
Quality Quest
Software Quality Articles by

Linda G. Hayes

Originally published as a monthly column in

Magazine
Brought to you by

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 2
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Table of Contents

Table of Contents ... 2

About the Author .. 4

About WorkSoft, Inc. .. 5

To Win at Software Development, Change the Game ... 6

Maximizing Customer Coverage... 10

Management-Friendly Test Data .. 14

The Pain of Platform Possibilities ... 18

The Problem with Problem Tracking... 22

How to Achieve Effective Test Automation ... 27

Coder's Conundrum ... 30

The Data Dilemma: Test, Don't Experiment.. 35

Adopt a Winning Strategy... 39

Fractional People ... 43

The Irrational Ratio... 47

Testability Standards for Automation .. 51

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 3
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Checkpoint Charlie: The Hand-Off from Development to Test 55

Don't Take Anything for Granted in Component Development.................................... 60

Time-Boxing Your Way to a Better Product .. 66

The Confidence Game ... 69

When to Automate.. 71

The Big Lie ... 74

Process or Perish ... 77

The High Cost of Low Investment... 79

The Three Faces of Testing ... 82

Forget about "quality" ... 85

Don't Let Your Business Process Regress ... 88

Testing: No Easy Way Out ... 90

Boost Your Test Team's Value ... 93

The Truth About Automated Test Tools.. 96

The Tyranny of the Schedule.. 99

The Year 2000 and the S&L Crisis ... 101

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 4
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

About the Author

Linda G. Hayes
linda@worksoft.com

As one of the nation's premier computer software entrepreneurs, Linda G. Hayes of

Dallas stands out as a leading authority on software testing tools.

Linda, founder and former chief executive of the pioneering testing company

AutoTester Inc. of Dallas, is now helping leading firms deal with the rapid shift to an

electronic marketplace through a new company she has co-founded, WorkSoft Inc.

Linda has degrees in accounting, tax and law, is a CPA and member of the Texas

State Bar. In 1982 she founded Petroware, an oil and gas accounting software vendor,

and in 1986 co-founded Software Recording Corporation, the parent company of

AutoTester.

She writes a monthly column, "Quality Quest," for Datamation magazine, speaks

frequently at industry conferences, and is an often published author. She published the

"Automated Testing Handbook", a guide to evaluating, implementing, and managing

test automation tools. She also served as co-editor with Alka Jarvis for "Dare to be

Excellent", which details best practices in actual case studies.

Linda also offers public courses on Automated Test Suites for Software Quality

Engineering.

To read more of Linda Hayes’ published work visit
www.worksoft.com

mailto:linda@worksoft.com
http://www.worksoft.com

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 5
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

About WorkSoft, Inc.

WorkSoft, founded in 1998 by the industry's leading experts in software test

automation, provides an automated approach to assuring that complex business

systems are certified for production readiness.

The combination of the Certify™ repository, Business Process Certification™

methodology and Solution Set of services is the ultimate answer to enterprise-level

automation across applications, platforms and test tools.

Certify™ transcends existing scripting technologies that are hard to learn and almost

impossible to maintain. It requires no programming expertise; business users can

become productive in a matter of hours, not days or weeks. When changes are made

to applications, Certify™ automates maintenance through a unique facility that detects

application changes, then provides impact analysis to identify and correct affected

processes.

Certify™ supports WorkSoft's revolutionary approach to operations assurance,

Business Process Certification™. This new philosophy and approach challenges

traditional thinking about software testing and presents a model that makes sense and

works in the real world of shrinking schedules and increasing risk.

WorkSoft's customers include some of the largest financial services and electronic

commerce firms in the world. If your business operations rely on quality systems to

survive, we can help.

To learn more about Certify visit www.worksoft.com

http://www.worksoft.com

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 6
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

To Win at Software Development,
Change the Game
by Linda G. Hayes

Originally published in Datamation magazine, July 1999

In order to succeed in developing software, you've got to discard old-fashioned

methods and mindsets and come up with new ways to create good software.

Without exception, software developers and testers at every company I've ever worked

in or with have harbored the belief that they--and they alone--are victims of uncaring

management, undefined requirements, unreasonable customers, and absurd

schedules, while other companies are developing and testing their software the "right"

way.

Well I have news for you. Everyone, everywhere is in the same situation. The next

company I see that has an orderly, timely, formal, and effective approach for

developing software will be… the first. Don't get me wrong, lots of companies are

making valiant attempts to define their development processes and stick to them, but

somehow, somewhere, it all goes by the wayside.

Instead of clinging to the old systems-development life
cycle because it makes sense--or used to--reorient your

thinking to today's conditions.

The fundamental question is, why?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 7
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The good old days

Although we all laugh about how the mainframes of yore can fit on a chip today, the

fact is, software development in the past was a far more disciplined process.

Flowcharts, diagrams, and coding pads existed for a reason: At one point in time,

people actually used them. Application development was approached as a scientific

discipline and was commenced only after extensive analysis, planning, and design.

Testing was equally systematic, with methodical techniques for deriving test conditions

and cases. Computer programmers were revered as geniuses.

So what was different then?

It all comes down to time. In the early days, computers were new, and they were

replacing tasks already being done manually. Accounting, for example, was commonly

automated first. Because it was all so new and because there were manual alternatives

in place, software could be developed over a two-to-three-year period and no one

thought anything of it. Development took as long as was required to get it right.

The bad new days

Today, of course, 90 days is the norm for development cycles. Computers have

infiltrated every aspect of our lives and company operations, forever changing the way

we conduct communications and commerce. Software is a competitive weapon, used

both offensively and defensively: If your competitor announces a new billing plan or

fare-pricing program, you've got to respond quickly or risk losing business.

Software is a competitive weapon: If your competitor
announces a new billing plan or fare-pricing program,
you've got to respond quickly or risk losing business.

Ironically, this collapse in the timeline for development is exacerbated by an expansion

of complexity in technology, a byproduct of advancement. The number of variables

involved in hardware, software, and the applications they support now, compared to

then, is orders of magnitude greater. So we've got more to do and less time to do it in.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 8
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

And there you have it. It's not that everyone forgot how to do it right, or developed bad

attitudes or sloppy practices, it's just that economic realities have forever changed. You

can't win this game playing by the old rules.

What can you do about it?

Start by changing your beliefs. Quit castigating yourself, your company, your

coworkers, and your customers for failing to adhere to principles that have all the

immediacy and relevance of dinosaur mating rituals. Accept the fact that it's a new

world and software is organic instead of static; that it's part of a continuous flow of

economies and realities reflecting the state of commerce and not the state of the art.

Next, change your approach. Instead of clinging to the old systems-development life

cycle because it makes sense--or used to--reorient your thinking to today's conditions.

It's like changing from a marathon runner to a sprinter--it takes a completely different

strategy and approach to succeed. Here are a few tips:

Become a team player. There is no substitute for a cross-functional team that includes

marketing, development, testing, training, documentation, and support personnel. Act

and think like a sports team: Everyone plays their position but covers for everyone else

when necessary, and everyone wins or everyone loses.

Ask your customers to join the team. Instead of being treated as outsiders and critics of

the product, customers should be insiders, participants to the whole process. If you sell

your product to other organizations, recruit "alpha" sites to join in. This sense of

ownership will help you--and your customers--make critical decisions about priorities,

risks, and schedules. You'd be surprised how practical customers' demands become

when they see what is actually involved.

Release early and often. Traditional wisdom says it's better to wait until all of the

functionality is ready before releasing the product. These days, it's better to add

functionality incrementally, in the smallest possible pieces that will still work and make

sense. This gives you faster feedback and allows you to incorporate design changes

before the product is too far along.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 9
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Pace yourself. Once you realize that every schedule will be a crunch, you'll stop

believing you can kill yourself today and recover later. Later will never come. Instead,

work hard and be just as aggressive about maintaining balance in your life. It will

greatly improve your productivity and your attitude.

Measure what you do, not what you don't do. It's a crime to measure a product by its

defects--it completely ignores what it does well. Software is never perfect, and it never

will be. Instead, focus on what you achieved in terms of new functionality, problems

corrected, and performance enhanced. This doesn't mean you should turn a blind eye

to defects, just realize that they are only one small measure.

Simply put, the rules have changed. So, change your game and the way you play it.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 10
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Maximizing Customer Coverage
by Linda G. Hayes

Originally published in Datamation magazine, June 1999

Customer coverage testing means discovering how your software is actually being

used and testing it that way.

In my April 1999 column, "The pain of platform possibilities," I discussed the

impossibility of testing all the conceivable combinations of supported platforms. I also

introduced the concept of certified vs. supported platforms as a strategy for identifying

what can reasonably be tested internally and what should be supplemented with beta

programs or risk mitigation strategies.

The next issue you are confronted with is what you can really test within the subset of

certified platforms. Or, even if you support only one platform, what is realistic to expect

in terms of test coverage? The word realistic is the operative word, by the way,

because objectives like 100% test coverage are laughable in most cases.

Don't believe me? Let's do the math again.

Believe it

Let's say you are testing a file transfer system that supports six platforms, either

sending or receiving, and on each platform you support three operating systems and

two versions of each. Within each platform you have four protocols, five file formats,

minimum and maximum file sizes, encrypted or nonencrypted, plus two different flavors

of receipt confirmation.

Customer coverage testing means discovering how your
software is actually being used and testing it that way.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 11
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Furthermore, let's assume you have reduced the scope of the test effort by agreeing to

certify only four platforms and one version of each operating system per platform, and

it takes you 45 minutes to configure a single source-target platform combination and 15

minutes to actually set-up, send, and receive a particular file, then check the results.

How many test cases and how much time do you need to test 100% of the possible

combinations and only the valid boundaries?

I get 23,040 individual tests, which would require about 168 person-weeks if you get

seven productive hours per day--and that's a stretch. You could probably automate a

lot of this, but even that takes time and effort to develop and maintain. If you start

adding in equivalence classes, including positive and negative cases, the number goes

off the charts.

This is a fairly straightforward application. I don't know of that many companies--in fact,

let's say none--that can afford this level of effort on a routine basis, although I sincerely

hope those who are testing the software controlling weapons of mass destruction can

and do.

Face it

My point is not to spread defeatism, but to simply expose the truth. Testing every

possible combination of every factor is just not realistic. If you set this as your goal, or

allow others to, you are doomed to fail and suffer.

Understand, I'm not against full coverage or high quality, but I am against setting

unrealistic expectations that lead to disappointment, demoralization, and--ultimately--

turmoil and turnover in the test department.

So the sane approach to test coverage is to devise a means of getting the most return

on the time you are able to invest. This translates into reducing the most risk as

opposed to achieving the most coverage.

The next question is, how?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 12
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Analyze it

Start with the most basic of all questions: Who are your customers? That is, who will be

using this system, and what will they be doing with it? Most likely your customer

support area can tell you this or, if not, perhaps the sales and marketing department. If

you have to, review the sales contracts to see what has been sold.

I'm not against full coverage or high quality, but I am
against setting unrealistic expectations of test coverage
that lead to turmoil and turnover in the test department.

For example, an electronic commerce company discovered that most of its customers

were financial institutions and that the overwhelming majority of them (85%) operated

mainframe platforms running OS390 and using the SNA protocol. And, when

researched further, it found that a single file format and encryption option (an industry

standard) accounted for 90% of all file transfers.

This is a different kind of coverage. Instead of code or feature coverage, we'll call it

"customer coverage."

Customer coverage

Customer coverage means discovering how your software is actually used and testing

it that way. The easiest way to define coverage is to build user or customer "profiles"

that describe a particular customer configuration and their typical activities. These

profiles might be centered around industries, geographies, or other identifiers that

affect the type of customer and how they use the software.

This has some interesting benefits. The first and most obvious is that it forms a natural

basis for prioritization: you know what to do first and how to allocate your time and

resources. It prevents you from wasting resources by trying--and failing--to test

everything in every possible way. Instead, you make absolutely sure that the activities

you know for a fact are critical are, in fact, thoroughly tested.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 13
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The second benefit is a little more subtle. Let's say you are running out of time to

complete the test effort and it's critical to make the release date. If you have prioritized

your test effort around customer profiles, you could do a "rolling release"--ship only to

those customers whose profiles have been tested. That way, it's not all or nothing. If

most of your customers fit into a particular profile, you can ship to most of them on time

and only delay shipping to the minority of customers who fall outside the tested profile.

The third benefit is longer term but potentially very valuable. If you adopt this practice,

it should lead to better information collection about your customers and how they use

the software. Once you understand your users better, you can prioritize enhancement

requests, new features, even bug fixes the same way--identify where you should

allocate your development and test resources by achieving the highest rate of return in

terms of lower support costs and higher customer satisfaction.

This entire approach also gives you a framework for incorporating reported problems

into your test plan. Instead of just a "bug" that ends up multiplying as a new test

throughout all of your test plans, you determine which customer reported it, what profile

they fit into--or if you need a new profile--and add it there.

The goal is to continue to define and refine your test process so you know what to test

and why, as well as what not to test and why. This is the only way to establish a basis

for measuring, managing, and improving your test effort in a realistic--and achievable--

way.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 14
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Management-Friendly Test Data
by Linda G. Hayes

Originally published in Datamation magazine, May 1999

Give management test metrics that measure the two things closest to an executive's

heart: Time and money.

Metrics are trendy, and rightfully so: You can't manage what you can't measure. The

problem is, almost all of us have slaved over collecting, formatting, and presenting vast

storehouses of information that no one ever reads or comprehends, let alone acts

upon. In our zeal to educate management about what we are doing, we end up

inundating them with reams of reports that often simply confuse them.

Correlate all of your metrics into time and money.

The problem is not providing a quantity of information; it's providing the right

information. The solution is to know what managers want to know and why they want to

know it.

What's important?

A 1997 industry survey of software test organizations revealed an interesting paradox.

When respondents--the majority of whom were in management--were asked to rank

their most important objectives, first place went to meeting schedule deadlines and

second place to producing a quality product. In a later question, when asked what their

highest risk and cost were, based on past experience, first place went to high

maintenance and support costs and second place to cost and schedule overruns.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 15
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Let's analyze this. Management's first priority is making the schedule, and their second

is delivering a good product. Sometimes, this translates into sacrificing quality to make

the schedule. On the other hand, experience shows (but apparently doesn't teach) that

they encounter higher risks and costs from maintenance and support of low-quality

products than they do from exceeding the schedule or budget.

Get it? Neither do I.

Why is it important?

The one clear thing is that management cares about time and money, and that makes

sense. Most managers are measured on how well they meet their delivery schedules

and their budgets. What seems to escape us, consistently, is the interplay between

these two: If you meet the schedule but deliver a defective product, you spend more

money trying to support and maintain that product.

Why is this painfully evident relationship so obviously ignored? Because of the

imagined differentiation between development and maintenance. Few, if any,

companies actually associate their maintenance and support costs with the sacrifices

made to meet the production schedule. If you ship the product as scheduled, you

"made it," regardless of whether that product boomerangs into a maintenance

nightmare.

