table, these properties should be
checked

A Construction Process for Unlimited Entry Decision Tables

1. Identify and name every action (e.g., display record) that might be included in the
behavior model. Choose liberally.

2. Identify and name every object attribute (e.g., input validity) and its associated set of
values (e.g., [valid, invalid]) that might determine (condition) performance of any of
the actions. Choose liberally.

3. Identify specific dependencies between groups of one or more conditions.

4. Specify a first-cut set of decision rules

5. Add actions and preconditions as necessary to make each decision rule correct and
fully descriptive.

6. Discard irrelevant actions and conditions.

7. Determine if two rules with identical action sets can be combined, either (1) by
combining the unmatched values of a single attribute with an “or”, (2) by expanding
the value sets of an attribute or (3) by introducing alternative attributes (i.e., by
thinking about the situation in a different way).

8. Review the final set of dependencies and rules for completeness and correctness with
domain experts and modify as required.

Abstract of Pass Orders System

This system is a partially automated front-end to a set of financial trading systems. The system handles
orders for securities (i.e., stock & bonds) as well as options (e.g., puts and calls). The system is fed by
electronic and manual order sources and feeds Traders, Derivative Options Trading (DOT) systems, and
Head Traders. It interacts with humans who provide manual orders as well as fix, authorize, or assign the
electronic or manual orders provided.

The system:
(1) accepts either manual or electronic orders,

(2) assigns an order number

(3) checks each order,

(4) supports the fixing of improper (invalid or unauthorized) orders that can be fixed,

(5) supports the assignment of proper, but unassigned, securities orders to a trader,

(6) rejects improper and unfixable orders to Head Trader
(7) passes proper options orders to an appropriate DOT system, and

(8) passes proper, assigned securities orders to a Trader

Terminology

Unassigned order -- trader id field is empty

Unauthorized order -- authorization field is empty

Invalid order -- order violates one or more validation criteria e.g., unrecognized security code, for data other
than assignment and authorization information

A User Population Diagram

Pass Orders
System

Pass Orders
System

Electronic Order
Source(s) -- P

Broker DOT
System(s) -- R

Manual Order
Provider -- I

Order
Fixer -- I

Order
Authorizer -- I

Order
Assignor -- I

Head
Trader -- R Trader -- R

Usage Diagram for a Simple Course

POSPOS

Electronic Order
Source(s) -- P

Trader -- R

Process
all OK (valid,
authorized,
assigned),

electronic, trader
Use Case

Usage Diagram for Process Uncorrectable

POSPOS

Electronic Order
Source(s) -- P

Head
Trader -- R

Process
uncorrectable

electronic
Use Case

POS Post-conditions

Candidate Pre-conditions

0 < # of orders to be processed

0 < initial order number

POS is operational (e.g., all providing & interactive users are available)

Candidate Post-conditions

[# orders passed to Traders + # orders passed to DOT systems
+ # rejected orders] = [# automated orders + # manual orders]

final order number – initial order number + 1
= [# automated orders + # manual orders]

all passed orders are valid, authorized, and assigned

all rejected orders are unfixable within POS

all unfixable orders are rejected to a Head Trader

all orders passed to a DOT system are option orders

all orders passed to a Trader are security orders assigned to that Trader

structure of every passed order is valid

contents of every passed or rejected order
= [contents of incoming order + order number]

[(time stamp on last message processed – time stamp on first message processed)
/ # of messages processed] < acceptable throughput threshold

Candidate Invariants

all orders are either manual or electronic

1 / 2

Pass Orders System
Decision Table, Unlimited Style

Rule
#

Order is:
Valid

Correctable
Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Order is:
Assigned

