
Page - 1 -

Software Process Improvement
(Impacting the Bottom Line by using Powerful “Solutions”)

by David F. Rico

Abstract

This paper examines only just a few, but extremely
impressive examples of “successful Software Proc-
ess Improvement (SPI),” a highly controversial and
much disputed field.

SPI is the discipline of characterizing, defining,
measuring, and improving software management
and engineering processes, leading to successful
software engineering management, higher product
quality, greater product innovation, faster cycle
times, and lower development costs, simultane-
ously.

The case studies, examples, information, and data
examined in this paper were the result of a notion
called “using powerful solutions.” Powerful SPI
solutions are examined here and others introduced,
in order to lead the way and encourage others that
have not been successful with SPI, or have yet to try
SPI, to use high leverage strategies as methods of
making quantum leaps forward in bottom line or-
ganizational performance.

This paper represents a significant departure from
traditional SPI methods, in that it simply advises
organizations to use universal SPI solutions that are
guaranteed to work.

Traditional SPI methods direct unskilled and inex-
perienced individuals to embark on long and indefi-
nite journeys to invent homegrown and highly indi-
vidualized solutions, having no chance to succeed.

Introduction

SPI is highly controversial because the technology
called “software,” our mathematical, engineering,
and scientific understanding of it, our ability to
manage its development successfully, and the state-
of-the-practice are yet in their early infancy. It is
software’s infancy that results in the exact opposite
outcome of which is desired:

• Uncontrollable development.
• Low quality.
• High costs.
• Lack of innovation.

Unfortunately, the overwhelming majority of soft-
ware development practitioners believe that soft-
ware development will always be a craft industry, a
practice of highly skilled and highly individualized
artists, artisans, and artistry. In addition, the major-
ity also believe that software development manage-
ment is unmeasurable, and thus uncontrollable.

This paper illuminates, introduces, and examines a
systematic series of indisputable evidence, exam-
ples, and case studies, proving that software and
software development management are indeed
measurable, and thus extremely manageable and
controllable.

Furthermore, this paper represents indisputable evi-
dence that an extremely sound, stable, and scientific
understanding of software and software develop-
ment, indeed does exist, and has existed for some
time, nearly three decades.

This paper also asserts the notion that software is
truly an engineering discipline, though practiced and
taught as a craft.

While this paper is largely devoted to a quantitative
examination of history, that is the past, it will offer
a highly unique, tantalizing, and prophetic glimpse
into the future of software engineering that few have
seen. For it is only by examining history that the
future can be clearly seen. Ironically, it is often said
that the past must be forgotten, in order to create
new and innovative computer programs. Maybe
that’s why software is still in its infancy, because
we refuse to learn from the past, in fact we forbid it.

Page - 2 -

Organization

This paper is organized and structured around eight
important topics depicting “successful Software
Process Improvement (SPI)”:

• Benefactors.
• Alternative SPI Models.
• Powerful SPI “Solutions.”
• How much does SPI Cost ???
• How do you measure Quality ???
• Myths & Misconceptions.
• Model Corporate Culture.
• Use Powerful “Solutions.”

Benefactors

This section highlights real, important, and impres-
sive SPI results from the likes of Motorola, IBM,
Hewlett Packard, Raytheon, and NEC. Most of
these organizations are icons of world class organ-
izational performance, product innovation, and
more importantly SPI.

• Motorola Capability Maturity Model®
(CMM®) Results: Motorola is a world leader
in applying Statistical Process Control (SPC) to
hardware design and manufacturing processes.
Only recently has Motorola’s software devel-
opment management began to match their
world renown quality management performance
in hardware, electronics, and communications
[1]. A Motorola division in Scottsdale, Ari-
zona achieved Level 5 of the Software Engi-
neering Institute’s Capability Maturity Model
for Software (CMM) [2], in December of 1996
[3]. Motorola has shown that CMM Level 5
organizations perform an order of magnitude
better than Level 1 organizations, in terms of
productivity, quality, and cycle time.

• Motorola Personal Software Processsm (PSPsm)
Results: Once again, Motorola leads the way
with the successful industrial implementation

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.
sm Personal Software Process and PSP are service marks of
Carnegie Mellon University.

of the Personal Software Process (PSP). A Mo-
torola Division in Boynton Beach, Florida used
the PSP to achieve zero defects in use over 18
software projects, removing over 76% of their
defects before testing began [4].

