
Getting Fit with .Net
Quick Introduction to

Testing .Net Applications
with FitNesse

version 0.2
Gojko Adzic

www.gojko.net

http://www.gojko.net/

Table of Contents
Introduction...4

Why are we here?...4
Getting started...5

Hello, World...6
Now, go and play!..8

Writing tests..9
Writing scripts ...10
Saving time and effort with specialised test types..11

Batch comparisons: RowFixture..11
Simple scripts: ActionFixture..13
Using ready-made classes to set symbol values: StringFixture and others..................................15
Working with data-transfer objects..15

Making test pages easier to read...16
Use names that are easy to read – FitNesse will find the right .Net equivalent...........................16
Import namespaces ...17
Clean up the mess and start with a fresh Wiki ..17
Configure FitNesse to run .Net tests by default...17
Use variables for string macro replacement...17
Use comments to provide information or disable tables..18
Load custom cell handlers for simpler comparisons..18

Writing regression tests..19
Be gone with all those pipes...20

Managing Wiki content...21
Formatting text...21

Links..21
Preventing Wiki formatting...21

Managing pages..22
What if there are no buttons?...22
Group common pages into sub-wikis..22
Define common content with special pages...22

Organising tests into test suites...23
Creating test suites..23
Common actions...24

Writing better test scripts ...25
From ActionFixture to DoFixture...25
Split the table to make tests more readable..26
Embed other fixture types to write even more compact tests...27
Wrap business objects in three lines...27

Use business objects in table cells...28
Some other shortcuts..28

Continuing the journey..29
About the author..29

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 2

Redistributing
This is a free document, and you can freely redistribute it as a PDF, unmodified and in original form –
all other rights are reserved by the author.

Version
0.2 – 16. February 2007, covering Fitnesse.Net 1.1 (build 20070128)

If you suspect that this document is outdated, check if there is a more recent version on
www.gojko.net.

Version History
0.2 – 16. February 2007, covering Fitnesse.Net 1.1 (build 20070128)

 minor corrections and updates for Fitnesse.Net 1.1
 new chapter Writing better test scripts, covering DoFixture, working with arrays and business

objects

0.1 – 26. December 2006, covering build 20060530 of Fitnesse.Net

Corrections, comments, updates and source code
If you are interested in corrections, updates and new versions of this guide, I suggest visiting
http://gojko.net from time to time. You can also subscribe to the RSS feed for updates on
http://gojko.net/feed and keep up to date with recent developments. Or, alternatively, you can drop me
an e-mail and I'll notify you about important updates – my contact details are on the last page.

The source code for the examples and Wiki pages from this guide can be downloaded from
http://gojko.net/FitNesse – please feel free to leave any comments about this guide on that page, or
notify me about errors/corrections. Your help in building this guide will be greatly appreciated.

Links
All links are clickable (if you are reading this on your screen - on the other hand, if you printed this
document and links still work, please get in touch - I'd like to hear how you did it).

Cover photo
The cover photo is a royalty-free picture by the Horton group: http://www.sxc.hu/profile/hortongrou.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 3

http://www.sxc.hu/profile/hortongrou
http://gojko.net/fitnesse
http://gojko.net/feed
http://gojko.net/
http://www.gojko.net/

Introduction
FitNesse is a great Web-based collaboration tool for software testing, which can really help to test-
drive the code and build a framework for holding the project together during big changes and re-
factoring. It makes writing and running automated tests easy and allows test-driven software teams to
share knowledge and expectations.

Under the hub, FitNesse runs FIT (Framework for Integrated Testing). Both FitNesse and FIT are
open-source tools, and together they are very popular as a testing framework in the Java community.
Although FitNesse supports testing .Net code, some things don't quite work out of the box or do not
follow official on-line documentation. However, the integration is stable, and I guarantee that the
effort required to start using FitNesse is worth it.

This is a guide to help you get started with FitNesse. I will not try to make a case for automated tests
or test-driven development here, nor explain all the benefits of FitNesse. Here are just a few
advantages of using FIT/FitNesse combination for testing:

 It is easy to write complex tests
 Tests are easy to read and understand
 FitNesse promotes collaboration between team members (and customers)
 Test-specific code is very thin, and it looks much more like an integration layer then typical

testing code

I will refer to FIT/FitNesse combination in this document simply as FitNesse – although it might not
be 100% correct, it will simplify the story. This is a beginners guide and you will be working directly
with FitNesse, and I do not want to confuse you from the start.

Why are we here?