The most eloquent--and dramatic--example of this was when the new CEO of a

software company asked me to review its operations to help him discover the reason

why costs were increasing and revenues decreasing. After a couple of days of

interviews, the mystery was solved. The company's budget for customer support was

more than the budget for development, testing, training, and documentation combined.

Why was support so expensive? As the harried customer support manager explained

it, the company had a huge backlog of bugs, some of which were actually years old,

and these generated thousands of phone calls which her team was obliged to field.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 16
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Time and money wasted in support and maintenance on
poor quality software could be reinvested in more

resources to deliver new, high-quality products on time.

Why so many bugs? Because there weren't enough developers to maintain the

products. Why not enough developers? Because there wasn't enough money to hire

more. Why not enough money? Because support was so expensive. Why not increase

revenues? Because they didn't have enough developers to create new products.

Get it? So did the CEO.

How do you say it?

It all comes down to this: How do you measure this phenomenon and communicate it

in such a way as to have management understand and--most importantly--care?

Unfortunately, I cannot point to a magic answer. If you have one, send me an e-mail

and I'll tell the world.

Until then, do the only thing you can do: Correlate all of your metrics into time and

money. At a minimum, track the issues that arise after shipment and correlate them to

the ones you either knew you shipped or could have predicted because you didn't

finish testing. Remember, the number of reported problems is the number of defects

multiplied by the number of customers who find them. So, shipping a single known

defect can cause hundreds of problem reports.

The next trick is to convert this information into time and money. Money can be

determined if you know the following:

• What the budget is for customer support and maintenance;

• How many problem reports are fielded.

• And how many fixes were made.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 17
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Time is harder to convert, of course, because you have to know how long it takes to

field a call, make a fix, test it, and ship it. If you have a robust problem-tracking system

you may have this information. If you don't, add up the manpower spent in

maintenance and support and convert that into time.

Be sure to make the point that the time and money wasted in support and maintenance

on poor quality software could be reinvested in more resources to deliver new, high-

quality products on time.

The point

The real point, of course, is to understand your audience. Management cares about

time and money, in that order. Present your metrics in such a way that you can

correlate what you are measuring to what it costs--or saves--in time and money. All of

the graphs, charts, and tables in the world won't matter without metrics that make

sense.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 18
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Pain of Platform Possibilities
by Linda G. Hayes

Originally published in Datamation magazine, April 1999

Just because the software your company develops runs on many platforms doesn't

mean that every possible configuration can or should be tested.

While component-based architectures allow software developers to create applications

that support many different databases, servers, and operating environments, they

create a quality quagmire of nightmarish proportions for software testers.

The reason? It may take the same effort to develop an application for any ODBC-

compliant database as it does for just one, but it takes a geometric multiple of that

effort to test it because each and every database--in each and every potential platform

configuration--must be tested. Different databases may have different reserved

keywords, different sub- or supersets of ODBC support, or different constraints in

different environments. Thus, each and every combination of all the elements must be

tested together in order to truly assure quality.

"You mean to tell me you aren't even going to test the
server platform that is used by the customer who signed

our largest deal last quarter?!" he bellowed.

Do the math. If your application supports four different databases on six different

hardware platforms under three different operating systems, you are looking at testing

the same application 72 times! Throw in other variations, like middleware or network

protocols, and you are in the stratosphere for test time.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 19
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Under such circumstances, any competent, thorough software tester who takes pride in

shipping a quality product is doomed to be frustrated no matter how hard he tries. Not

only is it impossible to test every single configuration possibility with the time and

resources available, I have worked with several companies where the test group

doesn't even have access to all of the supposedly supported platforms. As a result,

customers uncover critical issues in the field, which is the most expensive place to fix

them.

The odds are against reining in marketing or sales by limiting the platforms, since that's

where the money is. What to do?

Define your terms

To defend its borders, the test group must define them. This means it must be clearly

stated, accepted, and communicated to all concerned, both internally and externally to

customers, which configurations are, in fact, tested and which are not. This frees the

test group from spending all of its time explaining why--of the dozens of ones it did test-

-it did not test the exact one the customer is screaming about.

I recommend organizing around the concept of "certified" versus "supported"

configurations. A "certified" configuration is one that is actually tested, while a

"supported" configuration is one the company agrees to accept responsibility for

resolving if it fails. This distinction is important for three key reasons: It defines the

platforms within the scope of the test effort; it identifies the potential risk of those out of

the scope; and it enables a mitigation strategy for those risks.

Certified configurations

The beauty of precisely defining which configurations the test group will actually test, or

certify, is it reveals to the rest of the organization the cold realities of what testing is up

against. For example, I was reviewing the certified configuration list with the sales VP

for a financial services software company when he was shocked to discover that the

test group was not going to test the server platform of a customer. "You mean to tell

me you aren't even going to test the server platform that is used by the customer who

signed our largest deal last quarter?" he bellowed. "Why the ---- not?"

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 20
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

I smiled. "Because our purchase request for a test server was denied." He looked

astounded, then promised to get us access to one, somehow.

"Great," I said. I was now on a roll: "But there's one more thing. I either need two more

people, or two more weeks in every test cycle to cover this additional platform."

Having just been the victor in a bloody battle to get development to agree to support

this very server so he could book the sale, he was furious. "Why didn't someone tell me

this before?" Again, I smiled. "No one asked the test group."

I am confident this scene plays out every day in many corporate enterprises. Adding

support for a new platform is not just a development issue, it's a testing and support

issue. In fact, you can compare the development effort to having a child: it may take

nine months to develop it, but testing and support have to raise it for the next 18 or

more years as it goes through every patch, release, and version of its life.

Supported configurations

Once you have identified the certified configurations, anything else marketing wants to

sell becomes "supported." This means that although the company doesn't represent

that it has, in fact, tested a precise configuration, it agrees to accept responsibility for

resolving any issues that arise.

The ultimate benefit of clarifying what the company will
test and what it won't is that it gives everyone a chance

to mitigate risk.

At first this may sound like a PR problem, but in reality it's a plus. If the customer has a

problem with a supported environment, it doesn't automatically raise the question of

whether the company tests anything at all. Without this distinction--and we've all heard

it before--when a customer uncovers a major problem with an obscure combination, he

immediately freaks out and questions the competency of the test organization

altogether. For most battle-weary testers, this can be a morale killer.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 21
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

With supported environments, at least there's notice up front about what the company

is committing to test versus what it's willing to take responsibility for. As a result, the

customer realizes the risk it's assuming in adopting this configuration.

Mitigating risk

The ultimate benefit of clarifying what the company will test and what it won't is that it

gives everyone a chance to mitigate risk. If company officials are concerned a key

account is at risk because its configuration is not certified, they can mitigate that risk in

one of two ways: One, they can invest in additional time and resources to cover that

configuration; or, two, they can include the account in the beta program.

In fact, customers with supported configurations would be ideal candidates for early

release. This would allow the test organization to extend its coverage without bloating

staff or costs, and it would allow customers whose configurations are at risk to

participate in the test process.

The point is, it's wrong to simply assume that test organizations can fully test every

platform and every possible configuration the software can potentially run on. Both the

company and its customers should be fully informed--and the test group fully equipped-

-to deal with the risks posed by the many potential platform possibilities. That way,

testers have a hope of meeting quality expectations, because they will be both clearly

defined and, more importantly, actually achievable in the real world.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 22
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Problem with Problem Tracking
by Linda G. Hayes

Originally published in Datamation magazine, March 1999

Putting a system in place to follow up on software management issues is harder than

you think.

Just when you think you have a handle on your development and testing processes,

you realize you really don't. Now, you find out you need a robust means of managing

the issues that arise from building and supporting your own software. Sometimes these

issues are outright bugs, sometimes design flaws, and sometimes enhancement

requests. But whatever their nature, you need an orderly way of tracking their

existence, status, and disposition.

Putting a system in place to follow up on software management issues is harder than

you think.

Just when you think you have a handle on your development and testing processes,

you realize you really don't. Now, you find out you need a robust means of managing

the issues that arise from building and supporting your own software. Sometimes these

issues are outright bugs, sometimes design flaws, and sometimes enhancement

requests. But whatever their nature, you need an orderly way of tracking their

existence, status, and disposition.

What starts out as an innocent problem-tracking product
acquisition often turns into yet another development and

administration commitment.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 23
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

You probably already have a tracking system of some kind in place: usually a

homegrown database or customized groupware. And you may even have several of

these systems sprinkled throughout different departments. The odds of keeping these

homegrown systems maintained and supported--not to mention enhanced--is a full-

time job with only part-time resources. You discover that it's not as simple as

maintaining a database of reported or requested items. In addition, you must

incorporate company policy about who is notified and when, what the workflow and the

service levels are at each phase, who participates in prioritization, and who decides

when an item can be closed. Whether this is done centrally through IT or at the

individual project level, it requires ongoing support for new platforms, technologies, and

features.

To tackle these and other issues, you decide to acquire one of the growing number of

commercially available problem-tracking solutions. But what starts out as an innocent

product acquisition often turns into a politically charged process, and yet another

development and administration commitment. How does this happen, and what can

you do about it? At least one experienced survivor has some observations and advice.

The search

Take the case of Tyler Barnett, the staff engineer at Lexmark International Inc., who's

been responsible for the company's IT problem-tracking system over the past 10 years.

Lexmark, based in Lexington, Ky., started out as IBM's printer division and now

develops and manufactures printers, supplies, and supporting software. "Our system

originally ran on an IBM VM mainframe, then it was ported to an X-Windows

client/server application in the early '90s," he says. "The needs of the business have

changed, and workarounds we used to keep the old application going couldn't be

extended any longer, especially since [the app] was not Y2K compliant."

Barnett originally planned to develop a custom, Web-deployed system, but he realized

that the requirements would keep growing and, with the Year 2000 looming as a

nonnegotiable deadline, it was unlikely he would be able to complete the development

and conversion to a customized system in time. Instead, Barnett assembled a

shopping list of requirements and went out to buy a packaged, but flexible, solution.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 24
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

His list included security, accountability, file attachments, and improved performance,

as well as additional fields and more flexible workflow management. External vendor

access to problem tracking was important to Lexmark. At the same time, the system

had to be able to restrict access within certain groups such as some vendors or

developers. Web access would be a major advantage, with the ability to broadcast

information among the responsible parties instead of requiring them to drill down in

search of it.

According to Barnett, "Whatever I did, I wanted to deploy a single system that could be

used by everyone. I didn't want to glue disparate tracking systems together or maintain

them. Yet, management also wanted to see everything from one viewpoint." Obviously,

this was quite a challenge.

The solution

Eventually Barnett chose TeamTrack by TeamShare Inc. of Colorado Springs, Colo.

But while making the product selection might seem like the conclusion of the process, it

was actually only the beginning.

"We went into production after only two months," Barnett says, "but that [timeframe]

was driven by business requirements. I'd have stretched it a few months longer and put

more research and thought into the rollout." What he discovered was his company's

processes didn't necessarily map to the ones contemplated by the product. The "one-

issue, one-person" paradigm simply didn't fit the Lexmark business model, and neither

did the Web-page notification scheme. Barnett redesigned the e-mail interface to run

as an outside process, and he's still working on a group-based workflow approach.

Some degree of customization is inevitable, so plan for
it. If you expect to "install and go" out of the box, you

will be disappointed.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 25
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Barnett's experience is more the rule than the exception. A packaged product cannot,

as a practical matter, accommodate the wide variety of ways and means in which

companies manage their development processes, not to mention the technical

landscape in which it's installed. Some degree of customization is inevitable, so plan

for it. If you expect to "install and go" out of the box, you will be disappointed.

The results

For Barnett, the good news about buying TeamTrack and investing in the

customization is that it was worth the effort. "We have enjoyed significant positive

impacts from the new system," he notes. "The file attachments capability fixed a time-

lag problem by getting failing test cases into the hands of the developers. Previously,

we had to describe where the test case lived and how to get to it, and we lost a lot of

time because of this."

Reporting and analysis have also been enhanced. Instead of exporting the data into

spreadsheets and creating their own charts and graphs, the new system provides

users with built-in reports as well as enhanced spreadsheet interfaces. Search times

are dramatically reduced with a relational database, and Barnett expects to see a

reduced client-support workload, since the new system uses HTML/Javascript instead

of X-Windows, which is harder to support.

The light at the end of Barnett's tunnel is when he completes the training for about 30

administrators in the weeks ahead so they can begin to determine their own area's

destiny. At that point, he can transfer daily administration of the system to

administrators and concentrate on server support, maintenance, and policy.

The lessons

As Barnett's experience proves, acquiring a packaged product for issue and problem

management is a smart move, but not a free ride. You'll probably save time by keeping

the old system patched and glued together while you spend time gathering

requirements and finding a product that meets your company's needs. Then you will

still have to incorporate the nuances that make your company's internal processes

unique.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 26
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

So while the IT department may never be free of maintaining and supporting an issue-

and problem-tracking system, daily administration can be given to the project groups,

which accomplishes the ultimate goal: to put project groups in control of their own

destiny. And, of course, you will also reap the benefits of improving your processes.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 27
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

How to Achieve Effective Test Automation
by Linda G. Hayes

Originally published in Datamation magazine, February 1999

For all the cautionary horror stories about shelfware in test automation, there are

success stories that remind us why we keep trying. This is one of them.

Harbinger Corp. is a worldwide provider of electronic commerce software, services,

and solutions, specializing in the traditional electronic data interchange (EDI) field and

trying to establish itself as a provider of secure Internet commerce tools and services.

Headquartered in Atlanta, Harbinger boasts more than $120 million in revenues, more

than 1,000 employees, and almost 40,000 customers worldwide. It needs to support

customer whose machines range from desktops to mainframes, which poses a testing

challenge for covering not only functionality but also interplatform compatibility.

Only two years ago, testing was performed part-time by an employee who was also

responsible for software distribution. However, growth quickly rendered this impractical,

and part of the funds expended for acquiring two new companies was earmarked to

invest in quality. Karl Lewis, manager of software process and methodology, was put in

charge of leveraging this investment to increase the coverage and consistency of the

test process.

The plan

Lewis quickly identified test automation as a primary objective. With five different

server platforms to be tested and over 3,000 individual tests to perform, automation

was the only practical means of getting the job done. Aware that he didn't have the in-

house expertise to automate and wary of the potential learning curve, Lewis selected a

local consulting firm with expertise in automation to assist him with tool selection and

implementation.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 28
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

No matter how elegantly designed or developed, a test
script built without application understanding is

worthless.

One of the factors in his selection of a consulting firm was the proposed

implementation approach. Instead of writing test cases as "scripts," or programs, Lewis

preferred using a table-based technique where the test cases are stored as data

parameters that are then executed by a script framework. This shields those writing

test cases from the scripting language, thus reducing the learning curve and enabling

ease of test-case maintenance.

Further, unlike most companies that are testing the newest graphical environments,

Harbinger relies primarily on a text-based, command-line interface for invoking its

functions. This characteristic constrains the tool selection process, but it simplifies the

implementation process, as text interfaces are inherently less complex than graphical

ones.

With the implementation approach and test tool in place, the project was launched.