• IBM NASA Space Shuttle Program: While
Motorola has garnered much of the credit for
successful SPI, it is IBM that pioneered the
techniques used by Motorola to achieve their
success. IBM in Houston, Texas began using
the Software Inspection Process [5] in 1986,
following the explosion of the Space Shuttle
Challenger. Within 3 years IBM had achieved
CMM Level 5 and near zero defect levels [6].

• IBM Quality Estimation Accuracy: During the
1970s and 1980s IBM pioneered and perfected
a software life cycle reliability model based on
the Rayleigh model. IBM had achieved the
ability to predict, manage, and deliver a specific
software quality target within a tenth of a defect
per thousand lines of code, in the worst case
[7].

• IBM Defect Prevention Results: Following the
publication of Philip Crosby’s book, “Quality is
Free,” an IBM division in Research Triangle
Park, North Carolina successfully pioneered,
mastered, and used the Software Defect Preven-
tion Process, achieving 50% quality improve-
ment the first time used, and up to 99% quality
improvement in other instances, without prod-
uct appraisal activities, that is Inspection and
Test [8].

• Hewlett Packard Software Inspection Process
Results: Hewlett Packard [9] has saved more
than $350 million dollars in software develop-
ment expenses from 1989 to 1998 by using the
Software Inspection Process [5], pioneered by
Michael Fagan of IBM in 1972.

• Raytheon Productivity Improvement: Raytheon
has achieved an order of magnitude improve-
ment in software productivity from 1988 to
1996 by using CMM style software process im-
provement [10].

• NEC Defect Prevention Results: This example
is extremely profound. In this example, NEC
of Tokyo, Japan achieved a hundred to one de-
fect prevention improvement from 1984 to

Page - 3 -

1993, corporate wide, by using a software de-
fect prevention process [11]. NEC’s approach
is a homegrown process based on large-scale
participation in quality circles. NEC also uses a
sophisticated yet simple method of process im-
provement through process simplification.

• CMM Level 5 Organizations: While it is still
commonly held that CMM Level 5 is a dream
state that was never meant to be achieved, at
least seven organizations worldwide have
achieved CMM Level 5, or something very
close to it, dispelling the myth of an unachiev-
able level of perfection:
- NEC Tokyo (notional) [11].
- IBM Rochester (notional) [12].
- IBM Houston [6].
- Motorola India.
- Boeing Seattle [13].
- Motorola Scottsdale [3].
- Lockheed Owego [14].

Alternative SPI Models

The most frequently asked question is invariably,
“what is the formula for successful SPI?” There
was a time when the answer to that question was as
elusive as the hope of a software engineering disci-
pline, within our lifetime.

A heavy dose of hands on software development,
hands on experience with highly structured and
measurable processes, listening to the masters, and
carefully examining successful case studies, as they
emerge in increasing numbers, leads directly to the
answer.

“The” answer is to use proven, structured, universal,
portable, measurable, and powerful software proc-
ess “solutions.”

Three distinct approaches have emerged from the
ashes and radiated from the pedestals of champions:

• Indefinite SPI Models: Indefinite SPI models
are not “solutions” at all. Indefinite approaches
offer tools to novices in a vain attempt to aid in
the invention of new solutions. Examples of
indefinite SPI models include, Kaizen [15], ISO
9000 [16], the Experience Factory [17], the

Goal Question Metric (GQM) paradigm [18],
Total Quality Management (TQM) [19], the
CMM [2], and Business Process Reengineering
[20]. Lowell Jay Arthur gives an excellent ex-
position of the fallacy and ineffectiveness of
indefinite approaches [21].

• Vertical Process SPI Models: The Vertical
Process Strategy has been advocated for many
decades in various forms, which involves not
the invention of a process, but the exploitation
of an existing process technology. This ap-
proach involves identifying, selecting, and im-
proving but a single software development pro-
cess, which is believed to positively affect the
bottom line. A conservative favorite among the
software engineering community is the
Software Configuration Management (SCM)
Process. NTT in Tokyo, Japan spent nearly a
decade perfecting the Testing Process. While
these efforts have yielded impressive results
like 2,000 changes successfully managed in 2
years, or 90% test efficiency in 10 years, these
processes just aren’t powerful enough to posi-
tively affect the bottom line. However, the
Software Inspection Process has proved to be
powerful enough to improve the bottom line,
and even directly lead to achieving CMM Level
5 [5, 6, 7, 9, 12, 13, 22, 23, 24, 25]. In fact, the
overwhelming majority of successful SPI par-
ticipants, cite the Software Inspection Process
as “the” key to successful SPI. The evidence is
overwhelming for proponents of the Vertical
Process Strategy.