You are here, I presume, because you are interested in automated testing, especially testing .Net code.
I will make a few more assumptions and say that you know at least the basics of .Net development,
expect to get some benefits from code test coverage, and have a project that you want to cover with
tests. Also, you want to know what all the buzz with FitNesse is about.

I am here because I was in that same position recently, and spent a lot of time experimenting with
FitNesse. I banged my head against the brick wall quite a few times, especially due the lack of good
documentation about .Net FitNesse integration. Although the journey was not without problems, the
results are really great – and I want to help you to cross those few first bridges easier.

This is by no means a comprehensive text-book on everything you can do with these tools. Consider it
more as a short tourist guide to get you on your way to the wonderful world of FitNesse1. It covers:

 Setting up a FitNesse server for testing .Net code
 Writing basic tests, performing common tasks
 Saving time and effort with specialised test types
 Tips and tricks for writing better tests and making test pages easier to read
 Managing content with FitNesse
 Organising tests into test suites

IMPORTANT: FitNesse .Net integration has it's specifics, some things are different from the online
documentation (which deals with the Java version) and some things just don't work out of the box.
When I explain such a difference, I'll mark it like this block.

1 “Welcome to the wonderful world of FitNesse” is the default home page title on a FitNesse site built from scratch.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 4

Getting started
First, get a copy of FitNesse and set it up. Download the latest version from
http://www.FitNesse.org/FitNesse.Download (look for the ZIP file with binaries from the latest
release). Unpack it somewhere on your disk, and make sure that you have Java 5 or 6 installed. (Yes,
this is a .Net testing guide, but FitNesse requires Java to run. If you do not have a working Java VM
on your system, get one from http://java.sun.com).

IMPORTANT: The original distribution already contains a dotnet folder with .Net integration –
however be aware that it works only for .Net1 (at the time when I wrote this). To test .Net2 code, you
have to download .Net2 binaries separately. The binaries for release 1.1 are a bit hard to find, as the
link on http://www.FitNesse.org/FitNesse.DotNet has still not been updated to the correct URL.
(when I wrote this, the link for Framework 2.0 Binaries lead to release 1.0). You can download the
binaries of release 1.1 from http://sourceforge.net/project/showfiles.php?group_id=167811 and the
source is on https://svn.sourceforge.net/svnroot/fitnessedotnet/tags/20070128/). Get FitServer.exe,
TestRunner.exe and those DLLs and put them in a new folder – I suggest opening dotnet2 alongside
dotnet and storing the files there. I will use that path in the examples here, if you put them elsewhere,
remember to change the path.

Once you have downloaded everything, just start run.bat. You should see something like this:

FitNesse (20060719) Started...
port: 80
root page: FitNesse.wiki.FileSystemPage at ./FitNesseRoot
logger: none
authenticator: FitNesse.authentication.PromiscuousAuthenticator
html page factory: FitNesse.html.HtmlPageFactory
page version expiration set to 14 days.

IMPORTANT: FitNesse works as a Web application with it's own web server, and will try to take
port 80 by default. If you are like me, that port is already taken, so open run.bat in any editor and add
-p 8888 to the command. (You can replace 8888 with some other free port on your system. I will use
8888 in the examples - so if you use another one, remember to enter the correct port when trying out
the examples).

Open http://localhost:8888/ and you should see the welcome page.

Congratulations, FitNesse is up and running (to shut it down later, just kill the window or press
Ctrl+C). Now, let's write some tests.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 5

http://localhost:8888/
https://svn.sourceforge.net/svnroot/fitnessedotnet/tags/20060530/bin/Framework.2.0/
https://svn.sourceforge.net/svnroot/fitnessedotnet/tags/20070128/
http://sourceforge.net/project/showfiles.php?group_id=167811
http://www.fitnesse.org/Fitnesse.DotNet
http://java.sun.com/
http://www.Fitnesse.org/FitNesse.Download

Hello, World

FIT reads HTML files, looks for tables, and uses data in the tables to execute tests and compare
results to expectations. FitNesse is there to help with building those pages, as a collaborative Wiki2

site with helpful mark-up shortcuts.

Let's write a simple class that joins strings and test it. Create a new project in Visual Studio (or
whatever you are using to write .Net applications), and add a reference to fit.dll from dotnet2
subfolder of FitNesse. Add the following class to the project:

namespace NetFit {
public class ConcatenateStrings: fit.ColumnFixture{

public string firstString;
public string secondString;
public string Concatenate()
{

return firstString + " " + secondString;
}

}
}

Now go to http://localhost:8888/HelloWorld - you should
see a screen similar to the one on the right – telling you
that there is no HelloWorld page (yet) and offering to
create a new page. Click on the link, and FitNesse will
open the page editor – a big text box above several
buttons.