The project

One of the first--and most time-consuming--steps was to teach the consultants the

Harbinger EDI product, which is quite powerful and complex. Although the plan was to

acquire automation expertise from the consultants, it was actually more difficult to

transfer the Harbinger product expertise to them. Harbinger's Karl Lewis managed the

project, and although he eventually hired a new full-time tester to take over the

automation effort going forward, he learned the hard way that he did it out of sequence.

"If I had it to do over again," says Lewis, "I would have hired and trained my new tester

on our products first and then let that person learn automation from the consultants.

After all, the consultants were temporary, so the expertise they gained on our products

was lost."

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 29
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

This lesson is learned too often by too many. Automation tends to focus attention on

the details of the test tool and the accompanying skills, which may eclipse the

importance of the critical skill that makes a good tester: domain expertise. No matter

how elegantly designed or developed, a test script built without application

understanding is worthless.

The results

The automation project at Harbinger was a success. The table-based approach proved

to be flexible enough to allow a single set of transactions to be executed against

multiple servers by simply changing switch settings. Test coverage improved five-fold.

When Harbinger acquired and integrated yet another product line, all of the test

development tools were in place.

Another important advantage is that other areas of the organization are able to

contribute to the test library. Customer-support personnel created test cases to verify

program temporary fixes (PTFs), and the developers are able to automate their nightly

build process. Harbinger's Lewis attributes this to the table-based approach as well as

to a "make-test" utility that automates much of the creation of the test cases by

populating a template with the variable parameters.

The future

Succeeding once is rarely the real problem with automation: one-project wonders

abound. The real challenge arises when there are changes either in personnel or the

application. "Turnover is tough," says Lewis. When you only have one dedicated tester,

automation continuity is difficult to maintain. Application changes can be functional or

platform-related, each with its own ripple effect.

Karl Lewis' experiences at Harbinger demonstrate a valuable lesson: Successful

automation of testing requires more than elegant test scripts; it requires application

understanding, too. It only makes sense that you must start with effective tests before

you can make them efficient through automation.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 30
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Coder's Conundrum
by Linda G. Hayes

Originally published in Datamation magazine, January 1999

If problems are found early in the software development cycle, they're easier to correct.

So reward your developers for writing lines of error-free code.

Like any QA bigot, I can be critical of developers who seem to favor speed over quality

when it comes to tracking bugs and testing during development. But, as in most cases,

there are two sides to this story, and once you understand each perspective it makes

the coder's conundrum clear.

In a nutshell, programmers are not trained, scheduled, or rewarded for testing. Testing

is not taught as part of the computer science curriculum--it's a distinct discipline from

both design and development. Schedules rarely allocate time for unit or integration

test, and since problems are seldom tracked by developers, there is no reward for

delivering well-tested code.

Coder's conundrum unraveled

Create a culture that values quality by implementing a few simple changes.

• Teach testing: Educate your coders about unit and integration testing.

• Allocate testing time: Allow more time for developer testing--it's worth it in

the long run.

• Track errors: Save time and rework by tracking who creates the bugs.

• Monitor productivity: Don't just measure developer productivity by lines of

code, measure it by lines of error-free code.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 31
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

• Reward: Recognize and reward those who produce the cleanest code. Add

quality objectives to their annual reviews.

"I'm measured by what I produce" in terms of lines of code, says a seasoned developer

in a mutual funds company, "not by the number of bugs" in the code. "My schedules

are always aggressive, so if I take extra time to test more thoroughly, I will be

penalized."

How does this happen? And, more importantly, what can you do about it?

Say what

Before we can expect developers to unit or integration test, we have to define what

they are and explain it to them. Take the time to answer questions such as:

• What constitutes a unit test? Where do integration tests begin and end?

• Must each developer verify all classes of input and output, valid and invalid,

as well as all error handling?

• Is 100% coverage required? Is it reasonable?

• Is it measured by lines of code, or must it include all possible pathways and

states?

While it may not be practical to launch a full-scale developer's education and training

program, small steps can make a big difference. For example, one financial services

company developed a simple unit test template that called for a list of each of the

categories of input and output, the rule(s) that affected them, the selected test values,

and the expected results. The developer completed the template for each unit, then--

and this is key--it was reviewed by a cross-functional team of user representatives, QA

staff, and development managers.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 32
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

This basic process yielded many benefits. Incomplete or missing requirements were

uncovered, thereby improving the programmer's understanding. The test templates

brought a consistency to the process and provided continuity to new developers whose

task is to maintain existing code. Perhaps most importantly, quality increased and the

cycle time to complete projects declined...but it wasn't free.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 33
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Say when

The cost of better unit and integration test is, of course, time. Unless time is allocated

and dedicated, testing won't get done.

In the case above, the formalization of unit testing added about 12% to the

development schedule but decreased overall cycle time by 30%. Why? Because the

problems were found early, so they were easy to correct.

So if you expect your developers to do a credible testing job, allocate the time for them

to do it.

Say thanks

I have always been bewildered by managers who refuse to track errors back to the

individual developers. I know all the reasons--we don't want to play the blame game, it

will discourage developers from taking on complex tasks, it won't reflect the variances

in difficulty among modules, and so forth--but I don't buy them. Ironically, testers often

know who the culprits are, but their own managers usually don't.

If you really believe that it's cheaper and faster for developers to find problems than it is

for testers or customers, then you should encourage them to do it. Measurement is a

great motivator. Recognize and reward those who produce the cleanest code. Add

quality objectives to their annual reviews. Create a culture that values quality.

While I don't advocate the use of error counts to hold anyone up to scorn and ridicule, I

do think they are excellent indicators of the need for training or discipline. At one global

consulting company, for example, the test group for an outsourced application

development project determined that almost 90% of the problems found during testing

originated with a single programmer. Upon investigation it became clear that the

individual had misrepresented his skills in order to receive, in effect, on-the-job training.

Whether the right decision is to remove the person or train him is not what's important:

what matters is that it's the wrong decision to simply ignore the numbers and thus pay

the penalty down the line in support and rework costs.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 34
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Say so

So instead of complaining about coders, come to their rescue. Help them help you.

Teach them about testing, give them the time to do it, and reward them when they do.

You'll probably be surprised to discover that they'll participate enthusiastically, since

I've never met coders who didn't take pride in their work...once they understood what it

was.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 35
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Data Dilemma: Test, Don't Experiment
by Linda G. Hayes

Originally published in Datamation magazine, December 1998

Make your test-data strategy an investment instead of an expense.

Unless you're ready to wear a white coat, carry a clipboard, and run a laboratory, you

have to get control of your test environment. After the software itself, the data is the

most critical element in gaining control. A basic tenet of software testing is that you

must know both the input conditions of the data and the expected output results to

perform a valid test.

If you don't know either of these, it's not a test; it's an experiment, because you don't

know what will happen. This predictability is important even for manual testing, but for

automated testing it's an absolute necessity.

Extract test data from production, seed it with known
data then archive it for reuse.

Gathering test data, in fact, is usually more than half the effort in creating a stable test

bed and the most problematic by far. For example, in an extreme case, testing an

airline fare pricing application required tens of thousands of setup transactions to

create the cities, flights, passengers, and fares needed to exercise all of the

requirements. The actual test itself took less time than the data setup.

Let's look at two opposing strategies for acquiring and managing test data and consider

the possibility of using the best of both.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 36
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Pulling from production

The most common test-data acquisition technique is to pull data from production. For

an existing application, this approach seems both logical and practical: Production

represents reality, in that it contains the actual situations the software must deal with,

and it offers both depth and breadth while ostensibly saving the time required to create

new data.

There are at least two major drawbacks, however. First, the test platform seldom

replicates production capacity, and so a subset must be extracted. Acquiring this

subset is not as easy as taking every nth record or some flat percentage of the data:

The complex interrelationships between files means that the subset must be internally

cohesive. For example, the selected transactions must reference valid selected master

accounts, and the totals must coincide with balances and histories. Identifying these

relationships and tracing through all of the files to assure that the subset makes sense

can be a major undertaking in and of itself.

The second major drawback of this approach is that the tests themselves and the

extracted data must be constantly modified to work together. The most basic tenet of

testing says we must know the input conditions for a valid test--in this case, the data

contents. Each fresh extraction starts everything over. If, for example, a payroll tax test

requires an employee whose year-to-date earnings will cross over the FICA limit on the

next paycheck, the person performing the test must either find such an employee in the

subset, modify one, or add one. If the test is automated, it too must be modified for the

new employee number and related information.

Thus, the time savings become illusory because there is no preservation of prior work.

All effort to establish the proper test conditions is lost every time the extracted data is

refreshed.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 37
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Starting from scratch

The other data acquisition technique is to start from scratch, in effect reconstructing the

test data each time. This approach has the benefit of complete control--the content is

always known and can be enhanced or extended over time, preserving prior efforts.

Internal cohesion is assured because the software itself creates and maintains the

interrelationships, and changes to file structures or record layouts are automatically

incorporated.

One technique for acquiring data allows for steady,
constant expansion of test data.

But reconstructing test data is not free from hazards. The most obvious is that, without

automation, it's highly impractical for large-scale applications. But less obvious is the

fact that some files cannot be created through online interaction: they are system-

generated only through interfaces or processing cycles. Thus, it may not be possible to

start from a truly clean slate.

Another compelling argument against starting from scratch is that data created in a

vacuum, so to speak, lacks the expanse of production. Unique or unusual situations

that often arise in the real world may not be contemplated by test designers. Granted,

this technique allows for steady and constant expansion of the test data as necessary

circumstances are discovered, but it lacks the randomness that makes acquiring data

from production so appealing.

The best of both worlds

As in most cases, the best solution to the problem of gathering test data is neither

extreme. The ideal scenario may be to begin with an extract from production, seed it

with known data, then archive it for reuse. This solution provides a dose of reality

tempered by a measure of control.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 38
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

This is the strategy adopted by a major mutual fund company to enable test

automation. Without predictable, repeatable data there was no practical means of

reusing automated tests across releases. Although much of the data could be created

through the online interface, such as funds, customers, and accounts, other data had

to be extracted from production. Testing statements and tax reports, for example,

required historical transactions that could not be generated except by multiple

execution cycles. So, the alternative of acquiring the data from production and

performing the necessary maintenance on the tests proved to be less time-consuming.

Once the data was assembled, it was archived for reuse.

It's still not easy. You must surmount the cohesion challenge, assuring that the subset

you acquire makes sense, and you must have an efficient means of creating the

additional data needed for test conditions. Furthermore, you must treat the resulting

data as the valuable asset that it is, instituting procedures for archiving it safely so that

it can be restored and reused.

Although a popular and sensible concept, reuse brings its own issues. For time-

sensitive applications, which many if not most are, reusing the data over and over is

not viable unless you can roll the data dates forward or the system dates back. For

example, an employee who is 64 one month may turn 65 the next, resulting in different

tax consequences for pension payouts. Luckily, in many cases exactly such

capabilities were left behind by Y2K projects.

Furthermore, modifications to file structures and record layouts demand data

conversions, but this may be seen as an advantage since--hopefully--the conversions

are tested against the test bed before they are performed against production.

As you can see, the data dilemma is not easily solved no matter which route you

choose, and the amount of time and effort will be significant in any event. What's

important to realize is that your test-data strategy is integral to the integrity of your

overall test process, and without a thoughtful and consistent approach it will be an

expense instead of an investment.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 39
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Adopt a Winning Strategy
by Linda G. Hayes

Originally published in Datamation magazine, November 1998

If you present risk assessment in terms that management can relate to, like loss of

business, full-coverage software testing doesn't have to be just wishful thinking. Full-

coverage software testing is possible; you just have to know which moves to make.

Planning for full software test coverage usually sounds like preparing only one strategy

for a championship chess match.

The assumption that you will have the opportunity to completely cover all of the

features and functions--both new and old--of the next software release sounds like

planning to win a game without considering your opponents moves. It's wishful, if not

downright naïve, thinking.

So why plan full-coverage software testing? For the simple, but compelling reason that

you can't assess a risk you haven't identified.

Once you've identified the risks, however, you can properly deal with the contingencies

and emergencies that routinely disrupt the best-laid plans. Only when you've mastered

all of the standard chess openings, can you adopt a successful strategy.

Setting up the board

A large West Coast bank was developing a new version of the system that supports its

loan officers in more than 600 branch banks. This system calculates effective interest

rates, interest payments, and maturity dates, as well as produces the host of

documents and disclosures required to initiate loans and collateralize them.

Because loans are the lifeblood of banking, this system is crucial, and a senior

manager was appointed to oversee the test effort. With extensive lending experience

as well as development savvy, she was in a position to understand the inherent risks in

both activities.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 40
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

What she wasn't familiar with, however, was software testing, and so she proceeded in

blissful ignorance to plan for 100% test coverage of all types of loans, collateral,

interest levels, and payment types. She even brought her technical background to the

fore by acquiring a test automation tool and developing a complete repository of test

cases that exercised the entire system, as she understood it. When the software

arrived, she was ready.

Opening moves

The first build had all of the warts to be expected: the installation process left out some

critical files, the configuration was incompatible with the platform, and there were

protection faults from time to time. But subsequent builds made steady progress and

eventually the software was stable enough to withstand the execution of the complete

test suite, revealing more subtle problems.

Because the bulk of the tests were automated, it was possible to establish a very crisp

schedule: the complete test process required approximately 76 hours to run if the

software was properly installed and configured, and if there were no hard crashes.

Reviewing the printed output--the actual loan documents--took another two days of

manual effort.

Attack

Build and test iterations continued, until the time finally arrived for the field test, which

was to be conducted at a subset of 40 branches that maintained a parallel process with

a combination of the old system and some manual procedures. After a 30-day burn-in

period the system was supposed to go live across the coast. Due to the high number of

branches, this was to be accomplished through a marathon upload process whereby

the local branch servers would receive the software over the weekend.

The field test uncovered yet more issues, as was to be expected, and these were

corrected as found. Weekly builds and test iterations kept the 40 branches busy, but

their backup processes protected them from any undue consequences. That is, until

the final week before the scheduled go-live date.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 41
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

During this week the system was to produce calculations and reports for the month-end

posting of accrued interest from the new loan system. The reports and their

calculations were erroneous, but the cause was not immediately clear. As the deadline

approached, the development team became more and more frantic to uncover the

problem and get it fixed. Finally, late that week, the culprit was found and fixed. It was

time to test and then to ship.

Check

But an interesting thing happened when the software arrived for the final test. The test

manager looked at her watch, looked at the calendar, and concluded they would not

make the Sunday upload window. She said so, provoking a storm of protest.

All of the usual suggestions were trotted out. Add more people! No need, she said, it's

mostly automated. Work overtime! The 76 hours are around the clock already, she

pointed out. Automate more! The documents must be personally verified because the

scanned images were too sensitive to slight variations, she explained.

And so it went, until the final, inevitable option made its appearance: test less.

Check mate in two moves

Ah, she said, no problem at all. If making the date is more important than making sure

the system is ready, we can certainly do that. Here's how: we will leave off testing all

car loans, since they are the most complex and require the most time. That will shave

off the extra time and we can make the date, just barely.