• Vertical Life Cycle SPI Models: The Vertical
Life Cycle Strategy, like the Vertical Process
Strategy, involves the exploitation of a proven
process technology or solution. But, instead of
a single process, it involves the use of an entire
life cycle. Fewer organizations have been suc-
cessful with this approach, because it involves
more experience and personal maturity than
that of exploiting only a single process. In fact,
in the history of software engineering only one
organization had been successful with this ap-
proach until recently, IBM in Rochester, Min-
nesota [7, 12, 25, 26, 27]. IBM Rochester cre-
ated an entire life cycle from scratch, largely
based on the Software Inspection Process, but
including much more, and actually deployed it

Page - 4 -

to develop a next generation computer and op-
erating system. IBM Rochester went on to gen-
erate billions in revenue, win the Malcolm
Baldrige National Quality Award, and become
ISO 9000 certified, while the rest of IBM came
tumbling down. Watts Humphrey did one bet-
ter by creating the Personal Software Process
(PSP), a scaled down version of what IBM
Rochester used, and many are becoming quite
successful using this approach [4, 28, 29, 30,
31, 32]. Many more so now will benefit from
the PSP as a Vertical Life Cycle Strategy, and
the Software Inspection Process as a Vertical
Process Strategy will rapidly fade from view.

Powerful SPI “Solutions”

While it has been already established that the Verti-
cal Process Strategy and the Vertical Life Cycle
Strategy are powerful SPI “solutions,” there are a
few more that deserve attention. The first solution,
Design Management, is a brand new and rapidly
emerging SPI solution that has yet to be fully estab-
lished and quantified. The next two are a recap of
the two most powerful Vertical Life Cycle Strate-
gies. And finally, the last four are a quick review of
Vertical Process Strategies that must not be ignored
by fledgling SPI enthusiasts:

• Design Management: Design Management is a
scientific discipline which involves the quanti-
tative study, comprehension, propagation, and
exploitation of proven and functionally valid
software designs (and their variations) within
vertical domains, product classes, and market
sectors. Literature is slowly emerging which
examines this SPI approach [33, 34, 35, 36, 37,
38, 39].

• Defect Removal Model Life Cycle: The Defect
Removal Model Life Cycle is the process of us-
ing a Rayleigh life cycle reliability model in
conjunction with the Software Inspection Proc-
ess to predict and manage software develop-
ment and software quality management [7, 12,
25, 26, 27].

• Personal Software Process (PSP): The PSP is a
precisely defined, measurement intensive, port-
able, and individualized Defect Removal Model
Life Cycle [4, 28, 29, 30, 31, 32].

• Defect Prevention: Defect Prevention is a
process of capturing and studying defects and
defect trends, with the intention of preventing
them from happening again [8, 11, 40, 41]. De-
fect Prevention popularly takes the form of
educating design programmers of common mis-
takes not to repeat. Defect Prevention more ef-
fectively takes the form of eliminating, auto-
mating, and simplifying defect prone activities,
in order to eliminate defect injection into soft-
ware code. Unlike product appraisal activities,
like the Software Inspection Process, Test, and
even parts of the PSP which may cost as much
as 90% of the project resources, Defect Preven-
tion costs about 1.5% of project resources and
is more effective.

• Defect Classification: Defect Classification is a
process of analyzing and precisely categorizing
software defects, in order to facilitate the De-
fect Prevention Process [42, 43, 44]. Objec-
tively studying software defects in highly struc-
tured ways, eliminates all subjectivity associ-
ated with problems that occur, and enables fast
and sharply focused defect prevention and even
SPI.

