Technical Program Submission

ASQ, Software Division's 9th International Conference on
Software Quality

Title of Submission:

PRIVATE
Primary Contact
 Michael Wills

Author Name:
 Michael Wills

Affiliation:
 The CBORD Group

Email Address:
 MSW8738@AOL.COM

Postal Mailing address:
 61 Brown Road

City, State Zip code
 Ithaca New York 13068

Country
 USA

Work Phone:
 607 257-2410

Home Phone:
 607 838-8248

Fax:

Brief Author Bio

25-50 Words
Michael Wills

The CBORD Group

Ithaca, New York USA

· Director of Quality Assurance

· University of Arizona, BS Dietetics

Submission Information

Title of Paper
 Functional Reliability

Key Words

Descriptive Phrases:
 Functional reliability operational profile metric release criteria

Intended Audience:
Practitioner / Process / Management

FUNCTIONAL RELIABILITY

Michael Wills

The CBORD Group

Ithaca, New York

ABSTRACT
This paper describes a software metric “Functional Reliability” used since January 1995 by the Food Service Management division of the CBORD. Functional Reliability combines an assessment of reliability with operational analysis. We use Functional Reliability to organize and prioritize faults, monitor progress towards targeted reliability goals, for estimation of release dates and for product support. The success of Functional Reliability is built (1) upon its design (2) from the support of senior management (3) by an effective implementation program, including integration with other metrics.

INTRODUCTION

Since 1975 the CBORD Group has provided Foodservice business solutions using computer software and services. We serve over 1500 organizations in North America, Great Britain, Australia and the Middle East. I have been responsible for Foodservice Management division quality assurance since 1986.

This paper draws examples from our Foodservice Manager System project (FMS). FMS is a set of eight interrelated applications with a total of approximately 8000 function points. These applications are named:

· Replication

· Purchasing

· Inventory
· Issuing
· Items
· Service
· Data conversion
· Foodservice Manager system settings and utilities
 FMS faults are tracked using the same database application used to create our legacy character based systems. Our fault tracking is integrated into all parts of the development cycle and we are in the midst of an upgrade to a third party help desk and problem tracking product.

In 1995 I needed a method to track field performance of CBORD’s legacy Foodservice Management software. I researched software reliability (Musa, 1987) engineering methods and available products and decided to build an approach that:

· Facilitates understanding of the nature of each fault.

· Minimizes the time necessary to understand the nature of each fault.

· Facilitates communication about faults.

· Is based upon the available fault tracking system

· Assigns each fault a reliability value.

· Can use an operational profile to partially automate the assignment of reliability parameters.

FUNCTIONAL RELIABILITY EQUATION AND RULES

Equation one, “Functional Reliability,” combines failures per CPU hour (F divided by U) with adjustments for system usage weight (C), visibility (V divided by 3) and consequence (1 divided by con). Equation one reduces a fault’s contribution to reliability if less than 100% of users are affected by the fault, if the fault is of less consequence, and if the fault is of a lower consequence and difficult to notice.

Senior CBORD management and myself set the values for the adjustment factors (V divided by 3), (1 divided by con) and system usage (U) of 3 hours per day. System usage can be tied to operation profiles.

Frequency (F) is based upon the system option(s) affected. It can be from an operation profile [31Musa], and adjusted as needed. For our implementation of Functional Reliability I used my knowledge of FMS to create an informal profile. Refer to Addendum C for rules to use in determining frequency. Variable operational profiles can be applied if standard rules are used to evaluate special considerations. See Addendum C, step 3 for examples.

Analysis of each fault is used to determine the system usage weight (C). Refer to Addendum B for the rules.

 The rules for Visibility and Consequence weight are given in the Equation One.

Equation One Functional Reliability

[image: image1.wmf](

)

(

)

(

)

(

)

F

U

C

V

con

s

¸

*

*

¸

*

¸

=

å

3

1

2

3

S = the status of the recorded fault. The defined range includes all valid, unresolved faults. Refer to Addendum A, table From Data.

Failures per CPU hour:

[image: image2.wmf]F

U

¸

F is the frequency, how many times a day. Frequency is a number between .01 and 1 or a multiple of 1.

U is the system usage in one day. System usage is measured in hours.

Usage Weight:

[image: image3.wmf]C

C is a number between .01 and 1 used to reflect the number of feature users affected by the fault. See Addendum B for guidelines.

Visibility Weight.

[image: image4.wmf]V

¸

3

Visibility for faults of critical consequence is always the default value (1).