The reaction was swift: What? You can't skip car loans--they are a huge part of our

loan volume, they need special documentation, the collateral has to be properly

secured, the title restricted, and so on and so on. It's just too risky!

Hmm, she said. Then we'll have to forget about second mortgages. That's the only

other class of loan that has enough time in the test schedule to make the difference we

need.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 42
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The test manager got same reaction: Are you crazy? Mortgages represent huge

amounts of money, even more documents, and besides, we're marketing them like

mad right now. You can't possibly gamble with those!

And on it went. By the time the dust had settled, guess what? The go-live date was

delayed.

Game over

So what made the difference? Simple, it was an assessment of risk, and the lesson is

deceptively straightforward. If you don't plan to test the entire system, you don't know

what you are leaving out; if you don't know what you are leaving out, you don't know

what's at risk. And, if you don't know what's at risk, you can't weigh it against the

perennial risk of missing the schedule.

For the bank, the risk of delaying the roll-out of its new loan processing system was

weighed against the risk of failed system functionality. The result was that a fully

tested--and consequently a fully operational--system was more important than a brief

delay in deployment.

If you don't plan to test the entire system, you don't
know what you are leaving out; if you don't know what

you are leaving out, you don't know what's at risk.

In most cases, the test manager would have insisted that they could not test the entire

system, and management would have tut-tutted but proceeded to cut testing in order to

meet the deadline. So when critical functionality went awry, the test manager would

have been denounced for allowing something so important to go by the wayside.

The key in the bank's case was that the test manager knew enough about the business

to put the risk assessment in terms that management would relate to: money. If loans

are processed incorrectly, business is lost.

The bottom line? Full-coverage software testing is possible; you just have to know

which moves to make. Test cases may have no meaning to a bank, but loans do.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 43
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Fractional People
by Linda G. Hayes

Originally published in Datamation magazine, October 1998

Software releases are cyclic by nature. So where do you find qualified testers when

they're needed, and where do they go when testing is done?

Understanding the dynamics behind the ratio of developers to testers is only half of the

problem involved in developing, maintaining, and enhancing applications (see last

month's column, "The irrational ratio"). The other half is making the ratio work

organizationally. To do this, you need to answer two key questions: Where do the

testers come from when you need them? And where do they go when you don't need

them?

The three most likely strategies for shoring up test
resources are automation, consultants, or borrowed

resources.

The cyclical nature of software releases means that the demand for testing waxes and

wanes, depending on the phase and type of development going on. This fluctuating

need is the crux of the quality problem in many companies. Since testing resources

can't afford to be idle, testers often are given other responsibilities to fill in the

downtime. As a result, it's not uncommon for companies to have fractional headcounts

in testing. But this strategy breaks down during periods of high testing demand--large

or even multiple releases may demand more than the other half of someone's time.

If your company is large enough, it may be that testers can be a shared resource

across multiple applications, migrating like fruit pickers (no offense intended) from one

area to the next. This approach only works well, however, when there is some

semblance of centralized control over testing that is able to apportion and schedule

resources across development projects.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 44
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Companies that are too small to have multiple projects or where there is no central

mechanism to allocate test resources are in a bind. These firms can't justify enough

full-time resources to meet peak demand, but they also can't get the job done with part-

timers. So what do you do?

Software, services, or scavenging

The three most likely strategies for shoring up test resources are automation,

consultants, or borrowed resources. Although the initial investment in automation is

substantial, it can take up the slack by executing regression tests automatically. So

modification and enhancement releases can be tamed somewhat by reusing the same

test cases over and over. The downside to automation is that it's an advanced skill that

is hard to keep current on a part-time basis.

Consultants may be called in, either to provide people or automation expertise. The

benefit of using consulting services is that it's a variable cost, used to backfill the peak

of the cycle or to shore up the expertise of internal personnel. The drawback, besides

cost, is that temporary resources have a learning curve on the application under test

and there is little or no guarantee that you can acquire the same consultants from one

release to the next.

Automation also creates a continuity problem. Consultants may be able to jump start

an automation project, but if there is no internal resource trained to take ownership

when the consulting engagement is complete, the scripts will fall into disuse as

application changes require maintenance.

Borrowing resources from other areas in the company is the third option. End users,

customer support personnel, developers, trainers, technical writers, even customers

may be pressed into service. The plus side of this approach is that these sources

probably bring application expertise that outsiders can't, and they have a vested

interest in the quality of the product. The negative side is that these contributors may

not have the testing skills that make their efforts effective or repeatable.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 45
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

One common way of recruiting customers is through an "early release" or "beta site"

program. In this scenario, customers take delivery of software that is admittedly not

fully tested, with the understanding that they will report any problems they find.

Microsoft has employed this technique liberally, yielding thousands if not millions of

testers for their products. It's also a viable solution when the development company

cannot possibly own, let alone test, all possible platforms and combinations.

The key to a successful early release program is to tightly manage the error reporting

process and assure that the schedule permits enough time to address the issues

raised before the final release is due. It's not a free ride, however, as even--and maybe

especially--early release customers will require support. If the software is substantially

unstable, this approach may backfire by generating an excessive level of support

requirements.

Rationalizing the ratio

Unfortunately, there is no magic answer to resolving the resource ratio, but there are

some tricks and techniques that can make a difference:

Plan your test: Put some thought into what you must cover in your test and what you

can afford to leave out. Write it down. Setting the scope can guide future testers so that

they don't wander into the weeds, spending time and wasting effort. Although the

creative instinct is often credited with uncovering problems, unplanned tests may

reveal obscure bugs while missing major ones.

Document your tests: The simple (but not easy) act of reducing your test cases into

writing can work wonders by making them transferable and repeatable. Borrowed or

temporary testers can be instantly productive if they have documented tests to follow,

and you will have a much better grasp of what was tested and how.

Dumb-down your tests: Take the expertise out of the tester and add it to the test case.

In other words, write test cases that are extremely detailed; assume nothing. Instead of

saying, "Create an order and verify the pricing," say, "Choose new order from the order

meu, then enter the Customer Number 12345, click OK...." You get the picture.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 46
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Standardize your tests: Don't allow test cases to be organized at the whim of the

individual. It takes more time to create tests from scratch than to fill in a template, and

trying to follow differing styles when executing tests is not efficient. Pick a format, build

a template, and stick to it.

If you follow these basic rules, you will be better positioned to press temporary testing

resources into effective service or to employ automation when it's appropriate. And,

hopefully, arrive at a rational way of managing the developers-to-testers ratio in your

company.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 47
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Irrational Ratio
by Linda G. Hayes

Originally published in Datamation magazine, September 1998

While there's no hard and fast rule for determining the best mix of developers and

testers, the secret is to know when and why to adjust the ratio based on the type of

development and the phase of the project.

Do you remember learning about irrational numbers? I always pictured them as being

somehow unreasonable, numbers you had to coax or cajole into behaving rationally.

Actually, they are numbers that never end--no matter how far you carry them out--like

pi. In that sense, the term is particularly apropos for describing the proper ratio

between developers and testers, because the answer keeps changing the longer you

look at it.

We have all learned the hard way that adding more
people does not always add more productivity.

Not a conference or class goes by that the question is not asked: What's the magic

ratio? Some breathlessly report that they heard Microsoft has a one-to-one ratio, while

others abjectly confess that their companies have 10 or more developers for every

tester. So what's the best answer? That's easy. It depends.

The ideal ratio between developers and testers depends on the type of development

and the phase of the project. In some cases, developers should outnumber testers, but

in others--believe it or not--the testers should outnumber the developers. The secret is

to know when and why to adjust the ratio.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 48
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Planning and design

In the earliest stages of developing a new application--that is, one being written from

scratch--developers should outnumber testers. Although test planning and design can

and should commence during the planning and design phases of the development

project, the fact is that there is simply more work to be done by developers. Until the

design stabilizes, which in most cases happens during coding, testers can at best

define and prepare the test environment and process.

The ideal ratio at this stage is probably one tester per team, or about one for every four

or five developers. Most applications are built with a team this size; especially large

applications might have multiple teams, but each team typically stays small. We have

all learned the hard way that adding more people does not always add more

productivity.

There is an exception, however. In some cases, new applications are really just

modifications of existing ones. For example, a retail data analysis firm developed six

applications that were simply just special versions of the same system customized for

different customers. The same application in other cases might be ported to execute on

multiple platforms. The effort in these situations is more like maintenance and

enhancement, so the rules are different.

Coding and testing

As a new application completes the coding phase and moves into test, the ratio should

start to shift in favor of testers. In fact, a ratio of one or two developers per tester is

probably realistic.

This happens because the testers now have enough information to design, develop,

and execute test cases. It takes time to review the application's intricacies in order to

design the proper tests, then more time to develop the tests, and then even more time

to execute the tests and document the results. Then it takes yet more time to work

closely with developers to resolve issues. The iterative retesting of corrections and

changes adds substantially to the testing workload as the application nears release.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 49
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Developers, on the other hand, start to wind down in this phase, primarily addressing

issues that arise, but--hopefully--not adding anything new. In fact, developers often

start looking for a new challenge as the application moves inexorably toward that

programmer purgatory known as maintenance.

Maintenance and enhancement

This is the phase where the ratio usually gets out of whack. If I tell you that you need

more testers than developers, you'll think I'm crazy. But it's true.

Testing ratio tricks and techniques

If you follow these basic rules, you will be in a better position to effectively use

temporary resources and/or employ automation in testing when it's appropriate. These

tricks and techniques may also help you achieve a more rational method for managing

the ratio of developers to testers in application development.

• Plan your test

• Document your tests

• Dumb-down your tests

• Standardize your tests

Look at it this way. Let's say you have a 10,000-line application to which you're adding

some features as well as fixing some problems, and let's estimate that you will add or

change 25% of the code. So, from a development point of view, you have a quarter of

the development effort originally required to create the application.

But from a testing point of view, you still have 100% of the code to test, because of the

well-known phenomenon of unexpected impact from changes. An apparently tiny,

isolated code change can have far-reaching effects. Examples abound, but the most

famous is the single-line (some say single-character) aberration that brought down

AT&T's network in January 1990 and cost the company and its customers more than a

billion dollars.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 50
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

So the rule is that all features of an application, whether new or old, are tested every

time there are any changes, no matter how theoretically minor. Testing old features is

called "regression testing," which refers to the problem of a prior capability being

negatively affected by new features or modifications.

A similar situation arises when a new application is created by modifying an existing

one, or by porting one to a new platform. From a development point of view, the level

of change may be only a fraction of the original code, but from a testing point of view,

it's a completely new application.

What this all means is that it takes fewer developers to enhance or maintain an

application, but the same number of testers as when it was brand new. In fact, it may

take even more testers, since successive releases of applications almost always add

new functionality without taking any away.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 51
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Testability Standards for Automation
by Linda G. Hayes

Originally published in Datamation magazine, August 1998

The insertion of a test tool between the tester and the application shifts the level of

their interaction, making them integrated stages of a continuum.

Over the transom, applications development and testing should be history. Developers

should be building applications with automated testing in mind from the beginning. By

focusing on how testing tools work and how they interact with applications, developers

can save themselves a lot of time and aggravation and save their employers a lot of

money.

The most powerful way to integrate software development with automated testing is to

exchange the application information that is needed by the tool. Virtually all test tools

that support object-oriented testing require that the application map be defined or

captured; this map details the windows and objects that make up the user interface,

including their class. This map information is located within most graphical applications

as the resource file; for mainframes, this is usually a screen map. Whatever the form, it

is used by the application and can be shared with the test tool.

Rapid development with manual testing is a formula for
failure--failure to hit the market window or to deliver a
solid product in anything resembling a timely fashion.

What this means is that development provides not only the software and release notes

to testing, but also the map file that will be used by the test tool. This allows the test

organization to both accelerate the initial automation effort and to quickly spot changes,

such as new windows or control classes, that require modifications to the automated

test library. It creates a bridge between development and test.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 52
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

How test tools work

Test tools can interact with an application in one of two ways, commonly known as

analog or object-oriented mode. In analog mode, the tool generates events such as

mouse clicks or keyboard entry without regard to their context. Clicks are performed at

specified row and column pixel coordinates, and keyboard entry occurs wherever the

cursor is located. For example, a recorded mouse click might generate a statement

that says "Right Click at 653,122" --which is of course ambiguous as to what, exactly,

this click accomplished in the application.

Although widely and easily available, this technique is of limited use because it has no

context and thus is impossible to read and maintain. The slightest change, including

different display monitors or video cards, will affect the script playback. The inability to

detect context also cripples verification of results and recovery from errors.

Object-oriented mode, on the other hand, is context-aware. The test tool actually

insinuates itself into the messaging layer between the window manager and the

application, and can thus address individual objects or controls. Instead of a click at a

location, the script can generate the selection of a particular item out of a list, for

example, or from a menu. This technique is only available, however, in those cases

where the tool can recognize the class of object(s) within the application.

With the proliferation of new class libraries, both purchased and user-defined, the odds

are getting more and more remote each passing day that the test tool will readily

recognize all of the application objects. So the question arises, what to do?

Testing for testability

The best line of defense is for the development organization to adopt testability as a

design requirement. This means that, all other things being equal, standard object

classes will be used instead of nonstandard ones. If nonstandard classes are needed,

then every effort should be made to select a class that is supported by the test tool.

Many tools offer extensions for special classes.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 53
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Class support is easy to determine. Simply place the tool in "capture" or record mode

and interact with each type of object class, then review the resulting script. If you see

coordinate clicks and keystrokes, you've got a problem. To solve this problem, the first

step is to see whether the object class can be mapped to another, standard class:

Called "aliasing" or "class-mapping" by most tools, this technique allows the tool to

treat a nonstandard class as a standard one. If that doesn't work, you may have to

either instrument the source code with a special hook for the test tool or write special

functions yourself in another language, such as C. This is the bad news.

The good news is that development practices are moving toward standards, such as

Microsoft's ActiveX, that will help test tools deal with new object classes more

consistently.

Testing for consistency

Once you get over the compatibility hurdle, if you do, then the next line of defense is

consistency. This is a simple idea: The application should appear and behave

consistently from one area to another. Consistent behavior means that the test tool can

encapsulate activities into easily developed and shared functions, speeding

development and easing maintenance.

In practice, however, it's a little more complicated. Multiple developers working on a

single application invite the opportunity for each to do things his or her own way, and

there is seldom time or attention paid to the code inspections and reviews that screen

variations out. Standards usually exist, in some form or another, but enforcement is

usually lax to nonexistent.

The most obvious layer of consistency is in terminology. The push button that accepts

information on a window, for example, should be called the same thing from one to the

next: Whether it is "OK" or "Enter" or "Accept" or "Yes" or a green check mark is not

important, only that it is one or another but not several. Window titles should either

display the open file name or not. Again, the key is not so much what you choose as

the fact that you choose, and then follow the determination.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 54
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

It gets a little more complex when you start dealing with keys. Accelerator and function

keys should likewise behave the same across the application. For example, Tab should

always move focus to the next object, the Escape key should always exit the active

window or dialog, or F1 should always summon Help. Any company that ignores these

conventions should be noted.