• Statistical Process Control (SPC): SPC is the
process of quantitatively determining process
capability based upon the standard deviation of
a sample of process characteristics [45, 46, 47].
Several samples may be taken to ensure that the
process capability measurement is correct.
Once the process signature has been deter-
mined, it is not necessary to continue sampling,
or sample every data point, a common fallacy.
If the process signature is acceptable, no further
action is required. However, if it is not, a proc-
ess change may be enacted and the process re-
sampled to determine the effectiveness of the
process change. Designing processes with de-
sired defectiveness levels enables the elimina-
tion of expensive and inefficient product ap-
praisal.

• Software Inspection Process: The Software In-
spection Process is a precisely defined and
highly measurable team review of software, de-
signed for optimal defect identification [5, 22,
23, 24]. It is not a design review, but a defect
review. Only defects may be noted. The facili-

Page - 5 -

tator, called a moderator, strictly prohibits dis-
cussion of design alternatives, style, or other
excursions. In addition to being a good tool for
identifying, and thus eliminating software de-
fects less expensively and more effectively than
test, it is also an excellent team building, com-
munication enhancing, educational, empower-
ing, and information democratizing tool.

How much Does SPI Cost ???

This paper has examined how to achieve SPI suc-
cessfully and quickly. This paper has also bestowed
the benefits of SPI and SPI “solutions.” This paper
has also examined the cost reducing, productivity
enhancing, and cycle time reducing properties of
SPI. Yet, common questions are still asked, such
as: “How much does SPI cost?”; “Does SPI cost
more than the way business is done now?”; “Are the
benefits of SPI worth the investment and trouble?”
While this paper has already answered each of these
questions in rather great detail, these questions will
be directly addressed head on:

• PSP Cost Model: The PSP costs about 50 work
days, or 2.5 months to execute producing
10,000 lines of code, and result in zero defects,
repeatable project performance, and software
engineering professionalism. The cost model
used is source lines of code divided by 25. This
is a custom cost model derived from a study by
the Software Engineering Institute (SEI) [31].
This is more than economical for 10,000 source
lines of code.

• Software Inspection Process Cost Model: The
Software Inspection Process costs about 472
hours to inspect 10,000 source lines of code by
a team of four, or about three weeks in elapsed
time. This is a custom cost model derived from
Software Inspection Process experience and lit-
erature [5, 22, 23, 24]. The Software Inspec-
tion Process can reach an efficiency of about
99%, while PSP reviews have an average effi-
ciency of 66% on the high side. While the
Software Inspection Process may be effective
for strategic software elements, it may be im-
practical for large-scale software development.
Proponents still advocate 100% coverage for
source code. This quickly becomes an eco-
nomic impracticality and a misguided priority.

The necessity of the Software Inspection Proc-
ess can easily be minimized by use of Design
Management, Defect Prevention, and SPC.

• Hewlett Packard SPI Cost Model: This SPI
cost model was extracted from “Successful
Software Process Improvement,” by Robert
Grady. It clearly indicates that Design Man-
agement (reuse) and the Software Inspection
Process offer the greatest return on investment
(ROI). Remember, Hewlett Packard has re-
claimed $350 million dollars in development
costs by using the Software Inspection Process.

• SPR SPI Cost Model: This SPI cost model by
Capers Jones of Software Productivity Re-
search indicates that the cost of SPI is rather
negligible [48]. This model indicates that it
costs a 1,000 person firm about $17 thousand to
achieve industry leadership. The PSP can eas-
ily be implemented for that cost, and can result
in world class leadership.

• SPR SPI Effort Model: This SPI effort model
by Capers Jones of Software Productivity Re-
search indicates that the time to achieve SPI is
also rather negligible [48]. This model indi-
cates that it takes just over 2 years to achieve
industry leadership. Once again, the PSP can
easily be implemented in less than that amount
of time, and can result in world class leader-
ship.

• Rome Labs SPI Cost Model: This SPI cost
model by Rome labs has a similar construction
to SPR’s SPI cost model [49]. It clearly indi-
cates an average of about a five to one return on
investment for each class of SPI achieved.

• SEI SPI Cost Survey: The SEI conducted a
survey of SPI costs and published the results
[50]. The SEI survey, like the Rome Labs
study, also indicates an average of about a five
to one return on investment (ROI) for the sur-
veyed SPI efforts.

How do you measure Quality ???