Unassigned

Order is:
DOT

(Derivative
Options
Trading)
Trader

Receive
order &
assign
order

number

Pass
OK

orders
to

DOT,
Trader

Support Reject

1 Uncorrectable --- --- --- X uncorrectable
2 Valid or

Correctable
Unoverrideable --- --- X unoverrideable

3 Correctable OVerrideable Unassigned DOT X DOT correction
overriding
assignment

4 Correctable OVerrideable Unassigned Trader X Trader correction
overriding
assignment

5 Correctable OVerrideable Assigned DOT X DOT correction
overriding

6 Correctable Authorized
or OTher

Unassigned DOT X DOT correction
assignment

7 Valid OVerrideable Unassigned DOT X DOT overriding
assignment

8 Correctable OVerrideable Assigned Trader X Trader correction
overriding

2 / 2

9 Correctable Authorized
or OTher

Unassigned Trader X Trader correction
assignment

10 Valid OVerrideable Unassigned Trader X Trader overriding
assignment

11 Correctable Authorized
or OTher

Assigned DOT X DOT correction

12 Valid OVerrideable Assigned DOT X DOT overriding
13 Valid Authorized

or OTher
Unassigned DOT X DOT assignment

14 Correctable Authorized
or OTher

Assigned Trader X Trader correction

15 Valid OVerrideable Assigned Trader X Trader overriding
16 Valid Authorized

or OTher
Unassigned Trader X Trader assignment

17 Valid Authorized
or OTher

Assigned DOT X DOT

18 Valid Authorized
or OTher

Assigned Trader X Trader

Dictionary of Objects, Conditions, & Actions

Pass Order System

Objects & Attributes

Order
Order Number

Objects & Conditions

Orders are:

Valid – security code and order quantity
are both valid

Invalid orders (not Valid) are:

Correctable – ???
Uncorrectable – not Correctable

Orders are:

Authorized – authorization code is valid
Unauthorized (not Authorized) orders are:

Overrideable – ???
Unoverrideable – not Overrideable

Other – ???

Orders are:

Assigned – trader id is valid
Unassigned – not Assigned

Orders are:

DOT – security type = derivative
Trader – not DOT

Actions

Receive electronic or manual orders
 Assign order number

Support order correction
Support authorization overriding
Support order assignment
Pass OK orders to traders or DOT system
Pass uncorrectable or unoverrideable orders

to head trader

Pass Orders System

Effect Tables, Unlimited Style

Receive
manual or
electronic

order

Assign
unique
order

number

X X

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Reject

R1 Uncorrectable ----- uncorrectable

R2
Valid or

Correctable
Unoverrideable

unoverrideable

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Order is:
DOT

Trader

Pass OK
orders to

DOT,
Trader

P1
Valid or

Correctable
Authorized

Overrideable
or OTher

DOT DOT

P2
Valid or

Correctable
Authorized

Overrideable
or OTher

Trader Trader

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Order is:
Assigned

Unassigned
Support

S1 Correctable
Authorized

Overrideable
or OTher

----- correction

S2
Valid or

Correctable
Overrideable -----

overriding

S3
Valid or

Correctable
Authorized

Overrideable
or OTher

Unassigned assignment

Pass Orders System

Extended Action Tables, Unlimited Style

Receive
manual or
electronic

order

Assign
unique
order

number

Post-Conditions

X X
Order received

& Order number assigned

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Reject Post-Conditions

R1 Uncorrectable ----- uncorrectable
Order rejected as

uncorrectable

R2
Valid or

Correctable
Unoverrideable

unoverrideable
Order rejected as

unoverrideable

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Order is:
DOT

Trader

Pass OK
orders to

DOT,
Trader

Post-
Conditions

P1
Valid or

Correctable
Authorized

Overrideable
or OTher

DOT DOT
Order is OK
& Order sent

to DOT

P2
Valid or

Correctable
Authorized

Overrideable
or OTher

Trader Trader
Order is OK
& Order sent

to Trader

Rule ID
Order is:

Valid
Correctable

Uncorrectable

Order is:
Authorized

OVerrideable
Unoverrideable

OTher

Order is:
Assigned

Unassigned
Support Post-

Conditions

S1 Correctable
Authorized

Overrideable
or OTher

----- correction
Order is

Valid

S2
Valid or

Correctable
Overrideable -----

overriding
Order is

Authorized

S3
Valid or

Correctable
Authorized

Overrideable
or OTher

Unassigned assignment
Order is
Assigned