Aside from simplifying test automation, consistency also delivers usability. Inconsistent

application behavior confuses end users and makes the application more difficult to

learn and use. Consistency, on the other hand, makes it easier to document, train, and

support applications.

Integrated stages of a continuum

Although aligning development practices with test tool requirements may sound like the

tail wagging the dog, consider the fact that development tools and languages have

greatly accelerated the rate at which functionality can be created. Components can be

purchased and incorporated that instantly add complex capabilities, and code from one

application can be tweaked and inserted into another.

Unfortunately, this speed only creates a bottleneck in testing unless technology can be

brought to bear. Rapid development with manual testing is a formula for failure--failure

to hit the market window or to deliver a solid product in anything resembling a timely

fashion.

So instead of viewing testing as an activity separate and distinct from development,

view them as integrated stages of a continuum, both of which must perform optimally

for the project to succeed.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 55
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Checkpoint Charlie: The Hand-Off from
Development to Test
by Linda G. Hayes

Originally published in Datamation magazine, July 1998

Speed doesn't always count, especially when it comes to allocating testing time in the

development process.

One of the most confusing aspects of the software development lifecycle is that there

are separate phases known as "development" and "test." Calling the two phases

"development" and "test" implies that developers only develop and that testers only

test.

Nothing could be further from the truth, however, and this misconception causes untold

cost and confusion throughout a product's life.

The concept of build verification is simple: It's the hand-
off from development to test. Any build--or release or
update or whatever--that is delivered for testing must

first pass this test.

In fact, some companies subscribe to the view that speed is all that counts in

development, so thorough testing is not only unrewarded for developers, but perhaps

even penalized. What this stance ignores, however, is that speed is measured by

overall delivery: Time supposedly saved during development will be repaid--with

interest and penalties--during test and production.

Emphasizing speed in the development process means there's little or no time

allocated to testing during the development phase--and inadequate time after

development. Test schedules end up being undefined or poorly defined. And those

poorly defined schedules lead to vague development testing processes.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 56
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The more vague the development testing process, the more difficult it is for the testers

to define and defend their boundaries. A test group that is constantly trying to atone for

missing or inadequate development testing cannot meet its own testing responsibilities,

which are already substantial if not overwhelming.

So what type of testing should developers do, and how do you know when they're

through?

Unit test

There is a substantial--and critical--amount of testing that can only be done by

developers, because only they have access to the information needed: the code. The

most basic is called "unit" test, and it refers to the testing associated with a single

module of code, such as a program. Unit test involves assuring that the code itself

works as written-- that field edits accept and reject valid and invalid data, error

messages are issued when appropriate, files are properly read and/or written, and so

forth.

While most everyone agrees that unit test is necessary and belongs in development,

the overwhelming majority of organizations allow this phase to be completely informal

and subject to the whims of the developer. The criteria for when to submit a unit for

integration can be anywhere from a gut feel to a successful compile to a stringently

tested module, or anywhere in between. Unit test plans, let alone test cases, are rarely

documented or even understood.

Yet this phase is literally the only point in the entire software lifecycle when the code

itself is exposed. Only the developer knows the design and construction of the code

itself: where branches occur, how errors are trapped, and what limits are imposed on

arrays and other structures. In fact, for Year 2000 testing, the developers may be the

only players in the entire project who know precisely where changes have been made

as well as the only ones able to assure that all required date ranges are fully exercised

for each modification.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 57
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The simple fact that testing is done by individual developers should not be a license to

exempt it from any formal test process or review whatsoever. Only by clearly defining

the testing roles of the development and test organizations, and specifying the hand-off

between them, can quality be achieved. Thus, the hand-off of a unit of code into an

integration or build phase should include, at an absolute minimum, a list of the

conditions that were tested so that the test group need not repeat them and future

developers can repeat and expand them.

Integration test

The next level of testing, integration, concerns itself with the merger of units into a

functioning whole, whether it's a subsystem or complete application. Usually the

integration process, also called the build process, produces an executable system.

Where unit test relies on the construction of the code, integration test revolves around

the architecture of the design: the boundaries between the units and how they

interface.

Perhaps not surprising, but nevertheless disturbing, is the fact that this level of testing

is also almost exclusively informal. Victory is often declared if the build compiles

successfully. Yet the build process--especially in this new world of reusable objects--is

fraught with opportunities for error. (See June 1998's Quality Quest, "Don't take

anything for granted in component development.") Simple differences between the

development and build environment can wreak major havoc with the final product: .dll

files can be incorrect or missing altogether, platform configuration options can vary,

data files can change contents, and a host of other variables can go awry. Tiny

differences can cause a domino effect throughout the system.

Again, only the development organization is privileged to information about how units

interact: which parameters, files, switches, and calls are passed back and forth, which

objects are shared internally or externally, and what platforms are involved and where.

Without an orderly integration test process, performed by knowledgeable system

architects, further testing is continually at risk for functionality to be dropped or broken

from one build to the next.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 58
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Thus, an acceptable integration test hand-off should include the list of configuration

options and interfaces tested and the pertinent conditions for each.

System test

Although unit and integration testing are commonly understood to belong to

development, the system test is where it begins to get hazy. Who does it belong to?

What does it include?

In view of the perpetual fog around this test phase, I propose that it be redefined--and

reorganized--as a build verification test.

The concept of build verification is simple: It's the hand-off from development to test.

Any build--or release or update or whatever--that is delivered for testing must first pass

this test. It serves as the ultimate integration test, assuring that all units and

subsystems behave as a coherent whole when installed on the test platform as

opposed to the development environment. Its purpose is to prove that the system has

sufficient technical integrity to enable business functionality to be verified.

This type of test can be thought of as "inch deep, mile wide." It covers the broadest

area of the system but only minimally, assuring that each screen or window is

accessible and verifying that all files are present and available and that no modules or

libraries or other components are missing, and so forth. Sometimes called a roll-call,

walk-through, or smoke test, the system test phase seeks to establish that the software

is internally sound and complete.

Although the system test phase should be defined by the test organization, and

perhaps even executed by them because it requires the test environment, the formal

test phase does not officially commence until the application has passed the

developers' system test successfully. In other words, the developers' system test

phase is the entry criterion into formal testing by testers.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 59
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The gateway

Without this gateway, or any objective measurement, there is no real means for

determining when software is actually suitable for testing. The simple act of delivering

software to testers doesn't mean that development is complete or that testing has

begun. It's not uncommon--as many testers will testify--to get an early build or two that

will not even install properly, let alone execute. The sticky part is that there is usually a

limited amount of time allocated to test anyway, and when this is eaten away trying to

stabilize the system, testers end up with twice the work, half the time, and all the

blame.

This is not an indictment of development, but it is a condemnation of the absurdity that

developers do not test. If a developer cannot be relied upon to test and deliver a solid,

stable code component, the answer is not for testers to make up for it. The answer is to

either retrain or replace the developer.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 60
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Don't Take Anything for Granted
in Component Development
by Linda G. Hayes

Originally published in Datamation magazine, June 1998

Component-based applications development is an exciting idea with frightening

consequences. On the exciting side, it helps developers create more powerful

applications much more quickly through reuse. On the frightening side, it blurs the

boundaries of applications, which may now span platforms and even companies,

thereby creating boundless opportunities for problems.

Something that works today can fail tomorrow because
of the installation of objects by someone else for

something that had nothing to do with your application.

The potential for problems makes it important to understand this new development

approach and how it affects the test process, because unless control is established at

the beginning, it will probably never be regained. The bill comes due at the test phase,

when the so-called benefits are eaten up dealing with competing components in the

test environment, the tester's system, and even the end user's system.

What begins as a time and cost saver during development using reusable components

can easily become a sinkhole of time and effort during the test phase and an endless

expense throughout customer support. So pick your poison: reuse or redundancy?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 61
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Understanding objects

Components, also known as objects, are chunks of functionality that may be reused.

Most personal computer users become aware of them as ".dll" files, or dynamically

linked libraries, which are often reported as either "missing or incorrect" when a user

tries to launch an application that depends on a .dll buried elsewhere on a hard drive.

To get a feel for the number of these babies running around your system, do a search

for the file type ".dll" and sit back. On my system I have more than 500 within the

Windows subdirectory alone... and I'm not even a developer.

Some objects are simply shared within an application or module, but others can be

shared across applications. Objects that are shared across applications typically follow

a binary-level standard that dictates the form in which they are called and how they

respond. The two primary standards are Corba, or Common Object Request Broker

Architecture, and COM/DCOM, or Component Object Model/Distributed Component

Object Model. Both standards provide for reusability and have rules about forward and

backward compatibility. Unfortunately the rules are not always followed, and when

they're not, things gets weird.

A puzzle project

Odds are, a developer is part of a development team whose disparate efforts must

coalesce to form a whole application that can be shipped to a customer and installed.

This is commonly referred to as the "build process," and it's becoming a puzzle project

of imposing proportions when components are involved.

During the build process, all of the various bits and pieces of code must be gathered

and compiled into an executable module, usually an ".exe" file. The object files are

referenced in the executable, but are not always contained within it, especially if they

are reusable. If they're not internal, objects must accompany the application or be

already available in a known location for that application to run.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 62
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Object lessons

So will you be able to convince your company that reusable objects are a passing fad

to be avoided altogether? A better strategy is to negotiate a truce. Here are a few

suggestions:

(1) Do use an object repository to track and inventory components in a system, and

make it known when something changes.

(2) Don't share objects externally by permitting applications development to depend on

universal objects that are expected to be on user desktops; deliver what you need with

the product.

(3) Do employ reuse in development, but use redundancy in testing and delivery

through copies of components stored in private directories.

Source: PlugIn Datamation

Because each developer typically has his or her own development system, with all of

its attendant configuration options and related files, it's no trivial effort to gather

interdependent code from independent sources and have it behave as a unit. Any

variances between the contents of the build system and the developer's system can

potentially create problems, which they often do. In a recent project at a Big Six

accounting firm, for example, simply defining the build process and all of its

components required three months of trial and error.

Suppose, for instance, that you are a developer who needs date functionality in a

program. You decide that incorporating a proven, robust object is faster and more

reliable than developing a new one. You therefore purchase a date-manipulation

component that only needs to be customized for your company's holiday schedule.

This bit of programming means that as a developer, you only have to maintain the new

holiday rules. Thrifty and nifty, right?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 63
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Well, maybe not. Continuing this example, assume the build process is conquered and

the software is installed. Now suppose that a user--whether a tester or a customer--

installs an application from another vendor for a different purpose and that this

application is also date-sensitive. The developer of this vendor's application likewise

acquired the same handy date routine module as you did, only he incorporated a

newer version. When the user installs this application, the date routine .dll file of the

initial application is overwritten. A warning message may or may not have been

displayed, but even if one was, the user probably didn't have a clue that this message

concerned multiple date routine files, and so proceeded with the installation.

Now, if you, the developer of the first date routine in this example, and the vendor's

application developer played by all the rules, each version of the object would support

all prior versions and each calling application would behave accordingly. The theory is

that new versions do not remove prior functions, they only add new ones in the form of

new interfaces to the object. Thus, a developer calling an object first checks for the

expected functions within the interface--in this case the company-specific holiday

schedule. If they're not there, he checks for prior ones, and so forth, as he looks for the

appropriate functionality.

What it all means

Unfortunately, the reality is that objects are as dynamic as the rest of technology, and

developers have enough to do without plowing through geological strata of interface

functions. The result is that an object that's intrinsic to your application can be

replaced, modified, and otherwise compromised by other applications as well as other

people who you have never met and don't even know exist.

The nightmare of this reality sets in during test and deployment. An application that

worked fine in the development environment becomes intransigent during test, and one

that was subdued during test runs amok on the end user's system. Just to make it all a

little more problematic, something that works today can fail tomorrow because of the

installation of objects by someone else for something that had nothing to do with your

application... or so you thought.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 64
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

To a tester, these issues manifest in subtle ways.

First, the tester's system must either already have the necessary objects or they must

be installed.

Second, the tester runs the risk that there are competing object versions on the test

system.

Third, the tester may dutifully configure and manage the test environment, only to find

that the end user has competing components.

The biggest problem, of course, is knowing where to look. It's one thing to know that a

conflict exists, it is quite another to trace it to its source. The hierarchical structure of an

object search can mean components are potentially found in more than one place.

Solutions you can use

So what can you do? The first and best insurance policy is a fierce dedication to

maintaining a system inventory of all components that comprise an application or are

required by it. Don't just keep track of the executable files, but include all related object

files as well, in addition to their precise sizes, dates, and target directories. These are

called object repositories, and there are commercial products that can help track them.

Installing a new application should be approached with care and suspicion, and any

changes introduced as a result should be carefully documented. Without this vigilance,

it will not be possible to know when and where a change was introduced. Implementing

or installing new object versions should be treated as any other code change--the

change should be documented and the impact should be tested.

Chances are, your test tool will react violently to the intrusion of new objects in the user

interface, especially if they are nonstandard. While many tools allow nonstandard

objects to be "aliased" or "class-mapped" to a standard class, this not only takes extra

time, but it may not always work. If your tool doesn't recognize the object class, it will

treat it using "analog mode," which means using mouse clicks and pixel coordinates

that are only slightly less painful than dentist drills and root canals.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 65
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Ironically, the best strategy is to not share objects that are part of your application. That

is, install any necessary components in a private directory, and don't rely on the

existence of system or shared objects. True, this defeats the reusability factor in

theory. But, in fact, all it does is sacrifice some disk space to redundancy. And what's a

little redundancy among friends?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 66
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Time-Boxing Your Way to a Better Product
by Linda G. Hayes

Originally published in Datamation magazine, May 1998

Regardless of the boundless optimism with which we all enter projects, experience

teaches that we will exit them in a Death March state of defeated exhaustion.

To paraphrase a recent conference speech by Tom DeMarco, the insightful author of

books and essays on software development, most projects are like Greek tragedies:

During the first half, it appears that man is in control of events; the climax reveals that

events are in fact in control of man.

So it is with software development. At first we believe that the project controls the

schedule, then we realize that the schedule was in control all along or, more likely, out

of control.

This is how testing is routinely sacrificed. Not out of a conscious decision to give quality

short shrift, but out of a series of compromises that conspire to delay the project...but

not the deadline. At the end, quality is the only price left to pay.

What would happen if we became realists and just admitted, up front, that the schedule

was the primary driver?

This concept, also known as "time-boxing," is a schedule-driven approach that treats

deadlines as sacred, while resources and requirements are variable. When combined

with the idea of a "rolling release," which comprises continuous incremental deliveries

that are scheduled early and often, this approach can work wonders or terrors,

depending on how you go about it. Over the past three years I have seen an increasing

number of companies apply this approach to projects as large as an SAP

implementation and to those as small as a departmental client/server application, with

impressive results.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 67
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Working in boxes

A time-boxed project works like this. The final delivery date is identified first, with

frequent intermediate releases preceding it. These may be one, two, or three months

apart depending on the size and length of the project, but usually no more than three.