Many of the powerful SPI “solutions” advocated by
this paper, and successfully exploited by the SPI
benefactors, are based on the “Defect Removal
Model” methodology. The “Defect Removal
Model” is an extremely powerful, yet extremely

Page - 6 -

simple paradigm. The “Defect Removal Model” is
based upon Defect Density Metrics and “Process
Metrics” [1, 5, 7, 31].

Defect Density Metrics are extremely powerful, yet
utterly simple (involving elementary arithmetic).
Ironically, very few people have heard of them, un-
derstand them, or know how to apply them. In fact,
most of the people that have heard of them, reject
them as absurd, useless, and too simplistic.

The Defect Removal Model and Defect Density
Metrics are used in conjunction with “Process Met-
rics” to successfully manage software development.

There are other more popular forms of metrics
called “Product Metrics,” “Design Metrics,” or
more appropriately “Structural Design Metrics.”
Examples of popular Product Metrics include Uni-
versal Design Metrics [7], Object Oriented Design
Metrics [51], and Relational Database Design Met-
rics [52].

Very few software professionals use any metrics at
all. The few that do, use Product Metrics. Propo-
nents of Product Metrics are either oblivious to De-
fect Density Metrics and Process Metrics, or reject
their value, usefulness, and applicability altogether.

• Defect Density: Defect Density Metrics take
the simple arithmetic form of: Number of De-
fects per Thousand Source Lines of Code. De-
fect Density Metrics can be computed by any-
one at any time and measured immediately be-
fore, during, and after each quality enhancing
activity. Since they are so easy to use, and very
accurate, Defect Density Metrics are excellent
indicators of progress on day one. Defect Den-
sity Metrics dispel the myth that quality can’t
be measured, or that SPI is a long journey.

• Design Metrics: Design Metrics are a measure
of source code structural style. How tall is it?
How wide is it? How modular is it? How
complex is it? Is it spaghetti code? Is it well
structured?
There are Design Metrics for procedural third
generation programming languages, generally
called “Universal Design Metrics.” There are
Design Metrics for object oriented program-
ming languages, generally called “Object Ori-

ented Design Metrics.” There are even Design
Metrics for fourth generation programming
languages, generally called “Relational Data-
base Design Metrics.”
Design Metrics can be used in conjunction with
the Defect Removal Model and Defect Density
Metrics. All violations of Design Metrics will
be rolled up into a cumulative Defect Density
Profile. However, it’s important to remember
that the Defect Removal Model is not depend-
ent upon Design Metrics.
The term “Design Metrics” is somewhat of a
misnomer. Design Metrics only address source
code structure. Design Metrics don’t measure
product desirability, design desirability, or cus-
tomer satisfaction. Misunderstanding of this
fact causes much confusion, misunderstanding,
and misdirection of resources devoted to ulti-
mately satisfying customers.
The Defect Removal Model and Defect Density
Metrics also struggle from positive correlation
with customer satisfaction. The emerging field
of Design Management corrects this dilemma.

SPI Myths & Misconceptions

Despite the overwhelming evidence for the benefits
of SPI exhibited by this paper, only a small, and al-
most insignificant fraction of the world’s software
development community are represented by these
experiences and results. It is with great regret that
the majority of software professionals believe soft-
ware development to be hopelessly confusing, and
thus many of these myths, misconceptions, dogmas,
and doctrines are accepted as irrefutable.

• High quality is too expensive: The overwhelm-
ing majority of software developers believe that
if high software quality were possible, it would
cost too much to be practical, or desirable.
Many professionals believe this myth is true.

• SPI & high quality are for NASA & DoD:
There is still a propensity for software profes-
sionals to believe that it costs an enormous
amount of money and time to produce high
quality software (something only NASA could
afford or aspire too).

• Faster cycle times result in lower quality: Un-
fortunately, this myth is still common among

Page - 7 -

the uninitiated, that high quality requires a
lengthy and expensive schedule, while faster
cycle times must mean corners are being cut,
and quality is being sacrificed.

• Software is purely creative thought stuff: It is
also commonly believed that software devel-
opment is spontaneous and unpredictably crea-
tive activity that can’t be measured or repeated.

• Process improvement is a long journey:
Among those that might be willing to believe
that SPI is possible, it is commonly believed
that it takes decades to achieve respectable re-
sults.