1 Not obvious to all users and does not affect essential functionality. A factor of .3333

2 Evident only to knowledgeable users and does not affect essential functionality. A factor of .6667

3 The default value. A factor of 1.
Consequence Weight:

[image: image5.wmf]1

¸

CON

Consequence is the effect of fault on the user. The following numbers are used for CON:

32 Mild. At worst, the fault does not affect the user’s work, but makes the work a little more difficult. For example, having to press the OK button an extra time.
1 Serious. At the lowest level, a serious fault would not affect the user’s work, but would cause the user to distrust the system. For example, if a system error happens every time the user signs off after creating a new vendor item. At worst, the user’s work is hindered and recovery is possible with loss of no more than 10 minutes.
.3 Critical. At the lowest level, a critical fault hinders a user’s work and requires more than ten minutes recovery time. Faults that cause data loss are critical. A fault that renders a feature non-operation is also critical.

Chart 1 Functional Reliability curves

[image: image6.wmf]Functional Reliability by visibility and consequence

0.0000000

0.2000000

0.4000000

0.6000000

0.8000000

1.0000000

1.2000000

1%

5%

9%

13%

17%

21%

25%

29%

33%

37%

41%

45%

49%

53%

57%

61%

65%

69%

73%

77%

81%

85%

89%

93%

97%

frequency and percentage

failures per CPU hour

3,3

3,2

2,2

1,2

3,1

2,1

1,1

The chart legend lists visibility then consequence.

IMPLEMENTATION OF FUNCTIONAL RELIABILITY

The first step was to present the formula to senior management and reach a consensus for how the formula parameters V divided by 3, 1 divided by con and system usage were set.

My rational for obtaining the input of senior management to the reliability parameters was:

· The decision when to release software is a management decision.

· The parameters in question are related to the release decision for reasons I explain below.

· Management support is an important factor in the success of a new metric.

· CBORD management actively promotes the use of metrics.

A major goal was to create a system that represented the effect of faults on users. In our experience, three hours per day per user was a valid approximation for U. We agreed that U would be tied to operational profiles if they become available. Our users operate on weekly, monthly and yearly cycles. We decided that failures of serious or mild consequence expressed on a frequency of less than once a month should be weighted to have a minimal functional reliability. With U = 3, a fault that expresses itself at one failure per hundred hours is felt about once a month. This was one parameter we used to identify high-risk issues (see Addendum E). The other was a critical consequence (see Equation one). We chose the functional reliability equation parameters to minimize the weight of low risk failures.

In order to facilitate communicate about faults and avoid hair splitting, we decided against use of the IEEE severity codes (IEEE, 1994) for consequence in favor of the simple tri-modal system of Equation One.

During 1995 and into 1996 I assigned functional reliability to incoming faults and developed the metric as a tool for projecting the field reliability of our legacy systems.

We use a chart of cumulative functional reliability of resolved faults against total functional reliability to project the date on which targeted reliability will be achieved. The trend lines can be extended beyond the release date to estimate the consequence of releasing a product at any point. I used these techniques and took whatever time necessary to explain them to senior managers, developers and client service management. From 1995 through 1996 we added the Activity field to the fault database (see the Functional Reliability table of Addendum A). Over the years, Activity expanded to what is listed in Addendum D.

When our FMS product development began, functional reliability was a metric that the entire division relied upon. We built upon the successful legacy product implementation and experimented with software inspection techniques during the requirements writing project phase. I also worked to expand the use of Functional Reliability fault resolution prioritization.

In Chart 2, functional reliability reveals the impact of the first three faults is a factor of ten less than projected by reliability. The priority of these faults can be reduced. There are two faults that approach or exceed 1 failure per CPU hour for functional reliability. In this case, a high priority would be assigned in any case, but the two faults will move to the top of the “fix” listing if sorted by functional reliability.

Risk Analysis

This section illustrates how risk analysis interacts with functional reliability. This is essential for understanding the implementation of functional reliability for fault resolution prioritization.

Tables 1 and 2 demonstrate how parameters V and con interact with risk analysis. For Table 1, assignment of a visibility of 1 moves mild consequence faults out of the high risk category: a visible fault of mild consequence that occurs every day for all users can have significant annoyance value. For Table 2, monthly faults for all users, all mild consequence issues are low risk. Low visibility serious issues also fall into the low risk category. For example: a window that is used to enter and view end of month physical inventory prompts users to save changes even though no changes were made.

Chart 2 Functional Reliability is useful for prioritizing fault resolution

[image: image7.wmf]0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

Fault ID Number

failures per CPU hour

functional reliability

reliability

Table 1 Functional Reliability vs. Reliability for faults with F = 1 and C = 100%.

Consequence

Visibility
mild
serious
critical
reliability

3, default
0.0104
0.3333
1.1111
0.333

2
0.0069
0.2222
1.1111
0.333

1
0.0035
0.1111
1.1111
0.333

Table 2 Functional Reliability vs. Reliability for faults with F = .03 and C = 100%.