Each release should introduce sufficient functionality to permit user interaction. The

goal is to get started as soon as possible, so that feedback has a chance to be

incorporated before the project is over. So, instead of a one-year development project,

you would have four quarterly releases, each building on the last.

This approach forces requirements to be ranked by priority and order of

implementation. Although the content of each release is aggressively planned in

advance, it's understood that the release will ship on the designated day with or without

all requirements. The schedule rules--but we knew that, anyway.

In this scenario, testing continues constantly. Instead of an end-of-the-line, frenzied

event, it's a constant companion to development, providing verification of each build

and successive feature or function. In the later releases, corrections are being

introduced and tested as well.

The advantage of this approach is that it can produce a better product faster.

Ambiguities and inconsistencies in the requirements are quickly flushed out when the

software meets the cold light of user interaction. Rolling releases encourage constant

refinement of requirements and continuous testing; this helps prevent projects from

going too far astray or too late to test.

And, if the truth be admitted, even "completed" software development projects are

never finished. Any product that is being used is subject to a constant flow of issues

and enhancements as the users and business it serves evolve and change. Viewed in

this way, the project never really ends: It may simply metamorphose into monthly

releases.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 68
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Know where you're going

The flip side of this rosy picture is that discipline becomes sacrificed to speed. Although

on the surface it might seem that focusing on the schedule encourages minimal

planning and design, the opposite is true. The system architecture must be thoughtfully

structured to enable the delivery of usable increments of functionality, providing a solid

foundation quickly that supports future expansion without limiting it. It means you have

to know where you're going before you start. If you don't, you'll degrade into producing

rewrites instead of adding requirements.

One of the means for keeping tighter control on the software while enabling continuous

change is to produce a software build at least weekly, if not daily. This requires the

software to be assembled, available, and accounted for constantly, so that rapid

responses to issues are possible. The longer the time stretch between builds, the

greater the opportunity for confusion and mayhem.

It should go without saying--but we will say it anyway--that relentless project

management and good software hygiene is essential. Constant coordination is needed

between developers, testers, and users. And source and version control with complete

configuration management is crucial among developers. A rapid-fire schedule is

unforgiving, and frequent releases are uncompromising. It's either happening or it's not.

So simply declaring a time-box schedule and rolling release strategy, without the

concurrent commitment to the supporting disciplines, will merely result in an

interminable series of Death Sprints--each worse than the last.

Accelerate or be left behind

Let's admit it. Market opportunities and product cycles are compressing; the days of

multiyear development projects are gone, along with the untold millions wasted on

runaways and endless delays. In this, the time of I/Net speeds, our approaches to

software development and testing need to accelerate or be left behind. Time-boxing

and rolling releases are just formalizations of what the market is forcing to happen. The

key is to do it voluntarily and consciously, instead of unwillingly and unknowingly.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 69
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Confidence Game
by Linda G. Hayes

Originally published in Datamation magazine, April 1998

When it comes to software development projects, trade-offs are a fact of life. Customer

demands, market pressures, resource constraints, and all manner of surprises are

inevitable. The question is not how to avoid making compromises, but how to manage

them.

Managing trade-offs is especially acute in testing. As the final phase, this is where the

bill comes due for every concession made along the way. Unfortunately, this causes

the test process to appear flawed: When a cycle planned for four weeks balloons into

eight, it appears as though the testers just aren't getting the job done when, in fact,

they are probably working twice as hard as originally planned.

One way to manage this conundrum is to implement an early warning system that

focuses on the effects of trade-offs at the time they occur, allowing enough time for

mitigation. Edna Clemens, manager of development services at Tandem Telecom of

Plano, Texas, a Compaq company, set out to do just that. Her goal was to measure

product readiness as an objective metric that was understood, adopted, and assigned

by the entire core team for a product, and then used as a basis for making decisions

before the situation became critical.

This measurement, dubbed the "Confidence Rating," expresses the cumulative effect

of decisions affecting product completion as a percentage. Ninety percent confidence

was set as the minimum desired level for shipment, and anything below that signaled a

risk that had to be mitigated. The beauty of this rating is that it is derived weekly, so

that progress is measurable throughout the process, thereby eliminating unpleasant

last-minute shocks.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 70
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Clemens started the process by assembling the core product team--product

management, development, test, documentation, and support--and retaining an outside

consulting firm to lead them through the development process. Each phase was

defined as to its entry and exit criteria, with emphasis on what qualified the product to

be promoted to the next phase. This experience in itself was revealing, as it helped

each team member to understand the needs and objectives of the others.

A follow-up session focused specifically on the two final test phases: integration and

system test. For these, the input and output items were defined in more detail and each

was assigned a number of points, the total of which equal 100%. The input items

include the test strategy, which contains the priority of tests and the planned execution

sequence; defined test procedures; known problem documentation; a verified software

build; preliminary release notes; and the installation guide.

The outputs include such measures as the percentage of test cases passed and failed;

the percent deviation from the test plan (which indicates problem areas); the

percentage of test cases executed; the percentage of core ("drop dead" or essential)

test cases passed for the final build; and the number of errors outstanding by severity.

An interesting effect of these calculations can be seen in the way that the percentage

of test cases executed is derived. For illustration purposes, say that there are 100 test

cases in the inventory. After the first week 20 have been executed, but only 10 of them

passed. Since the 10 that failed have to be re-executed, they are added back to the

inventory, so the percentage completion is not 20%, it's only 18% (20/110). If the

failures mean that a complete suite has to be redone, then all of them--even if some

passed--are added back.

What this reveals is that no matter how long or hard the testers work, if the software is

not complete and tests are failing, then their workload is increasing. This increase

translates into a schedule delay, which reduces confidence in the product readiness

and drops the Confidence Rating.

The key benefit of this approach, Clemens has found, is that it has shifted the team's

focus from making the schedule to completing the product. And that's the real name of

the game.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 71
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

When to Automate
by Linda G. Hayes

Originally published in Datamation magazine, March 1998

Test automation is such a seductive idea that it's tempting to apply it everywhere. The

question is not whether you should automate, but when and where automation makes

the best sense. Choosing your battles carefully is the best way to win the war.

Choosing an application

The first thing to do is select the right application. Applications that are too unstable

require excessive maintenance of test scripts; applications that are too stable don't

need enough testing to yield a productivity payback.

Next, identify the ratio of change from one application version to the next. On average,

25% of most applications change in a year. Then determine how many test iterations

will be executed per release; three is an absolute minimum.

Remember that it usually takes five to 10 times as long to automate a test as it does to

perform it manually. Also consider that a change to the application can cause twice as

much or more maintenance in the test library because a single rule change usually

requires several test cases. On the plus side, automation typically saves 80% of the

manual effort--the remaining 20% is spent on setup, supervision, and results analysis.

Most test groups careen from one crisis to another, and
trying to automate under combat conditions is fruitless.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 72
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Finally, do the math. Let's say it initially takes you six times as long to automate a

single manual iteration, so your investment is 600%. Your application will have two

releases per year of 15% change each, with three test iterations per release, and each

release will require 30% of maintenance to the test library. You'll get an annual return

on your test investment of six iterations at 80% per iteration (or 480%), less

maintenance for two releases at 30% each (or 60%), so you will receive a net return

each year of 420%. This means you'll be in the productivity payback zone by the end of

the first year. Not bad, as investments go.

It's a team effort

Once you've identified a candidate application, make sure you have the right team. If

the majority of your testers are migrant workers borrowed or kidnapped from other

departments, the odds are you won't recoup the investment in the automation learning

curve. Although some amount of fluctuation in staffing is inevitable because of the

cyclical nature of testing, make sure you have a permanent, dedicated core team.

Otherwise, the maintenance effort of the test library skyrockets. New testers must learn

the application and the tool, as well as find their way around the test library before they

can make any changes. So the maintenance effort can go from twice as long per

application change to 10 times or more, thus eroding the productivity payback.

Even with the right application and test team, you must choose your timing. The

biggest problem in testing is schedule squeeze. Most test groups careen from one

crisis to another, so making a significant investment of time and effort up front is a

practical impossibility, and trying to automate under combat conditions is fruitless.

The best time to get a time commitment is when the financial commitment to acquire

the tool is made--the honeymoon period. Make a reasonable request to peel off two or

three testers, or only one if that's reality, and have the testers begin the automation

effort for the next release as soon as the most recent one is complete. Don't settle for

part-time resources or expect workers to do their existing job and automate in their

spare time. It doesn't work.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 73
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Be reasonable

The last caveat is simple: Don't expect miracles. If your test effort is random,

undefined, and generally unpredictable, don't expect automation to save the day.

Although tools are a great vehicle for establishing order and organization, they won't

drive it. Get your act together before you memorialize it in scripts.

As a final note, realize that all of these calculations assume that you will only automate

as much as you already test manually. The fact is that once automation is in effect, you

open the test window and can get in more test cases per iteration and more iterations,

which in turn increase coverage and improve quality. Quality, of course, yields a

payback that has nothing to do with testing. It has to do with increased customer

confidence, reduced time to market, and the reinvestment of resources otherwise

wasted on support and rework--the real benefits of automation.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 74
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Big Lie
by Linda G. Hayes

Originally published in Datamation magazine, February 1998

One of the first statistics I ever learned about software quality was that the cost of fixing

a defect rises exponentially the later it is discovered. So, a problem identified during

requirements costs a fraction to fix compared with one found during development,

which costs a fraction compared with one found in test. The most costly are those

found in production.

What's interesting about this statistic is that while no one seems to challenge it, no one

seems to behave as though it's true, either.

There is no reason convincing enough to ignore quality.

This is how it goes. A critical development project is late and has entered the classic

schedule squeeze: The deadline is looming, but the software is just not ready. As the

pressure rises, negotiation intensifies. How good is good enough? How many bugs are

too many? How critical is this problem or that problem, really?

We've all been there. But proponents of meeting the deadline at all costs never openly

argue that quality is not important. Instead, they trot out all the reasons why the release

date is so critical, as though the drama of the deadline somehow outweighs the reality

of readiness.

Here are a few examples:

We have a contractual deadline. This is a great excuse. Who can argue with a legal

obligation? But this stance fails to take into account that the contract no doubt

contemplated delivery of a working product.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 75
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

For example, I know of a company that met its contractual commitment to deliver

software modifications to a huge financial institution. In turn, that company invested

countless dollars and personnel hours rolling the update out to thousands of tellers at

hundreds of sites, only to have the system pulled out of production within the first

week.

The financial repercussions of this fiasco far outstripped the penalty that would have

been attached to late delivery. But the loss of confidence and goodwill was even more

costly. The customer immediately began searching for a replacement system.

We have to meet the market window. No doubt about it, tax return preparation software

that becomes available on April 16th has little value no matter how high the quality is.

Yet few situations are that black and white.

The most public example of this position is the ill-fated release of the graphical version

of dBase. At the time, Ashton-Tate dominated the PC database market, but it was late

with support for Windows. Senior management committed a delivery date to industry

and market analysts, and that date became the overriding reason to ship the product.

The product, you may recall, was so unstable that resellers returned it in droves. Within

a matter of months, stockholders lost hundreds of millions of dollars in value, and the

company lost its reputation and its position in the market . . . permanently.

We're going public. The IPO process is so expensive, time-consuming, and stressful

that it takes on a life of its own. Top management tours the country on a "road show,"

extolling the company story and, inevitably, making promises about new products.

I recall a situation where the pressure was so intense that the version that finally

shipped had not even been through a complete test cycle. In a particularly heated

exchange with the testing manager, the CIO actually exclaimed, "Why should you test

it anymore? You just keep finding bugs."

What was the result of this attitude? The IPO was successful, but within six months the

stock's value dropped 80%, and the entire senior management team was replaced

within a year.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 76
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

And that's the big lie. There is no reason convincing enough to ignore quality. But if you

do come up with one, chances are that in the long run it won't matter because you may

end up without your customer, your job, or your company.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 77
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Process or Perish
by Linda G. Hayes

Originally published in Datamation magazine, November 1997

If pressed, most IT managers will admit that the word "process" conjures up images of

oppressive bureaucracy, restrictive regimentation, and pointless delay. In a faster-is-

better environment, process is usually the first casualty. Who has time to get it right

when we're just trying to get it done?

It pleases me enormously to expose this belief as myth. I offer for your inspiration two

real-life examples where process led to success.

Testing thrives in app dev

The first case verges on the incredible. Can you imagine a development manager in

the breakneck-speed atmosphere of financial services who actually voluntarily initiates

a formal "unit testing and review" process? Everyone knows that unit testing--in which

a "unit" of software, that is, part of an application, is tested by the app developers

themselves to determine whether it does what it's supposed to do--is one of the last

bastions of spontaneous, seat-of-the-pants testing. Indeed, code reviews often border

on invasion of privacy in most IT shops.

As part of a companywide initiative to improve quality, John Marcante, principal with

the Vanguard Group, marshaled some 200 developers and put them through a training

program to educate them on testing concepts and practices. He formed a special

interest group that developed templates and standards, and coached the various

project teams through implementation and reviews of requirements, design, and code.

A year later, he requested an independent assessment of this effort and the

corresponding results.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 78
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

I had the pleasure of interviewing a wide sample of developers and managers, ranging

from old pros to new hires. What I discovered was astonishing. Far from feeling

constrained by this process, they thrived on it! Reviews uncovered missing or

misunderstood requirements and provided guidance to new developers on how their

pieces fit into the whole. There was sincere appreciation for the training and consistent

use of the templates and standards. Moreover, team members shared an unwavering

belief that the time that was added in the early stages of the project (about 10%) was

well spent, because it saved about 30% down the line by catching errors and

omissions sooner. The end result? A higher quality product in less time.

Business testing

Our next case study is at the opposite end of the organization and development

spectrum, but still in financial services--insurance. Although Foremost Insurance had

outsourced its IT function, the business side of the house understood that it still owned

the systems and remained committed to their quality. Thus, Marg Blouw, assistant vice

president of project management and testing, stepped up to the plate and instituted a

formal QA process that started at the earliest phase of planning and tracked all the way

through final acceptance testing.

The end result of the QA process was a higher quality
product in less time.

Instead of making do with borrowed resources, Ms. Blouw formed a permanent,

professional test team consisting of experts in the business who applied their insurance

expertise to analyzing the application requirements and design, developing matrices of

functions, and writing detailed test cases. Documentation, standards, and templates

support a formal process that yields optimized test coverage. Review and sign-off from

the end users at each phase ensures that everyone has input and buy-in. The payoff?

Post-production incidents are down 80 to 90%.

What's especially intriguing about these cases is that neither used any advanced tools

or leading-edge technologies. The weapons used were word processors,

spreadsheets, and--above all--management commitment.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 79
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The High Cost of Low Investment
by Linda G. Hayes

Originally published in Datamation magazine, October 1997

I am continually bombarded with questions about ROI on software test automation.

People want to know how to convince management that the investment will be

recovered and will even generate a profit. The issue is as perplexing as it is prevalent.

Everyone, it seems, wants to know...but no one does.