• CMM Level 3 is good enough: Level 3 is erro-
neously perceived to be average, and thus a per-
fectly acceptable goal to achieve and state to
desire. Level 3 requires neither measurement
nor improvement. Why would anyone want to
be at Level 3?

• CMM Level 5 is a utopian state: Sigh. Level 5
is commonly believed to be a conceptual state
of perfection that was never meant to be
achieved. Sigh.

• CMM Level 5 costs more than Level 1: While
most don’t believe Level 5 is achievable, if it
were, it is said, it would be cost prohibitive and
offer no return on investment (ROI). Only
NASA need worry about being in this state.

• SPI is just a fad: While SPI quickly became
popular in the early 1990s, many have relegated
SPI and the CMM to fad status. Unfortunately,
nothing could be further from the truth. Great
SPI breakthroughs are being rediscovered and
even greater ones have yet to be invented.

• SPI doesn’t affect the bottom line: Processes
and process improvement are perceived to be
ineffective when it comes to affecting an or-
ganization’s profit and loss statement.

• Metrics are too hard & irrelevant: Mention the
work “metric” and everyone runs for the hills.
Software cost estimation is assigned to a cost
estimation group, and metrics are perceived to
be beyond the skill level of computer pro-
grammers. Powerful metrics involve only ele-
mentary arithmetic for the most part.

• Quality can’t be measured: Many confuse de-
sign desirability and software quality, believing
design desirability to be unquantifiable. Most
powerful SPI methods use defects as a basic
unit of measurement and software quality.
Many refuse to accept this notion.

• SPI is too expensive: SPI is perceived to offer
no ROI, take many years, and require large
software process improvement staffs. Three
strikes and you’re out.

• CMM is too heavy & complex: While the
CMM is a bit overwhelming at first, the CMM
is designed around utter simplicity. Write a
project plan, inspect your code, measure the
process, and make an improvement next time.
The SEI needs to work on this one.

• CMM certification without change: SPI pro-
fessionals are often relegated to writing soft-
ware process documents for CMM auditors to
see, while the organizations make no effort to
reform software development practices.

• ISO 9000 certification without change: Quality
professionals are also tasked to construct a
quality plan for ISO 9000 auditors, while the
organization makes no attempt to reform the
quality system.

• Pervasive myth of partial implementation: This
is really aimed at misuse and misapplication of
the CMM. Many believe that the CMM is de-
signed to describe five different levels of so-
phistication, each having merits and degrees of
acceptability. The CMM doesn’t do that at all.
The CMM describes the stages to achieving a
single, unified, and functional state, Level 5.
Many believe that it’s perfectly acceptable and
respectable to be at Levels 2 and 3, seeing no
reason at all to aspire to Levels 4 and 5. The so
called lucky few that have achieved Level 3 are
perfectly content to stay there. Level 3 involves
no useful measurement, statistical analysis, and
process improvement.

• What part of the house can you live without ?:
It is not at all acceptable to stop at Level 2, 3,
and 4, or aspire to these Levels. The goal is to
become a fully functional and improving soft-
ware organization.

Page - 8 -

Model Corporate Culture

Organizational commitment is the key to success. If
organizational participants believe that SPI affects
the bottom line, then everyone will stop at nothing
to achieve SPI. If all of an organization’s leaders
and staff aren’t personally involved in SPI, espe-
cially the executives, that organization isn’t com-
mitted to SPI, and won’t achieve SPI organization-
ally. The leaders and staff of a problematic Mo-
torola division didn’t believe in SPI, and that divi-
sion didn’t understand why SPI couldn’t be
achieved. It takes two seconds to determine
whether an organization will be successful at SPI.
Are all of these people committed to SPI?

• CEO committed to SPI.
• Executives committed to SPI.
• Senior management committed to SPI.
• Line management committed to SPI.
• Staff committed to SPI.
• Organization hires people with SPI skills.
• Organization cultivates SPI skills.

If key organizational personnel state and adamantly
believe that SPI doesn’t affect the bottom line, it’s
time to pack up and leave.

Use Powerful “Solutions”

Finally, when an organization decides to try SPI,
these guidelines can be an important roadmap to
success. Though they seem rather simple and super-
ficial, they are in fact deeply profound:

• Learn that SPI affects the “bottom line”: This
is the first step in beginning a SPI program. If
SPI affects the bottom line, then everyone will
want SPI completed today, not tomorrow.

