

Stress Testing Technologies
for Citrix® MetaFrame®

Michael G. Norman, CEO
December 5, 2001

 Scapa® Technologies

Contents

Executive Summary .. 1

Introduction.. 1

Approaches to Stress Testing ...1

Windows Applications ...1

This is not Windows® ..2

Testing an ICA Architecture 2

Application Tier ...2

Presentation Tier...3

n-Tier Resonance..4

Scapa StressTest for Citrix MetaFrame 4

Architecture ...4

Features..5

Next Steps... 5

©Copyright 2001 Scapa Technologies Limited

Stress Testing Technologies for Citrix® MetaFrame®

Executive Summary
Scapa® Technologies, a Citrix Business Alliance member, has developed
n-Tier Resonance a unique technology which, for the first time, makes it
possible to run a reliable and accurate stress test of applications deployed
using the popular Citrix MetaFrame technology.

Introduction
Citrix Systems Inc, through its Citrix MetaFrame server and ICA architecture has
provided a powerful enabling technology for server-based computing. Those who
run applications on servers, with or without a formal service level agreement,
really ought to ensure that their architecture is actually capable of handling the
application load. This is achieved by a process known as stress testing.

Approaches to Stress Testing
Stress testing is performed by a software tool that pretends to be users of a
system. It is necessary to control how many users there are, what they are doing
and how often they are doing it. The tool measures the time it takes for the
application to respond to the user and identifies any stress-related application
failures. For capacity planning purposes the tool measures how things scale as
the number of servers is increased and can check the efficiency of load
balancing. During tests, monitors are set on various system parameters (like
memory, disk, network and processor usage), and problems can be fixed by
making changes to system configurations and applications.
To get these tests to work it is necessary to introduce some variability amongst
the simulated users. For example, multiple users of an application like Microsoft®
Word cannot simultaneously write to the same document, or when stress testing
a business application it is usually necessary for different users to be dealing with
different products or customers to mimic real database locking patterns.

Windows Applications
So, let us think about stress testing Citrix MetaFrame applications. To pretend to
be a user, the test software needs to click buttons and type in text at the GUI.
There is a wide range of GUI scripting tools (such as Rational Software’s Visual
Test) which were developed for functional testing of Windows applications and
which simulate user activity at a GUI. Multiple copies of these tools can be run
simultaneously to simulate multiple users.
One problem arises with using these tools. Real users wait for buttons to appear
before they click them. Simulated users need to do the same because if a button
is clicked before it has been drawn either nothing happens or something
completely unexpected happens, but the right result certainly does not happen.
All subsequent button clicks are then out of sequence. In fact, the test simply

 ©Copyright 2001 Scapa Technologies Limited

1

 Scapa® Technologies

breaks. To help resolve these problems GUI scripting tools can wait for things
like buttons or menus to appear so that they interact with the application at the
right time. It is a bit complex but with practice effective robust tests can be built.

Citrix MetaFrame Server

User
4

User
3

User
2

User
1

Session 4

Session 3

Session 2

Session 1

This is not Windows®
Citrix MetaFrame allows applications that were built for a desktop environment to
run on the server (as shown in the diagram above) without significant
modification, using a standard component known as the ICA client on the
desktop computer. Citrix MetaFrame essentially inserts itself between an
application and its user’s screen, keyboard and mouse, diverting data to and from
another computer somewhere across the network.
ICA makes a clean separation between the presentation tier of an architecture
which runs on the client and the application tier which runs at the server.
Significantly, ICA does not operate at the level of Windows buttons and menus,
but at the lower-level presentation events that make up those objects. To use a
surrealist analogy, Citrix MetaFrame does not send Windows to the client it
sends Pictures of Windows.

Testing an ICA Architecture
There are two basic approaches to stress testing Citrix ICA architectures:
pretending to be users at the presentation tier on the client or at the application
tier on the server. Both have their disadvantages.