Well, there's a reason for that: Nobody really measures the cost of bad software. I am

still looking for a company that actually accounts for the full cost of system failure.

Not just the support, development, testing, and installation time for a fix, but the cost of

downtime on the system. Especially the downtime.

Top-line downtime

Downtime costs can dwarf an entire QA budget because the loss of use of an essential

system can affect the top line, not just the bottom. If you want to make a compelling

case to senior management for increasing investment in testing, look at what the

system you are testing is used for, then find out what it means to the business if the

system crashes. A stock brokerage firm estimated downtime costs at $250,000 per

hour in lost fees and profits.

I am still looking for a company that actually accounts for
the full cost of system failure.

The ultimate intangible cost, of course, is customer satisfaction. In today's mercurial

and competitive economy, a loss of confidence can become a loss of revenue that is

not recoverable.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 80
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Cost-line uptime

But even if your company doesn't admit to, let alone account for, lost opportunity from

downtime, there is usually an amount budgeted for "maintenance." Maintenance costs

are what is spent on existing systems, as opposed to development costs, which are

what is spent on new ones. In most IT shops, maintenance consumes 60-80% of the

overall budget.

So what is maintenance, anyway? We're not changing the oil, after all: Software is an

intangible that is not subject to wear and tear like a piece of equipment. Maintenance is

really a catch-all for fixing problems and incorporating enhancements. The real

question is, What is the ratio of fixes to enhancements? Even if you can only get a

ballpark estimate--be charitable, say 50%--it's still a staggering number. If you can

reduce maintenance, you can free up resources for new development, which can

improve your organization's competitive agility and eventually have a positive impact

on the top line.

Another fertile area for potential savings is the cost of distributing a fix. For a financial

services company with 10,000 field locations, the cost to download and install a new

version of an application was estimated at $7 million. In another case, a network

software company spent $40 million just to copy and mail update disks around the

world.

Forget worksheets

Some of the test tool vendors have proposed worksheets demonstrating a cost

reduction from automation based on time savings from test execution. I have a problem

with this because it assumes that quality and test coverage are already acceptable and

the goal is simply to reduce the expense. This doesn't describe any company I've ever

known. The point of automation is not to shave a few more bodies out of what is

usually an embarrassingly small test group anyway, it is to leverage the resources you

do have to get more done.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 81
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The real ROI of test tools--or any investment in testing and quality--cannot be

explained in terms of spending less money in testing, but in making more and spending

less everywhere else.

How does your company measure the ROI of testing tools? Please e-mail me at

linda@worksoft.com.

mailto:linda@worksoft.com

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 82
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Three Faces of Testing
by Linda G. Hayes

Originally published in Datamation magazine, September 1998

One reason testing is such a difficult topic for IT shops is that the same term is applied

to an activity, a department, and a phase of the development cycle. To add further

confusion, there are many kinds of test activities performed by different departments at

different phases.

The upshot is that testing is misunderstood and, as a result, mismanaged. It's like

trying to work with someone who has multiple personalities: Unless you know which

personality you're dealing with, you don't know how to respond.

Exercising the code

Most people understand that testing is an activity performed to assure that a system

works as expected, but few understand that there are many factors that go into making

a system work. From the development point of view, testing is performed to exercise

the actual code--all of its internal algorithms and pathways, and all of its external

interfaces to other code modules.

Performance testing, often left until the final testing
phase, should really be done in the design phase.

This type of testing is necessary throughout the development phase and must be

performed by developers who are familiar with the inner workings of the application

with tools that access lower system layers. For some reason, this testing is usually just

blurred into development as an informal sideline instead of managed as a separate

activity. Developers are seldom trained in test techniques or tools, and schedules

rarely account for test time. The result is applications that are more complex and less

stable than ever.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 83
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The black box

Once the development phase is thought to be complete, the system moves into both

the testing department and the testing phase. Typically, this includes system-level

activities, or "black box" tests, that assure that the system meets functionality

expectations. At this phase, no knowledge is presumed about how the application is

constructed, only about what it is required to do.

It's only logical that these types of testers need to be skilled in the business purposes

of the system. There are tools that automate on-line entry and others that verify batch

processes, but both types deal with the inputs and outputs of the system, not the

internals.

When the going gets tough

But accurate inputs and outputs aren't enough anymore. Systems must not only

provide a certain feature or function, they must do so in the target operations

environment, under certain conditions, and within certain tolerances. For example, a

system may be able to correctly retrieve and display stock quotes, but a system that

takes five minutes to do it is useless to a trader who makes money on tiny ticks in

prices.

Making sure the system functions when the going gets tough is usually called stress or

performance testing. It requires yet another set of skills and tools and is most likely

performed by a different department. Although often left until the final testing phase, if

it's performed at all, this testing should really be done earliest--during the design

phase--because performance problems that are caused by fundamental architectural

decisions may require a major restructuring.

To conduct an effective exercise of extreme conditions, performance testers must be

familiar with the network topology, the configuration and distribution of rules and data,

and the middleware glue that binds it all together. People with this type of skill usually

make their living in the operations support department, not testing.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 84
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

So the next time someone raises a hue and cry about testing, don't bear down on the

testing department or initiate process improvements in the testing phase. Instead, look

at the entire IT organization and the complete life cycle.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 85
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Forget about "quality"
by Linda G. Hayes

Originally published in Datamation magazine, August 1997

After cheerfully trashing regression testing in last month's column, I must admit that it's

easy to criticize but not very constructive. I should find fault only if I'm able to offer a

solution to the problem of how companies can ensure that their business operations

continue to function smoothly even after they've made major changes to their IT

systems. So here's my solution.

First, we lose regression testing. It not only conjures up negative images, it's also all

about proving a negative, which is impossible.

Instead, I propose a new class of testing--Business Process Assurance--and here's its

definition: BPA assures that critical business processes still function after changes

have been made

Notice what we are going to assure: not quality, whatever that is, but that critical

business processes still function. For example, when we install that new GUI front end

to our order-entry application, we need to ensure that the system continues to accept

and log orders properly. The problem with quality assurance, or QA, is that "quality" is

undefined. Does it mean fast, reliable, easy, powerful, or all of those things? And who

decides what constitutes quality, and how is it measured? If you don't know, how can

you assure it?

The problem with quality assurance, or QA, is that
"quality" is undefined.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 86
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Consider the word critical, which means that BPA is concerned with those aspects of

an application that are essential. In other words, we're not talking about every possible

error condition, every bug ever detected, or each and every combination, boundary,

data type, etc. This distinction is crucial because it implies risk management. If you

know you don't have enough time or resources to get complete coverage, then

prioritization is key.

Now think about a business process. The "business" half of this term places this type of

testing squarely outside of development. The "process" half says that these are user

scenarios, examples of everyday tasks that run the business, not mathematically

derived test cases. Taken together, this means that the business-user community is

both a participant and a beneficiary in BPA.

In the context of my definition, the term function has a whole new meaning. Previously,

"functional" testing begged the question of which functions needed to be tested. With

BPA, we know we are talking about critical business processes, not about whether the

buttons and keys work.

Finally, let's examine the phrase after changes have been made. Notice the word

"changes" is not qualified: Instead of just modifications to application software, a

change can be to the hardware or any aspect of the environment--even the business

process itself. Critical applications reside in highly complex, interconnected

environments, relying on multiple tiers and layers of functionality. It is unrealistic and

downright naive to apply application-centric test techniques to integrated IT

environments.

The implication is that the test environment should be a microcosm of your production

environment--not just in its configuration, but in its processing cycles. Thus, BPA

testing can't be cadged from a corner of a development system, making do with volatile

data and unstable software configurations. BPA requires a tightly controlled and well-

managed test environment.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 87
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The last detail to settle here is exactly where Business Process Assurance fits in your

organization. The most logical place is as a condition prerequisite to promotion into

production. In other words, BPA should be the gateway to operations, the point at

which the business confirms that it can continue to carry on uninterrupted. It happens

last. Why is that so important? Someone in a deadline crunch might slight a process as

obscure as regression testing, but who would dare to fail to assure that critical

business processes still function? Perish the thought!

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 88
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Don't Let Your Business Process Regress
by Linda G. Hayes

Originally published in Datamation magazine, July 1997

I must confess: I don't believe in regression testing. Not that I don't believe it can work,

just that it doesn't.

After spending 15 years in software testing and working with hundreds of IT shops, I

have to report that effective regression testing--which is supposed to ensure that, for

example, your order-entry application keeps on working properly even after you've

added a snazzy GUI to it--is about as common as development projects that are ahead

of schedule and under budget.

There are exceptions; some IT shops no doubt do a great job. But it's also true that

some people have survived jumping off the Golden Gate Bridge, which is not a strong

recommendation for doing it.

So why doesn't regression testing work? I think it has to do with the way it is perceived

and practiced.

Most IT shops are rewarded for what they create--new
apps, more features--not for keeping the old stuff

running.

For starters--and I'm only being halfway facetious here--what's with that name,

anyway? Regression sounds bad--too much like repression, depression, and

suppression. It sounds pejorative. And it doesn't seem to add a lot of value: Just makes

sure that what used to work, still works. Most IT shops are rewarded for what they

create--more features, new applications, cooler technologies. What glory is there in

maintaining the status quo?

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 89
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

On the other hand, there is plenty of ignominy when things that used to work quit

working. The Year 2000 is a great case in point. The entire purpose of testing for the

millennium is to make sure that applications still work after the date change is

accommodated. This is classic regression testing on a global scale, which is why we're

in such deep trouble.

Furthermore, what's the difference between regression, system, or acceptance testing?

Sure, there are subtle distinctions between the definitions of each, but at the end of the

day, aren't they all about making sure the stuff works? Regression testing is about

proving a negative: making sure that there is no unexpected impact from changes.

How do you prove that something you don't expect to happen, didn't happen?

What's in a change?

Regression testing assumes you know what the application used to do before you

make any changes, which implies a known set of requirements. But the fact is, few IT

shops maintain current application requirements, relying instead on the individual

expertise of testers conscripted from the ranks of business users. Thus, regression

testing is only as complete as the knowledge of the person(s) performing the tests.

Aside from the inconsistency of this approach, there is a deeper problem. A "change"

to an application's functionality is not necessarily the result of actual modifications to its

code. In today's complex environment of interdependent and multitiered applications,

there are myriad factors that can affect operations: a new version of the operating

system, middleware, database, or change to the network topology or hardware

configuration can result in downtime.

For example, I recently reviewed the production trouble tickets for a large IT shop and

found that fewer than 25% of the incidents could truly be described as defects in the

software itself. The rest were caused by ancillary system resources. Regression testers

borrowed from the ranks of users can hardly be expected to know about, let alone

understand and test for, the potential impact from changes of this nature.

But if regression testing sounds bad and is poorly practiced, what's the answer? Well,

how about renaming, redefining, and repositioning it? But that's a topic for next month.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 90
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Testing: No Easy Way Out
by Linda G. Hayes

Originally published in Datamation magazine, June 1997

The good news for testers is that, with the staggering volume of software fixes required

for Year 2000 projects, testing has suddenly been promoted from the back of the bus

to the driver's seat. The bad news for everyone else--especially IS managers--is that

there aren't nearly enough drivers.

Here's the situation: Hordes of vendors are riding to the rescue to help you fix your

applications and data to become Y2K compliant, and although the vendors usually

promise that their changes will work, even they estimate that they will find and fix only

70-80% of the problems.

If there are 12,000 code modules in an inventory and if 30% of them are at risk, that's

3,600 potential land mines still out there. Pretty scary.

To make matters worse, there's a paucity of resources to help you deal with the flip

side of all these changes: Regression testing. Because testing is at least half the

overall effort, why aren't there more resources?

For two reasons. First, after years of career genocide, people with testing expertise are

scarce. The second reason has to do with what regression testing really means and

how it does--or doesn't--get done.

Only the business that relies on an application can be
relied on to test it.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 91
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Regression is the type of testing that you must perform to ensure that the functions that

used to work haven't been broken--or regressed--by changes. It is meant to catch the

unexpected effect of modifications, and is critical any time changes are made to

applications already in production. With fixes of the scale and scope of Y2K, and the

accompanying risk to your ongoing operations, regression testing is essential. Period.

The hidden assumption here is that these functions that need verification already

reside in a library of regression test suites. But the embarrassing truth is, functional

requirements usually exist only in the minds of expert application users, and so

regression testing is a spontaneous, stream-of-consciousness event on the part of

conscripted and largely migrant business workers.

Now I may invoke the wrath of the testing community here, but I don't think you can

hire professional testers off the street who can sweep into a large, diverse computing

environment and materialize a comprehensive regression testbed. Not because they

don't know how to test, but because they don't know what to test.

These legacy systems are huge, encompassing decades of development and

representing extensive expertise in the particular business requirements of the

companies they serve. No amount of education in the science of testing will reveal the

49 ways to purchase, transfer, or sell shares in a retirement plan, for example, or

explain the impact of each on tax reporting. Yet it is precisely this type of knowledge

that is critical to effective regression testing.

If I haven't committed outright testing heresy yet, this will do it: If you follow traditional

test-case design techniques, you will quickly find that you have hundreds of thousands-

-probably millions--of test cases to develop. Given the size and number of applications

involved, even the most elementary approaches will yield an absurd volume of test

conditions.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 92
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

What to do?

All hands on deck: This is survival mode. Admit that you can't palm off this problem to

outsiders; only the business that relies on an application can be relied on to test it. For

each application, form a task force comprising representatives from the user

community, development, production support, and testing. Identify the inputs and

outputs, including all data files, that are involved, and organize the flow of this

information into operating cycles--daily, weekly, monthly, annually, etc.--that mimic

what should happen when the switch is thrown on the software after the Year 2000.

Now, leave the rest to your testers--if you can find any.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 93
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Boost Your Test Team's Value
by Linda G. Hayes

Originally published in Datamation magazine, May 1997

Last month I promised to tell you how to implement test tools successfully.

You may recall my point that these tools are basically specialized languages with all

the attributes of programming, yet the most valuable test resources are typically

recruited from the business community. Thus, a disconnect. But you can overcome this

disconnect by smart project management.

Think about it this way: Testware is software. Automating the testing process is no

different than automating accounting or any other application. If you were doing your

books manually and needed to automate, would you buy your bookkeeper a C

compiler? This is essentially what happens when test tools are handed to testers

whose primary skill is application expertise. Even if they are willing and able to learn

the scripting language, the odds are they won't have the experience to develop tests

that are structured for easy maintenance and manageability.

What to do? Divide and conquer. Divide the project in two places: at the skill and task

levels.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 94
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Different disciplines

At the skill level, this means recognizing that testing and automation are really two

different disciplines, and you need both of them to succeed. The testing aspect covers

what to test--the inputs and expected outputs that demonstrate functionality.

Automation, on the other hand, deals with how the tests will be executed and

managed--the script commands and logic that will apply the inputs, evaluate the

outputs, and report the results, as well as the library control procedures that keeps it all

straight. To return to our accounting analogy, the bookkeeper is responsible for coding

and entering the accounts and transactions, the accounting system handles the posting

and reporting, and the controller manages the finances.