• Aggressively achieve SPI: SPI is like pinball
machine, it has to be rocked until the ball hits
the right contacts to rack up the points. SPI
must be worked until it yields noticeable re-
sults.

• Make SPI #1 goal (Ichiban): SPI must be the
number one priority. Not an individual’s num-
ber one goal, but everyone’s. If it isn’t your
president’s and management staff’s number one

goal, it’s just not going to happen on an organ-
izational scale.

• Choose powerful SPI “solutions”: Here’s the
key. Don’t waste your time with low leverage
improvements. Examine the powerful “solu-
tions” outlined in this paper and start with one
of them. Once again, use powerful SPI “solu-
tions.” Use powerful SPI “solutions.”

• Create SPI vision, strategy, & tactical plan:
The organization’s executives must construct a
written project plan for identifying and rolling
out powerful SPI “solutions” on a schedule.

• Manage directly to SPI vision: Manage all or-
ganizational activity to the SPI plan. Don’t hire
people that don’t know SPI, to do SPI. Train
project personnel in the SPI “solution.” Meas-
ure the results. Make organizational adjust-
ments. It only takes a few minutes and hours to
have your first results.

• Reap benefits inexpensively on day one: If SPI
is true, then SPI yields benefits. Measure, de-
termine the benefits, and correct if necessary.
SPI will begin paying for itself on day one.

Conclusion

This paper has examined SPI benefactors and bene-
fits, SPI strategies and approaches, powerful SPI
“solutions,” and the costs of SPI. It has also clearly
identified SPI myths to overcome. It has even pro-
vided a method to gauge the temperature of the SPI
environment. Choose a powerful SPI “solution”
and run with it. This isn’t rocket science.

References

1. Daskalantonakis, M., “A Practical View of
Software Measurement and Implementation
Experiences Within Motorola,” IEEE Transac-
tions on Software Engineering, November
1992.

2. Paulk, M., "The Capability Maturity Model:
Guidelines for Improving the Software Proc-
ess,” Addison Wesley, 1995.

3. Diaz, M., "How Software Process Improvement
Helped Motorola,” IEEE Software, Septem-
ber/October 1997.

Page - 9 -

4. Ferguson, P., “Results of Applying the Personal
Software Process,” IEEE Computer, May 1997.

5. Fagan, M., “Design and Code Inspections to
Reduce Errors in Program Development,” IBM
Systems Journal, Volume 15, Number 3, 1976.

6. Billings, C., “Journey to a Mature Software
Process,” IBM Systems Journal, Volume 33,
Number 1, 1994.

7. Kan, S., "Metrics and Models in Software
Quality Engineering,” Addison Wesley, 1995.

8. Mays, R., “Experiences with Defect Preven-
tion,” IBM Systems Journal, Volume 29, Num-
ber 1, 1990.

9. Grady, R., “Successful Software Process Im-
provement,” Prentice Hall, 1997.

10. Haley, T., “Software Process Improvement at
Raytheon,” IEEE Software, November 1996.

11. Kajihara, J., “Learning from Bugs,” IEEE
Software, September 1993.

12. Kan, S., “AS/400 Software Quality Manage-
ment,” IBM Systems Journal, Volume 33,
Number 1, 1994.

13. Yamamura, G., “SEI CMM Level 5: For the
Right Reasons,” Crosstalk, August 1997.

14. "LMFS Owego Attains Highest Level for Soft-
ware Development Capability," Lockheed Mar-
tin News, 1998.

15. Imai, M., “Kaizen: The Key to Japan’s Com-
petitive Success,” McGraw Hill, 1989.

16. Tingey, M., “Comparing ISO 9000, Malcolm
Baldridge, and the SEI CMM for Software: A
Reference and Selection Guide,” Prentice Hall,
1996.

17. Basili, V., "Experience Factory," Encyclopedia
of Software Engineering Volume 1, Wiley and
Sons, 1994.

18. Van Latum, F., “Adopting GQM-Based meas-
urement in an Industrial Environment,” IEEE
Software, January/February 1998.