Just paste the following code into the text box and click
on Save (replace examples\netfit.dll with the full path to
the your project's DLL):

!define COMMAND_PATTERN {%m %p}
!define TEST_RUNNER {dotnet2\FitServer.exe}
!path examples\netfit.dll

!|NetFit.ConcatenateStrings|
|firstString|secondString|Concatenate?|
|Hello|World|Hello World|

FitNesse will now create a new page and display it:

2 Wikis are Web systems for publishing information, typically intended for collaborative use, allowing people to
easily create and edit pages using a simple mark-up syntax. Wikipedia is a popular example, you must have seen at
least one Wiki by now, so working with FitNesse should not feel strange.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 6

http://localhost:8888/HelloWorld

Next, you have to tell FitNesse that this is a test page – click on
the properties button on the left, check the Test check-box and
then click on Save Properties. Page properties basically define
what the user can do with that page (controls which buttons
will be offered on the left-hand menu).

When the page is loaded again, you will notice a new
button on the left – Test. Click on it and FitNesse will
run the test.

Ok – that was your first FitNesse test in .Net, and it
passed. Hurrah! Now let's go back and see what really
happened.

The class has two public string fields and a public
method – FitNesse can set and get values of public
fields and properties, and it can call public
parameterless methods (so the fields are actually a
way to pass parameters to tests). The class extends fit.ColumnFixture, which tells FitNesse how to
execute tests – just leave it like that for now, I'll explain it a bit later.

Now look the page code. First three lines tell FitNesse to use the test runner in dotnet2 folder, with
your DLL.

!define COMMAND_PATTERN {%m %p}
!define TEST_RUNNER {dotnet2\FitServer.exe}
!path examples\netfit.dll

The next three lines define the table:

!|NetFit.ConcatenateStrings|
|firstString|secondString|Concatenate?|
|Hello|World|Hello World|

Table rows are created by using the pipe symbol (|) to separate cells. The first line (table header)
contains the test class name. FitNesse automatically converts CamelCase3 names into links, and we
don't want a link in this case, so the exclamation mark (!) before the first cell in the table header tells
FitNesse not to play around with our table data.

The second row contains column headers, listing two field names and the method name. Notice the
question mark on the end of the method name. If the header does not end with a question mark, the
column defines input parameters. If the header ends with a question mark, the column defines
assertions. This particular table tells FitNesse to set values of firstString and secondString and then
check the result of Concatenate(). Rows after the headers define combinations of input parameters
and expected values. This table has only one row with values, only one assertion is executed.

3 See http://en.wikipedia.org/wiki/CamelCase

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 7

http://en.wikipedia.org/wiki/CamelCase

So, in fact, the executed test is equivalent to the following xUnit-like code:

ConcatenateStrings c=new ConcatenateStrings();
c.firstString=”Hello”;
c.secondString=”World”;
AssertEqual(c.Concatenate(),”Hello World”);

A single table can contain many tests – edit the page again and add another row to the table:

!|NetFit.ConcatenateStrings|
firstString	secondString	Concatenate?
Hello	World	Hello World
Hello	Earth	Hello Mars

This time, the tests failed. You can see
the expected and the actual result in the
second row, clearly marked red (as is
the page header). The symbol on the
right still happily tells you that the tests
executed OK (which is a bit strange, as
they failed, but who am I to complain).

Now, go and play!

Take a few minutes and experiment – build tests for some other classes, try reading and writing
properties and fields (just add a question mark after the name of the field or property). To assert that
an exception will be thrown, write error in the cell. There are a few other special keywords which you
can use in tables, including null and blank (equal to an empty string). Take a note that comparing with
an empty cell does nothing – FitNesse will just print the actual value of the appropriate field. If you
want to check whether some value is actually an empty string, write blank into the cell.

You can put more than one table on a single page, in order to test different classes or combinations of
parameters, but remember to split them with at least one blank line, so that FitNesse does not join
their rows together and build a single table.

IMPORTANT: if you spot a question mark after the class or field name, and you did not put it there,
check if it looks like a link (underlined). If it had CamelCase structure, FitNesse built a “missing
page” link from the class/field name. To prevent FitNesse from converting CamelCase names to
links, put an exclamation mark (!) before the first pipe in the table.

You can also correct the previous table either by changing the expectation to Hello Earth or the
second parameter to Mars (or alternatively, change the class code to return Hello Mars).

