BUFFER OVERFLOW

If we try to put a glass of water into a half glass container, it will overflow. Just use this idea in case of buffer overflow: the half glass container as the buffer and the water as data.
Buffer is a block of memory that holds multiple data of same data type such as ARRAY.

Buffer overflow is the result of putting too much data into a buffer that it can handle.
Eg:- #include<stdio.h>

Void main()

{

char x[10];

char y[1];

memset(x,0X41,10);/* memset() stores 10 copies of ‘a’(0X41 is the hexadecimal value of a) into the object pointed by ‘x’ */

strcpy(y,x);/* copy the contents of x into y */

}

So here we are trying to store 10 characters in the array y[1] which is capable to store only one character. So there must be a buffer overflow. And during the overflow the SFP (stack frame pointer which is the starting address of the stack) and return path will be overwritten with so many a’s. Now the return address will be 0X41414141. So when the main function exits, the program will execute the instruction at 0X41414141. In this case it will cause an error because it is already outside the process space.
So from here we can get a conclusion that if we could overwrite the return address, we can go onto exploit the program.
There are generally two types of buffer overflows: Heap overflow and Stack overflow. The heap is an area in memory that is dynamically allocated by application. The data section initialized at the compile time. The stack works according to a LIFO model (last in first out). All the data that are active during a function resides inside the stack.
The buffer overflow allows an attacker to overwrite data that controls the program execution path and can hijack the control of the program to execute the attacker’s code instead of process code.

The attacker generally follows these following five steps to get a control over that program:

1. Discovering a code which is vulnerable to a buffer overflow.

2. Determining the number of bytes to be long enough to overwrite the return address.

3. Calculating the address to point the alternate code.

4. Writing the code to be executed.

5. Link everything and just run it.

Let’s discuss an example:
 #include<stdio.h>

 int main(int x,char *y[])/*is the main function where two variables are declared*/
 {

 char buf[256];/* is an array which has the capacity to hold 256 characters.*/
 if(x = =1)

 {

 printf(“%s”,y[0]);

 exit(0);

 } /* if there is no user defined input then print y[0] and exit from the main function*/

 strcpy(buf,y[1]);/*otherwise copy the user input into the array buf[256]*/

 printf(“%s”buf);

 }

This program is vulnerable to buffer overflow. And it is so easy to get the vulnerable point. The buffer is defined to hold maximum 256 characters and if the user enter an input more than 256 characters then there must be buffer overflow.
Now we must know how we could exploit the victim’s program.
 #include

 char*z="victim.exe\"cmd/c calc||AAAAA...AAAAA\xaf\xa7\xe9\x77\x90\x90\x90\x90\xe8\xfa\x12\";

 void main()

 {

 WinExec(z, 0);

 }
The sum of the characters (AAAAA……AAAA) must be more than 256.

cmd /c calc: - pushing the second parameter of Win Exec onto the stack.
WinExec (z, 0):- here ‘z’ is a pointer to null terminated character string that contains the command line for the application to be executed. And ‘0’ represents the system is out of memory or resources.
When the WinExec() function returns 0, the program makes a jump to the

 dummy saved return address (\xaf\xa7\xe9\x77\x90\x90\x90\x90\xe8\xfa\x12) and will quit working.
Prevention:- As we all know that prevention is better than cure so it is better to know the methods of prevention of buffer overflows. The easiest way of prevention is to write secure codes. There are some methods to avoid buffer overflow:
 1. Choice of programming language

2. Use of safe libraries

3. Stack smashing protection

4. Executable space protection

5. Address space layout randomization

Programming languages like C and C++ does not provide any protection against accessing and overwriting data in any part of memory through invalid pointer.

Safe library includes re_implemented unsafe function and ensure that these function can never exceed the buffer size. And it also can detect the attempt to run any illicit code on the stack.
Stack-smashing protection is used to detect the most common buffer overflows by checking that the stack has not been altered when a function returns.

Some operating systems now include features to prevent execution of code on the stack which is called executable space protection.

If it is possible to randomize the virtual memory where the functions and variable usually stores then the buffer overflow exploitation will be difficult but not impossible.
Finale: - As we are working in a software company, our intention should be to make good software and secure software. No matter we all know that it’s really difficult to develop program without mistakes but the most important method for developing secure program is to minimize privilege.
There are some functions which should be handled carefully in the program….

In C/C++ library function like strcat(),strcpy(),gets() etc and in Microsoft library functions like wcscpy(),_tcscpy(),_mbscpy(),wsccat(),_tcscat(),_mbscat(),copymemory() should be used in the program very carefully.

 By:-

 Tapas Kumar Sahoo