19. Moriguchi, S., “Software Excellence: A Total
Quality Management Guide,” Productivity
Press, 1997.

20. Rockefeller, B., “Using SAP R/3 Fi: Beyond
Business Process Reengineering,” Wiley &
Sons, 1998.

21. Arthur, L., “Quantum Improvements in Soft-
ware System Quality,” Communications of the
ACM, June 1997.

22. Fagan, M., “Advances in Software Inspec-
tions,” IEEE Transactions on Software Engi-
neering, July 1986.

23. Russell, G., “Experience with Inspection in Ul-
tralarge-Scale Developments,” IEEE Software,
January 1991.

24. Weller, E., “Lessons Learned from Three Years
of Inspection Data,” IEEE Software, September
1993.

25. Sulack, R., “A New Development Rhythm for
AS/400 Software,” IBM Systems Journal, Vol-
ume 28, Number 3, 1989.

26. Kan, S., “Modeling and Software Development
Quality,” IBM Systems Journal, Volume 30,
Number 3, 1991.

27. Kan, S., “Software Quality: An Overview from
the Perspective of Total Quality Management,”
IBM Systems Journal, Volume 33, Number 1,
1994.

28. Humphrey, W., “Using a Defined and Meas-
ured Personal Software Process,” IEEE Soft-
ware, May 1996.

29. Humphrey, W., “Introduction to the Personal
Software Process,” Addison Wesley, 1996.

30. Humphrey, W., “A Discipline for Software En-
gineering,” Addison Wesley, 1995.

Page - 10 -

31. Hayes, W., “The Personal Software Process
(PSP): An Empirical Study of the Impact of
PSP on Individual Engineers,” CMU/SEI-97-
TR-001.

32. Humphrey, W., “Three Dimensions of Process
Improvement Part II (The Personal Process:
Solid data on the effectiveness of the Personal
Software Process,” Crosstalk, March 1998.

33. Macala, R., “Managing Domain-Specific Prod-
uct-Line Development,” IEEE Software, May
1996.

34. “Product-Line Reuse Delivers a System for
One-Fifth the Cost in One-Half the Time,”
Crosstalk, August 1996.

35. Dikel, D., “Applying Software Product-Line
Architecture,” IEEE Computer, August 1997.

36. “Investment Analysis of Software Assets for
Product Lines,” CMU/SEI-96-TR-010.

37. “A Case Study in Successful Product Line De-
velopment,” CMU/SEI-96-TR-016.

38. “Product Line Practice Workshop Report,”
CMU/SEI-97-TR-003.

39. “A Concept of Operations for the ESC Product
Line Approach,” CMU/SEI-96-TR-018.

40. Jones, C., “A Process-Integrated Approach to
Defect Prevention,” IBM Systems Journal, Vol-
ume 24, Number 2, 1985.

41. Gale, J., “Implementing the Defect Prevention
Process in the MVS Interactive Programming
Organization,” IBM Systems Journal, Volume
29, Number 1, 1990.

42. Bhandari, I., “In-Process Improvement through
Defect Data Interpretation,” IBM Systems
Journal, Volume 33, Number 1, 1994.

43. Chillarege, R., “Orthogonal Defect Classifica-
tion - A Concept for In-Process Measure-
ments,” IEEE Transactions on Software Engi-
neering, November 1992.

44. Bhandari, I., “A Case Study of Software Proc-
ess Improvement During Development,” IEEE
Transactions on Software Engineering, Decem-
ber 1993.

45. Burr, A., "Statistical Methods for Software
Quality,” Thompson, 1996.

46. Owen, M., "SPC and Business Improvement,"
IFS Limited, 1993.

47. Wheeler, D., “Understanding Variation: The
Key to Managing Chaos,” SPC Press, 1993.

48. Jones, C., “Activity Based Costs: Polishing the
Software Process,” Software Development, De-
cember 1997.

49. McGibbon, T., “A Business Case for Software
Process Improvement,” Contract F30602-92-C-
0158, September 1996.

50. Herbsleb, J., “Benefits of CMM-Based Soft-
ware Process Improvement: Initial Results,”
CMU/SEI-94-TR-013.

51. Bansiya, J., "Automated Metrics and Object
Oriented Development," Dr. Dobbs Journal,
December 1997.

52. Siqueira, L., "Who is Minding your RDBMS
Application Store?" DBE Software, 1997.