IMPORTANT: Don't be alarmed if you get a NullReferenceException during tests. FitNesse can
throw that exception if it does not find an appropriate field or method to call – so check if you
misspelled a column header.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 8

Writing tests
FitNesse determines how to execute tests based on the Fixture class which they inherit.
ColumnFixture, used in the previous example, is executed by setting and reading fields and calling
methods specified in column headers, depending on whether they end with a question mark. By now,
you should be familiar with it. ColumnFixture is very simple, but quite powerful – think of it as a
FitNesse equivalent of the Swiss army knife.

Each table is a test unit, so the context (field and property values in the Fixture) is preserved while a
single table is being processed. This can be applied to test calculations which produce complex results
with multiple properties. A typical example would be to set the input parameters, execute a method
which populates several properties, and then check those properties.

Here is an example – the TextMachine counts words and characters in a string:

class TextMachine{
public int words;
public int chars;
public TextMachine(String text){

chars=text.Length;
words=text.Split(", \r\n\t".ToCharArray(),

StringSplitOptions.RemoveEmptyEntries).Length;
}

}

Let's build a simple FitNesse test for it:

namespace NetFit {
public class AnalyseText:fit.ColumnFixture {

private TextMachine tm;
public int words { get { return tm.words; } }
public int chars { get { return tm.chars; } }
public string input;
public bool calculate() {

tm = new TextMachine(input);
return true;

}
}

}

And here is the table (remember to copy .Net2 environment lines if you put this into a new page):

!|NetFit.AnalyseText|
input	calculate?	words?	chars?
The quick brown fox jumps over the lazy dog	true	9	43
So Long, and Thanks for All the Fish	true	8	36

The table should look like this on the screen:

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 9

In this case, the column with calculate method is not actually used to check any assertions, just to
execute the method call. It can, however, be used to check for processing exceptions – so it is a good
practice to return some value (i.e. true) on the end and then check for that in the table.

Tables are always processed top-down and left-to-right, so it's safe to check for words and chars after
the calculate? column.

This technique is very useful for testing persistent data – pass the primary key value, execute a
method to retrieve a row of data, then check individual properties.

Similar technique can be used to store data in the database, in order to set up the test environment.

Writing scripts

A single page can contain multiple tables, so you can quickly build complex test scripts by combining
tables. Tables are always executed top-down, and it is save to presume that a previous table has
already been executed – for example, you can use one table to prepare data, and then execute various
tests on that database with several other tables. To pass data between tests, use local variables – called
'symbols' in FitNesse.

IMPORTANT: .Net implementation of symbols differs significantly from the on-line documentation
(which explains the Java implementation). Symbols are defined using a special syntax in cells instead
of column headers.

To store a value into a symbol, put >> and the symbol
name into the cell. To read the symbol value, put <<
before the symbol name. The picture on the right shows
an example, a combination of previous two tests.

When the test is executed, current symbol values are
printed next to symbol operations, so you can see exactly what is going on:

You can also use symbol values in comparisons (to check if a calculated value is equal to the current
symbol value – just put <<symbol in the column body).

Symbols are very useful when testing against a database – you can use one column fixture to create a
new customer record and return the primary key, then load the primary key into a symbol and
continue using that symbol as the customer identifier in other tests.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 10

Saving time and effort with specialised test types

Although column fixtures are quite versatile, other Fixture types are better suited for specific tasks.
RowFixture is excellent for testing referential information, data coming out of the database and
methods that produce arrays of objects. ActionFixture is great for test scripts which do not have a
repetitive structure.

Batch comparisons: RowFixture

Using RowFixture instead of ColumnFixture for batch data comparisons can save a lot of effort, since
both the fixture code and the test tables are more compact and easier to write - especially if you
already have an object-relational mapping layer. With RowFixture, you do not have to re-declare
properties in the Fixture class (which you would have to do if ColumnFixture was used), and you do
not have pollute test tables with columns that just read the data.