The implication of this approach is that only a small core team of people--a couple of

developers really--need to have test tool skills, and they are responsible for building the

script engine. This engine is designed to execute test cases, which are supplied as

sets of data; almost all test tools accept data from external files. Another team member

serves as the test librarian--someone who is comfortable with change management,

version control, and configuration management issues. The rest of the team--the

business experts--supplies the test cases, which can be created in their utility of

choice: a familiar word processor, database, or spreadsheet.

There are numerous advantages to this technique. By using technical people to work

with the tool, you can honor the power and complexity of the language instead of trying

to hide it through capture/playback. Maintenance is reduced because test cases are

not hard-coded into scripts. A larger population can contribute to the automated test

library because participation is not constrained by specialized skills, and test cases are

easier to read since they are presented as data instead of as scripts.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 95
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Just like app dev

At the task level, divide the development of the script engine just as you would the

development of any application. Identify utility functions, such as log-on, data setup,

log-off, and cleanup, and create them as routines that can be shared across the test

library. Use modularity to segregate and resolve common issues like error recovery

and synchronization checking. Focus on a script library architecture that takes

advantage of reuse and thus minimizes the impact of later changes to the application

under test.

Also, divide the development of test cases. Identify and prioritize requirements

according to risk, and assign related areas to testers with pertinent expertise. Organize

the test cases into suites and cycles that mirror the application under test: daily,

weekly, monthly, quarterly, and annual processing sequences. Package a subset of

critical tests into a build verification cycle, which can serve as an entry criteria into the

test phase, and give developers access to it.

In other words, you need to treat your test automation effort with the same respect you

would any other development and implementation project. Organize and manage it to

take maximum advantage of the specialized skills of each member of the team and the

specific purpose of each element of the test library.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 96
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Truth About Automated Test Tools
by Linda G. Hayes

Originally published in Datamation magazine, April 1997

Yes, there is justice. After being one of the original purveyors of automated test tools, I

now find myself in the karmic position of helping companies actually implement them.

Unfortunately, I have to spend the first session deflating the hopes and dreams left

behind by the salesperson, who has skillfully presented the tool as an instant panacea

for increasing quality while reducing cycle time, resources, and the federal deficit.

Although my experience has been with automated tools for testing software, we could

be talking about any kind of IT tool--whether for enterprise resource planning, Year

2000 projects, or on-line analytical processing--that you've paid big bucks for in

expectation of a big payoff.

Management just dropped big bucks on this tool, and
people are waiting impatiently for miracles to occur.

Here's the automated test tool promise: It is able to merely observe the typical manual

test process as it is being performed, then magically reproduce the same effort,

effortlessly. What could be easier?

The Siegfried and Roy magic act for one, because it's what you don't see that makes it

all work. So let's look behind the curtain.

Foreign languages

Virtually all automated test tools for graphical applications are really just specialized

languages. Some resemble C, others Basic or Assembler, but all offer the basic syntax

and constructs of a programming language. Since the best testers are typically

business users instead of programmers, this is a fundamental disconnect.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 97
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

As a vendor, you obscure this awkward truth through the seductive simplicity of

capture/playback. You activate a "record" mode that captures the tester's manual

activities and converts them into the script language behind the scenes. Pretty slick,

actually, except for a few million details.

One of these details is that this type of recording is "blind" in the sense that it captures

the activities without any sense of context. For example, if you enter data into a series

of fields, you'll get back the sequence of input values and any navigation keys you

pressed, but you won't be able to tell by looking at the script which value went into

which field. Not only is the script impossible to read, but any inconsistency or change in

the order of the fields--which is inevitable--causes the script to shift out of context or fail

altogether.

So what do you do? You either throw the script out and start over, and eventually throw

the tool out, or you take a deep breath and dive into the script language to create a test

you can live with.

The trap

Now you're caught. Developing test scripts that are readable, maintainable, and

reliable is just as challenging as developing the system you're testing, because your

test scripts have to stay in perfect harmony with the application they're testing. This is

no mean feat. A single change to a single window can ripple throughout dozens--dare I

say hundreds?--of test scripts. And your test scripts have all the attributes of source

code: They require structure, documentation, version control, change control,

configuration management--well, you get the picture.

The most painful part is that management just dropped big bucks on this tool and

people are waiting impatiently for miracles to occur. Meanwhile, you feel as though

you've just been catapulted into a bad video game.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 98
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Is it hopeless? No. There is a way to realize the benefits of these tools, which, in spite

of all this, are profound. It's just that there's no free lunch, no silver bullet, no Santa

Claus. If we could just own up at the outset and set realistic expectations, get the right

resources, and invest the necessary time, we would enjoy a tremendous payback. I

should know--I'm doing it--and next month I'll tell you how.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 99
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Tyranny of the Schedule
by Linda G. Hayes

Originally published in Datamation magazine, March 1997

As far as I can tell, the No. 1 scourge of IS shops is The Schedule. The Schedule, it

seems, is an intractable and irresistible force that exists outside of reality. It routinely

demands unnatural acts, bursts of heroism, and sacrifices on all sides.

Why is that? With so many smart people with such powerful project management tools

to subdue The Schedule, how does it get away from us?

Either The Schedule is never in control to begin with because it's driven by an external

event--a critical customer need or a marketing window--that establishes an arbitrary

deadline not based on the actual effort required and resources available, or The

Schedule starts out in control and events conspire against it. Where it's first conceived

with reason and planning, severe problems are discovered in the production system, or

resources are lost to higher priorities, or any of a host of typical, but unpredictable,

hurdles must be overcome.

The marketing department screams about forgone profits
for every day The Schedule slips.

But no matter how it happens, all schedules seem to have one thing in common: They

seem to get off track at the end. Have you ever noticed that a project can be swimming

along until it hits system test and then, suddenly, it's not just late, but no one can even

say when it will be ready. Meanwhile, the marketing department is screaming about

lost opportunities and forgone profits for every day The Schedule slips.

I have a theory about this. Consider the software development process, which

comprises a series of phases, like a relay race: The baton must be passed--the

requirements understood, the design developed, the code written and integrated, and

the final product tested--before the next runner can take off.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 100
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Now, think about trying to save time in a race, so the next runner starts before actually

getting the baton, betting that the baton will catch up later. Each successive runner

gets farther and farther ahead of the baton, so you can't tell whether you're winning the

race by watching the runners.

This is how it happens: The requirements are a little hazy, but time is wasting, so you

forge ahead. The design looks okay except the requirements are still not finalized, but

development proceeds anyway. Then the requirements expand, the design is

massaged on the fly, and your IS staff begins to work inhuman hours. Unit and

integration testing get short shrift and system testing commences with a struggle to get

the system even to install.

In other words, none of the phases has a clear beginning or end--except for testing,

whose end means that the system is "ready."

According to The Schedule, of course, each phase started on time --it's just that the

one before it wasn't necessarily finished. So, at the end of the race--the system test,

where the judges are waiting to flag the winner--you have to wait for the baton to catch

up. If the baton is still back in requirements or design, you're in real trouble because

you truly don't know how far you have to go. To make matters worse, no one is

expecting a delay, because The Schedule says everything's okay.

It's true that the process isn't perfect: You can't stop everything while you clean up

some prior details. But unless you have some objective basis for declaring a promotion

to the next phase, you don't know whether you're on The Schedule or not. Until the

end.

So why is it important to know earlier that you're off The Schedule? In a word:

mitigation. If you know you're behind, the sooner you admit it the faster you can do

something about it: add resources, cut requirements, plead for extensions. The classic

pass-the-buck approach that sticks the entire weight of The Schedule on the final

system test phase is not only unfair, it's bad management.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 101
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

The Year 2000 and the S&L Crisis
by Linda G. Hayes

Originally published in Datamation magazine, March 1997

What do the Year 2000 and the S&L crisis have in common? Both are credited with

horrendous costs that escalate with each report, and neither is at all what it seems.

The so-called S&L crisis was not the result of an assault on the S&L industry by

outside forces, an all-encompassing conspiracy, or a cataclysmic event. What it was,

really, was a profound and massive regulatory failure.

Congress deregulated the industry and opened the door to speculative investments,

and what looked like a good thing during boom times turned into a catastrophe when

the economy hit the skids. Ultimately, the blame did not belong to the greedy

opportunists who took advantage of the situation; the real culpability was with the

legislature that set up the possibility. That's what I think, anyway.

And the same thing is true with the so-called Year 2000 crisis. It's not that a malevolent

millennium has attacked our corporate IS systems, leaving destruction in its wake.

What's really going on here is that the bill is finally coming due for decades of sloppy

source control, negligent configuration management, and generally irresponsible

development and testing practices that have valued delivery schedules above

discipline and have mortgaged the future to make today's numbers.

At many companies, the Year 2000 budget is like a bill
going through Congress: Riders are being attached left

and right.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 102
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

What's brought us to this sorry state of affairs? Take a look around. End users have

been coddled as incapable of articulating their needs formally enough to support

requirements. Programmers have been treated like temperamental artists whose

creative juices will dry up if anyone dares to impose order and organization on their

work. Testers have been tolerated as obstacles, nags, and whiners whose only

purpose is to screw up the schedule. The battle cry of "time to market" or "competitive

agility" or any other of a host of excuses has been trotted out to sidestep structure,

bypass processes, and generally slap systems together. Maybe I'm exaggerating. But

maybe not.

The biggest tragedy about the Year 2000 saga is that management is now setting up

SWAT teams, armed to the teeth with tools, to hunt down and eliminate the insidious

date problem. It's like the S&L trials--if we can just punish the guilty, everything will be

okay. Nonsense. This is not about date fields, this is about software management and

control. This is about knowing what your systems do, how they do it, and where. This is

about being able to make changes to your software, test it effectively, and deliver it

with confidence. What the SWAT teams are finding is that some of the source code is

missing in action, the rest is a crazy patchwork of inter- and intrasystem dependencies,

and effective regression testing is a conceptual term bandied about by academics.

How did this happen?

Banks without vaults

It's not like we can claim surprise, either. The rising tide of maintenance has been

slowly engulfing development budgets, consuming the vast majority of funds. And what

is maintenance, exactly, in the context of software? Software is not like your lawn,

falling into disrepair out of neglect; nor is it an engine, requiring oil to keep the wheels

turning. Software maintenance is a giant rug that we sweep rework under--the work we

didn't finish when we supposedly met the schedule.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 103
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

Until now it's been possible to stay ahead of the wave. Patching systems, replacing

them, or escaping to client/server have all served to dodge and obscure the real issue:

Most IS organizations are run like a bank without a vault. Would you do business with a

bank where the tellers kept the money in their pockets, purses, and money clips? Even

if we assume the tellers are honest and trustworthy, people make mistakes. They

leave. They forget. I know if my teller starts making change from his wallet, I'm out of

there.

Here's a news flash: The amount of money spent on major IS systems is no less an

asset than the money in a bank--and a pretty big bank, at that. Yet that asset--in this

case, the source code and all supporting documentation--is like so much loose change

in the programmers' pockets. There is no accounting, no audit, no ownership. And no

wonder that we can't put our finger on each and every date routine and dependency.

I'm not faulting the programmers, the users, or the testers. They are all creatures of

their culture. The guilty parties occupy the highest levels of management, who will

budget hundreds of millions of dollars to build systems but won't part with pennies to

invest in the very infrastructure that supports those systems. I've seen huge, wildly

profitable companies that can't seem to afford the tools, training, and time to help their

staff do a professional job--even though the systems they're building are mission-

critical to the top line.

No one intentionally sets out to short quality, and at some level almost all managers

understand that quality is key to long-term success. Where it breaks down is in the

short term. This deadline, that contract, the next sale, a critical market window, just this

one fix or feature--all of these conspire to put pressure on the best of intentions. Quality

is the battle lost by daily compromise, not by sudden surrender. Schedules loom large,

and the price for missing the deadline is more immediate, and somehow more real,

than the price for skipping the discipline.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 104
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

What should be happening is a merciless evaluation of the practices that created the

Year 2000 predicament in the first place so that it won't happen again. What's

happening instead is that the mass migration to client/server is opening up new

frontiers, a virtual Wild West of workstations, servers, and tangled interconnections that

defy control and standardization. If you thought it was hard to keep a handle on a

mainframe that was corralled in a glass-fronted room, just wait for servers that can hide

under desks. It's scary.

Like a Congressional bill

But there are bright spots. At many companies, the Year 2000 budget is like a bill going

through Congress: Riders are being attached left and right. These riders are allotments

to invest in measures that have been put off for years and will offer residual value long

after the Year 2000 has come and gone. Boring infrastructure investments that would

never have seen the light of day before are now being heralded as heroic measures

necessary to save the corporation from certain embarrassment.

Just gathering an inventory of all the applications that have sprouted throughout the

company has value: It can be downright amazing to discover the true state of

application deployment throughout the enterprise. Some companies are discovering

redundancy on a monumental scale; in one case, there were a dozen different systems

all trying--without any measurable success--to track software issues. Think about it.

This type of information alone can spark a reevaluation of the IS architecture and its

purpose within the company.

Also, the process of identifying date fields and their dependencies can be used to

create complete data dictionaries and dataflow diagrams, which shed light on the flow

of information through the corporation and enable future modifications. Information

flows reveal other issues: duplication, omission, and complexity are often uncovered,

leading to opportunities for streamlining both systems and the processes they support.

Quality Quest – Software Quality Articles by Linda G. Hayes - Page 105
 1997-1999 Linda G. Hayes. All rights reserved. www.worksoft.com

And, of course, preparing to test applications after the date changes are implemented

is a wonderful opportunity to get a grip on requirements and to shore up regression test

libraries. This is an especially sore spot in most companies, since they are always too

busy trying to make changes to figure out what is already there. Tools are another

beneficial side effect of the Year 2000, and so is documentation. At least the tools will

remain, after the consultants have gone, and the documentation this time around is

bound to be better than what was left previously, the poor quality of which exacerbated

many companies' Year 2000 efforts.

If these efforts are successful, then the Year 2000 can be credited with, in fact, getting

us ready for a new millennium.

	Table of Contents
	About the Author
	About WorkSoft, Inc.
	To Win at Software Development, �Change the Game
	Maximizing Customer Coverage
	Management-Friendly Test Data
	The Pain of Platform Possibilities
	The Problem with Problem Tracking
	How to Achieve Effective Test Automation
	Coder's Conundrum
	The Data Dilemma: Test, Don't Experiment
	Adopt a Winning Strategy
	Fractional People
	The Irrational Ratio
	Testability Standards for Automation
	Checkpoint Charlie: The Hand-Off from Development to Test
	System test

	Don't Take Anything for Granted�in Component Development
	Time-Boxing Your Way to a Better Product
	The Confidence Game
	When to Automate
	The Big Lie
	Process or Perish
	The High Cost of Low Investment
	The Three Faces of Testing
	Forget about "quality"
	Don't Let Your Business Process Regress
	Testing: No Easy Way Out
	Boost Your Test Team's Value
	The Truth About Automated Test Tools
	The Tyranny of the Schedule
	The Year 2000 and the S&L Crisis