Consequence

Visibility
mild
serious
critical
reliability

3, default
0.0003
0.0100
0.0333
0.0100

2
0.0002
0.0067
0.0333
0.0100

1
0.0001
0.0033
0.0333
0.0100

Table three demonstrates the effectiveness of the high/low risk categorization. In turn, this categorization used for fault resolution prioritization (Illustration 1), to monitor progress towards product release (Illustration 2 and Addendum F) and for analysis of product performance.

Table 3 Faults discovered to date

Percentage of fault count

Fault count
Functional reliability
% of functional reliability

Low risk
30%
1398
2
< 1%

High risk
70%
3330
607
>99%

Totals
4728
609

Implementation of Fault Resolution Prioritization

I engaged the development group in the creation of problem tracking reports by being very responsive to their report improvement suggestions and to their questions about how functional reliability was set for particular faults. During our functional reliability discussions, the topic always centered on how the fault reliability parameters were decided. In this way our discussions about faults was based upon facts that could be confirmed through observation, discussion and experiment. The reports of illustration 1 and 2 are an outcome of these discussions.

Illustration 1 Listing of unfixed high-risk issues

High Risk Status 2 and 8 Failures, summary
28-Feb-98

Summary:
Recipe window Filter button fails for the following situations.

option#:
80110
RFA #:
1616453
version:
1.3 711b
prio:
2
stat:
2

sys:
ITM
Dist 1:
CF1
conseq:
3

failures per CPU hour:
0.0389
Illustration 2, Analysis of product performance

Listed are the total Failures for CPU hour for opened faults, both high and deferred priority. We have a
28-Feb-98

 System One

 .09

System Two

1.28

System Three

0.48

TOTAL:
1.85
IMPLEMENTATION OF PRODUCT SUPPORT

We maintain a list of high-risk fault workaround strategies. These strategies are created during the end stages of product release, as faults are identified as deferred. We train support representatives in the solutions and publish them in the product on-line help.

CONCLUSION

The assignment of functional reliability parameters requires a modest investment in training and maintenance. Most of the maintenance investment is spent in understanding each fault. There is an opportunity for reducing maintenance and increasing the reproducibility of functional reliability analysis through:

· Use of operational profiles.

· Training staff in the coding of functional reliability

· Creation of training and reference materials.

Addendum A: Reliability Database Tables and Columns

I have included only those tables and columns relevant to an understanding of Functional Reliability.

Table Name
Column Name
Description

From Data

This table is imported from the fault tracking database.

Cross Reference
Fault tracking database numeric index for the row.

Option Number
An alphanumeric index to each application feature.

Category
A single digit designation for the character of the row: fault versus enhancement versus customer call. I call the parent database “fault tracking,” but it also provides help desk functions for our telephone support group.

Priority
A single digit designation for the handling of the row: identifies deferred faults and options not available in the distributed FMS version.

Status
A single digit designation for the position of the row in our resolution cycle: unduplicated, duplicated, fixed, fixed and verified by CBORD, verified by customer

Customer Number
Numeric index for customer identification. Internal customers have numbers, as do processes. For example: Requirements and Code reviews.

Customer Name
The alphanumeric string associated with the customer number.

Rep
Index to whom created the row. Three alphanumeric characters.

Call Date
When row was created. This is a date with a four-digit year.

Date Fixed
The last date on which a fix was created. This is a date with a four-digit year.

Date Tested
The date on which the row passed testing. This is a date with a four-digit year.

System
System designation of three alphanumeric characters.

Version
Version in which the fault originated. Ten alphanumeric characters.

Version Fixed
Version in which the fault was corrected. Ten alphanumeric characters.

Summary
Brief description of the row limited to twenty alphanumeric characters.

Fault Trigger
Orthographic fault classification (Chillarege, 1995). Two alphanumeric characters.

Fault Type
Orthographic fault classification. Two alphanumeric characters.

Functional Reliability

This table is maintained in the reliability database.

Cross Reference
Fault tracking database numeric index for the row.

Frequency
Corresponds to F parameter of functional reliability formula. Tie into option number via an operational profile. [31Musa]

Percent
Corresponds to C parameter of functional reliability formula. See Addendum B.

Visibility
Corresponds to V parameter of functional reliability formula.

Consequence
Corresponds to con parameter of functional reliability formula.

Activity
Point in development cycle. See Addendum D.

System Usage
Corresponds to U parameter of functional reliability formula.

Addendum B

System Usage Weight
Step
Description

1
Consideration is activated by a frequency (F) above 0.

2
Weighting is one (1) if the fault causes the option to be inaccessible. Example: system crashes when option is accessed.

3
Weighting is one (1) if the fault causes the option to be unusable. Example: a report prints, but presents inaccurate data.

4
Weighting is one (1) if the fault is on an essential usage path for the option. Example: a query that populates a window is functional, is missing a required search criterion.