Application Tier
To test at the application tier, lots of copies of a GUI scripting tool can be run on
the server to simulate users of the application, and whilst this cannot be done
directly, it is possible to run lots of ICA client sessions each of which is running a
GUI scripting tool. Citrix MetaFrame supplies a test kit based upon this
approach. Multiple ICA sessions can be run from a given client machine so it is
not necessary to have a huge amount of client hardware to stress test a server.

©Copyright 2001 Scapa Technologies Limited 2

Stress Testing Technologies for Citrix® MetaFrame®

One possible objection to this approach is that the GUI scripting tool is itself a
program. It takes up resources on the server alongside the application it is
running. This introduces inaccuracies into the test results. Note however that the
GUI scripting tool always adds to the load on the server creating an
underestimate of the capacity of the server, so we are at least operating on the
side of caution. It is possible to measure the effect using standard Windows
management options and a good GUI scripting tool will typically consume less
than 2% of the resources that the application consumes, so it can usually be
ignored.
The problem with application-tier testing in the Citrix MetaFrame environment is
that the user experience is not taken into consideration. The presentation tier
controls the application tier and not the other way around. If you introduce stress
at the application tier, the tests run onwards regardless of any event happening
at the presentation tier and of any delays that the communication latency
between client and server would introduce in a real environment.
Given the use of Citrix MetaFrame in wide area deployments and across the
public Internet this limitation renders any timing data unfit for most purposes. It
also limits the use of server capacity data, because latency skews the load profile
on the server and changes a large number of system parameters like memory
usage and the rate of context switching.

Presentation Tier
To resolve the inherent inaccuracies of server-end testing it would seem natural
to test at the presentation tier by running a GUI scripting tool at the client-end.
However this runs into a crucial problem. The simulated user has to wait for
windows etc. to appear, but all that Citrix MetaFrame sends are pictures of
windows. The scripts have to be written to wait for these pictures to appear by
polling a screen buffer comparing it with a bit-map that is expected to arise.
Polling for bit-maps is bad news for a wide range of reasons.
Choosing a bit-map. The trick is to wait for something that is guaranteed to
appear just before it becomes possible to successfully click the button. The
problem is to identify a piece of the screen guaranteed to be in a particular state
at the point at which this becomes possible. If it goes wrong the test breaks.
Inconsistency. Imagine a script that clicks a button to cause a menu to pop up.
The script then clicks within the menu, without actually waiting for the menu to
arrive. This script is tested in a single-user environment and it works because the
menu is always there before the second click is issued. A complex stress test is
then set up running multiple copies of the script simultaneously. This loads up the
server so the graphics stream slows down so that when the script makes the
second click the menu has not yet appeared. The test breaks.
Variability is difficult. The problem is that variability can change the output to
the screen. For example, the application may display the user’s name in a list
box. One of the user name variants may be long enough to cause a scroll bar to
appear where none appeared in the original script which causing the screen

 ©Copyright 2001 Scapa Technologies Limited

3

 Scapa® Technologies

layout to be rearranged. The bit-map comparison may become invalid and the
test breaks.
Too much test hardware is required. To detect a bit-map, each script needs to
watch its user interface and periodically check it for a particular set of pixels. This
takes up client-end memory and CPU and can lead to a requirement for a bigger
machine for stress testing than the server itself. In addition, to check a bit-map
reliably, the corresponding window has to be permanently in the foreground on
the client machine, which needs a very large screen resolution.
The timings are wrong in any case. Bit-map polling does not indicate when the
bit-map appeared. It indicates the first moment after the bit-map appeared that it
was polled for. If there are a lot of scripts running on the same client machine,
this is not a good approximation to the actual time that the bit-map arrived.

n-Tier Resonance
Scapa Technologies has developed a unique n-Tier Resonance technology that
resolves the synchronisation problems of stress testing in tiered architectures like
Citrix ICA.
Stress that is introduced at one tier in the architecture is made to resonate
accurately through other tiers of the architecture so that it becomes possible for
server loading patterns and client-end timings to reflect the effects of
communications latency. The resonance is achieved by binding together tiers of
the architecture using low-level synchronisation logic.

