Researching Automated Tools for Project and Requirements Management

When researching which automated tool is right for your IT organization, it's easy to be drawn in to the "bells and whistles" the salesperson proposes as the "latest and greatest features in the industry". On the surface, those "features" may look pretty enticing, but the reality may be that you end up paying for features that become more of an anchor than a lifesaver for the person having to use the tool day in and day out. Some IT management tools can be so limiting that they prevent the user from managing a project in a way that is right for it's scope and/or a department's organizational structure. The following is a list of issues, features, and functionality to be considered when evaluating any 3rd party software for requirements and/or project management.

1) I would suggest starting with preliminary list of "pro's" and "con's" of the current system or methodology used. Determine which of the "con's" are dispensable and which you are "stuck with". Which of the "pro's" can you be flexible with in terms of how the process will be managed, and again which, if any, are dispensable. Some processes may be seem valuable, but not provide a ROI worth their effort to maintain.

2) Then, generate a "wish list" of processes or features you want to to build into your management process that don't currently exist. Determine what features are most important to the department based on how you currently do business, as well as how you anticipate doing business in the future. Focusing on current processing alone could be an expensive mistake, resulting in the department being stuck with a system that no longer fits your approach to software lifecycle management.

3) Start with a list of process that are currently managed without automation, or the current automated tool no longer is meeting your needs. Then, list those processes which are not tracked or managed at all, but which you want to incorporate into future projects. This list could include:

· Creating a common repository of requirements, milestones, and action lists

· Creating a resource for listing. Rolls & Responsibilities (project & task ownership, team members, and stakeholders).

· Maintaining a list of Action Items and Research Results.

· Tracking deliverables (Requirement docs sign-off's, CRF's, LOE's)

· Ability to dynamicly tie all Project Elements together: milestones, sub-schedules, resources, requirements, code drops, testing efforts, training and implementation.

· Others…

4) From the above list of functions, create a "Wish List" of feature you want this tool to support. It's rare for one tool to meet 100% of your project needs, and if it does so, it's usually at an exorbitant cost. So, it would be good to rank the wish list above as to "1- Must Have Feature", "2-Prefered Feature", "3-Nice to Have", "Can be supported by another tool" or "5-Leave Manual".

5) Because there is no "one correct way" of managing a project, process flexibility (including optional use of features and individual customizations) are a must in any management tool. Users should be allowed evolve their project management process without having to change tools later. The selected tool should allow for restructuring of responsibilities, projects, and a general change in work flow and culture of the department using it.

6) Be suspicious of features which are glossed over in marketing brochures, demos, and product walk-thru's, especially if they are features you have marked as a "Must Have" or "Preferred". Features that look good in theory, may not work well in practice. There could be a good reason the marketing person chose not to place focus on a particular feature. It could be due to limited automation or integration of the feature to the rest of the tool, an inflexible methodology built into the tool's work flow, or navigational issues that impact productivity and/or training. It's important that the system be dynamic and robust enough to handle multiple projects, and allow the user to manage using multiple methods between individual projects, if desired.

Additional Points to Consider:

1) Does the tool allow interactive development of requirements, specifications, and test cases. Linking of related data between project phases is an intrical feature to managing code gaps and scope creep. Look for a tool to trace and link project requirements from end-to-end. (CRF thru test planning)

2) How does the tool support integration of project management with project measurement. Can data be extracted in a meaningful way to support project management. Are base line reports available, can they be customized, and can data be exported or imported from other data sources.

3) Is the tool scaleable to the size of the project. Your process flows will be dynamic and need to allow the users to bypass tool functions as appropriate for the project under development. (enhancements may not need the same level of tracking & documentation as projects)

4) Are projects managed in separate database instances? If so, how portable is the data between projects? (It is desirable to leverage reuse of similar documentation where appropriate.)

5) The tool should be robust. It's performance can facilitate or deter progress in large projects where you have multiple users accessing the project database, running reports, and maintaining documentation all at the same time. Have some performance numbers in mind. Can the recommended tool platform accommodate these requirements?

6) Is the installation, ramp-up time & maintenance on the tool reasonable? (what is the learning curve for users & administrators of the tool)

7) Is the tool is compatible with current software/hardware platforms in the department.

8) Does the tool have a web-based component available to enhance access to project related data & documents by all team members.

9) To what extent can the tool be customized. Look to be able to customize features such as database elements, table values, user interface fields, reports, and document templates. Once created, can they be stored for reuse in future projects.

10) What are the security features of the tool. Are they too restrictive or too loose? Are automatic user id, date and time stamps used to verify source of input.

11) What archiving features are available. Are archives easily retrievable and can reports be run against them to facilitate baseline metrics. Can reports be archived within the project itself.

12) Are both standard and custom reporting features available? Do they offer the degree of flexibility need for the departments to meet it's goals for tracking progress, managing resources, and reporting both up to management and down to staff. Can reports be generated with substantial sort functionality & filters. Can reports be archived with static data.

13) Can project related documentation and processes be stored and sorted at multiple levels. For example, maintaining documentation within a hierarchy structure for a project may be desirable. Examples of levels might include: Project, Release, and Version and/or Code Drop.

14) Look for easy navigation within and between projects. A tree view interface is desirable for managing multiple projects at this level, allowing users to navigate as within Windows Explorer. Drag n Drop, Cut/Copy/Paste features greatly enhance usability of the product, and recycling of documentation.

15) Are free form text fields available to users in a meaningful way. Can they be pulled into reports.

16) Are naming conventions flexible for requirements & test cases. This is particularly important if test cases are to be built and stored in the tool as they are frequently modified and recycled to other projects.

 It would be helpful to create a checklist of these, and any additional attributes you which to have automated to assist in feature comparisons.

Debbie Kohls
Page 3
01/19/01