5
Weighting is one (1) if the fault is close to an essential path for the option. When estimating weight, use the highest possible number. Example: there are four possible paths for finding and applying menu items and one (1) is affected by a fault. The operational profile does not cover the relative frequency and insufficient field data is available.

6
Weighting is less than one (1) if steps one through five do not apply. Set the highest possible weighting supported by the facts. The following guidelines are used by CBORD, but may not be applicable to all circumstances:

Guidelines:

Help options are .25 by default.

Rely upon the operation profile for multiple paths. Example: use .5 if a fault affects two of four paths used with identical frequency.

If the affected path is unique and not covered by the operation profile, then estimate. Use your knowledge of the application and users. Place the weight on the high side of your estimate.

Addendum C

Rules for Determining Frequency
Steps
Description

1
Determine the affected option(s). Example: Create and Maintain Purchase Orders.

2
Refer to the operation profile the number of times the option is used in a day. For our implementation I limited frequency to once a day unless multiple options are affected. Example: Create and Maintain Purchase Orders are each used daily, for a total of 2.

3
Evaluate special considerations. Example: the setting for Menu Courses is typically set once. If the failure does not prevent the entry or use of Menu Courses, but only cause the creation of courses to be more difficult, then the user is only affected when Menu Courses are entered. Use .01 for such cases. If the failure prevents Menu Course entry, users are affected daily because courses are used to organize foods within menus. If variable operation profiles are used, special considerations could be conserved if frequencies of .01 and .99 are used as signals to not change frequency with changes of operational profiles.

4
Add the results of steps 2 and 3 for the options identified in step 1.

Addendum D

Activities
Activity Name
Description

Requirement Reviews
(Gilb, 1993)

Design Review

Code Review

Unit Testing
[31Marick]

Functional Testing

Late Discovery during functional testing
Fault was not discovered at its first appearance in a build, but neither was it discovered after release.

Recurring Fault, functional testing
A recurring fault corrected in an earlier release

Ignored Fault, found before release
For tracking our success in identifying the effect of code changes. This identifies a fault created by a patch to a tested build, contained in functionality NOT recommended for testing. Discovered before release to users. May or may not be a recurring fault.

Beta Testing

Early Release

Recurring Fault during Beta or Early Release

General Release

Recurring Fault, General Release

Ignored Fault, found during Beta, Early or General release.
For tracking our success in identifying the effect of code changes. This identifies a fault created by a patch to a tested build, contained in functionality NOT recommended for testing. Released to users. Discovered before release to users. May or may not be a recurring fault.

Addendum E

Risk Assignment using Functional Reliability

Risk Level
Description

Low
Functional reliability of <0.00445 and consequence is mild or serious.

High
Functional reliability of >=0.00445 or consequence is critical.

Addendum F

Optimal Beta Release Criteria
Parameter
Criterion
Comments

Consequence 3
None allowed unless effect can be limited.
The effect of a fault can be limited if the triggering scenario(s) do not involve business goals or if there is an acceptable workaround solution or a practical method for avoiding the fault.

Consequence 2
No faults w/Functional Reliability > .01445 unless effect can be limited.

Consequence 1
Not restricted.
A mild consequence issue can yield as much as .01 failures per CPU hour.

Total Functional Reliability
Less than 1.00 for each system of >1000 function points.
This criterion places a cap on the acceptable number of consequence 1 and 2 faults

Cumulative Functional Reliability
Projected new failures does not cause Total Functional Reliability to exceed release criteria.
Slope refers to the plot of cumulative functional reliability over time. The line is projected forward for the amount of time required for a full system regression test.

References

Chillarege, R. (1995). Orthogonal Defect Classification. Software Reliability Engineering, chapter 5, Lyu, M. (editor). IEEE Computer Society Press, Los Alamitos, California.
Gilb, T., Graham, D. (1993). Software Inspection. Addison-Wesley, New York.
Institute of Electrical and Electronics Engineers, Inc. (1994). IEEE Std 1044-1993, Standard Classification for Software Anomalies. IEEE Software Engineering Standards Collection, 1994 edition. IEEE. New York, N.Y.

Marick, B. (1995). The Craft of Software Testing, subsystem testing. PrenticeHall, Englewood Cliffs, New Jersey, 1995.
Musa, J.D, Iannino, A., Okumoto, K. (1987). Software Reliability: measurement, prediction, application. McGraw-Hill, New York.

[31Musa] Musa, J.D., Fuoco, G., Irving, N., Kropft, D., Juhlin, B. “The Operational Profile,” chapter 5 of Software Reliability Engineering, Lyu, M. (ed.) IEEE Computer Society Press, Los Alamitos, California, 1995.

[31Marick] Marick, B., “The Craft of Software Testing, subsystem testing,” PrenticeHall, Englewood Cliffs, New Jersey, 1995.

7

_982573267.unknown

_982573269.unknown

_982573271.unknown

_982573268.unknown

_982573266.unknown