Scapa StressTest for Citrix MetaFrame
n-Tier Resonance is the basis of Scapa StressTest for Citrix MetaFrame, a full-
function stress testing tool and the only effective solution for stress testing Citrix
MetaFrame applications.
Tests are run at the server using a standard GUI scripting tool. The tests send
synchronization tokens to the client alongside the graphics stream via the ICA
virtual channel. Software at the client end identifies the tokens and does not need
to deal with bit-maps. It issues tokens back to the server along the ICA Virtual
Channel, which control the simulation of input events in the server-end script.
The outgoing token is so small in comparison to the graphics stream that it does
not skew the test results. The return token takes up a similar amount of ICA
bandwidth as the keyboard or mouse click that it replaces. The overall
architecture is shown in the diagram below.

Architecture
The capture and editing capabilities of a standard GUI scripting tool are used to
build one or more user test scripts. Synchronisation statements are inserted to
connect them by way of the Scapa StressTest open interface to a Scapa Server
Agent. The Scapa Script Activator is then used to automatically construct the
resonance control logic which manages the Scapa Client Agents. These are

©Copyright 2001 Scapa Technologies Limited 4

Stress Testing Technologies for Citrix® MetaFrame®

d
S

F
S
d
D
s
e
w
t
C
k
t
P
r
r
D
m
a
T
w

N
T
i
b
o
e

5

istributed amongst one or more client machines under the control of the
tressTest engine and a GUI on a Controller machine.

0

2 0

4 0

6 0

8 0

1 0 0

2 4 6 8 1 0

Scapa Client Agent

ICA Client

Scapa
Server
Agent

Scripting
Tool

Application

Controller Client Server

Scapa
StressTest

Engine

eatures
capa StressTest is an established stress testing technology. In addition to
edicated Citrix MetaFrame connectivity it has a number of key features:
ynamic control of load: The load on the servers can be controlled through a
ingle user interface via one or more sliders. The user interface is like a graphic
qualiser, which can crank up the load and see where the system breaks, whilst
atching third-party monitoring tools. It is also possible to reduce user “think

ime”, dynamically changing the time between users’ mouse and keyboard clicks.
ontrol over business throughput as well as user count. If it is important to
now the number of transactions per second the system can support rather than
he number of users, StressTest allows this to be controlled directly.
redefined tests and scheduled tests execution. If dynamic control is not

equired, tests can be pre-defined to run in certain ways, for example for
egression testing. They can also be scheduled for out of hours execution.
istributed test execution. Tests can be run from multiple client machines, to
easure end-user performance in the various geographies over which the
pplications are being deployed.
est result analysis. All the data collected during a test is available for analysis
ith Scapa StressTest reporting features and third party reporting tools.

ext Steps
his White Paper is a response to the challenges presented to the testing

ndustry by the success of Citrix Solutions in delivering the promise of server-
ased computing. Readers are encouraged to refer to further information about
ther stress testing technologies at www.scapatech.com or by sending an e-mail
nquiry to contact@scapatech.com.

 ©Copyright 2001 Scapa Technologies Limited

http://www.scapatech.com/

www.scapatech.com Scapa Technologies Inc.

contact@scapatech.com

Scapa is a registered trademark of Scapa
Technologies Ltd. All other company,
brand or product names are either
trademarks or registered trademarks of
their respective companies.

245 Park Avenue
39th Floor
NYC, NY 10167

Tel: +1 212 792 4032
Fax: +1 212 372 8798

Part Number: WP/011/1101_BetaMinus
Scapa Technologies Limited
125 McDonald Road,
Edinburgh
EH7 4NW, Scotland

Tel: +44 131 652 3939
Fax: +44 131 652 3299

	Executive Summary
	Introduction
	Approaches to Stress Testing
	Windows Applications
	This is not Windows®

	Testing an ICA Architecture
	Application Tier
	Presentation Tier
	n-Tier Resonance

	Scapa StressTest for Citrix MetaFrame
	Architecture
	Features

	Next Steps