RowFixture is an abstract class with two methods – GetTargetClass and Query. Instead of specifying
your own properties and methods, like with ColumnFixture, you just need to override those two
methods to write a RowFixture test. GetTargetClass specifies the type of objects in the array, and
Query retrieves the array of objects. FitNesse will execute the Query method and then compare results
with the table, matching rows with array elements. The order of elements is not important, but the test
will fail if the array does not contain all specified rows, if it contains more objects than rows, and if
any of the rows cannot be matched. Here is an example:

namespace NetFit {
public class User{

public int id;
public String name;
public String username;
private User(int id, String name, String username){

this.id = id;
this.name = name;
this.username = username;

}
private static User[] hhgg=new User[]{

new User(1,"Arthur Dent","adent"),
new User(2,"Ford Prefect","fprefect"),
new User(3,"Zaphod Beeblebrox","beeble")

};
public static User[] GetList(){return hhgg;}

}
public class ListActiveUsers:fit.RowFixture {

public override Type GetTargetClass(){
return typeof(User);

}
public override object[] Query() {

return User.GetList();
}

}
}

The following test table has one object more, and one of the actual objects is missing:

!|NetFit.ListActiveUsers|
name	username
Arthur Dent	adent
Zaphod Beeblebrox	beeble
Marvin	paranoid

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 11

When this test is run, FitNesse will match first two
rows, report that Marvin is missing, and that Ford
Prefect was seen, but not expected.

You can use symbols in the row tables – both for
storing values and for comparing them.

IMPORTANT: Put a question mark after the column name to specify that a property should not be
used for row matching, just for comparing expected values to matched objects. If a row fixture tests
database values, all columns except the primary key should typically have a question mark on the
end. Also, any columns that are used to store values into symbols will have to be marked like this.

There are no explicit parameters to the Query method, but you can pass parameters to row fixtures
using a different technique – fixture arguments. Pass arguments by adding cells to the first row of the
table, after the class name. Arguments can be accessed in the Fixture code through the protected
string array Args. Let's modify the example and add a parameter to the query. First, add a
parametrised Get method and another user table to the User class:

private static User[] jedi = new User[]{
new User(1,"Obi-Wan Kenobi","kenobi"),
new User(2,"Qui-Gon Jinn","quigonn"),
new User(3,"Mace Windu","windu")

};
public static User[] GetList(String list){

if ("jedi".Equals(list)) return jedi;
return hhgg;

}

Next, create a new row fixture that uses parameters:

public class ListActiveUsersWithParam : fit.RowFixture {
public override Type GetTargetClass() {

return typeof(User);
}
public override object[] Query() {

return User.GetList(Args[0]);
}

}

Then create test tables, with parameters in table headers:

!|NetFit.ListActiveUsersWithParam|hhgg|
name	username
Arthur Dent	adent
Zaphod Beeblebrox	beeble
Ford Prefect	fprefect

!|NetFit.ListActiveUsersWithParam|jedi|
name	username
Obi-Wan Kenobi	kenobi
Mace Windu	windu
Qui-Gon Jinn	quigonn

Parameters are not limited to row fixtures – you can use them in other fixture types in the same way.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 12

IMPORTANT: Symbols cannot currently be used as Fixture parameters – but you can read any
symbol value in fixture code with static method Fixture.Recall(symbolName). See the part about
additional shortcuts on the page 28 of this document to use symbols as fixture parameters directly.

Simple scripts: ActionFixture

Column fixtures allow you to define parameter values and execute methods, but they require you to
set the structure for each test by defining column headers. When the test script does not have a
repetitive structure, you will end up creating a new table (and possibly a new fixture class) for each
test case step. ActionFixture is a much better solution for that – it allows you to execute a relatively
free-form test script in a single table, with a single test fixture class.

Here is an example: after the customer fills in user details and submits the registration form, the
system has to execute a credit check before activating his account.

This is the test script that we want to try:
 customer enters his details and submits the registration form
 verify that the customer record is stored correctly
 verify that customer is inactive
 verify that there is a pending credit check
 approve account
 verify that credit check is finished
 verify that the customer is active.

We will use a simple in-memory customer “database”:

class Customer{
public string name;
public bool approved;
public Customer(string name){

this.name = name;
}

}

class CustomerDatabase{
private List<Customer> customers = new List<Customer>();
private Queue<Customer> creditChecks = new Queue<Customer>();
public int Register(Customer c){

int nextPos = customers.Count;
customers.Add(c);
creditChecks.Enqueue(c);
return nextPos;

}
public bool IsCheckPending(int customerId){

return creditChecks.Contains(customers[customerId]);
}
public void Approve(){

creditChecks.Dequeue().approved = true;
}
public Customer GetCustomer(int customerId) {

return customers[customerId];
}

}

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 13

Here is the FitNesse fixture for the test:

public class RegistrationScript:fit.Fixture {
public string name;
private CustomerDatabase cd = new CustomerDatabase();
private int customerId;
public void Register(){

customerId=cd.Register(new Customer(name));
}
public bool IsCheckPending(){

return cd.IsCheckPending(customerId);
}
public bool IsApproved(){

return cd.GetCustomer(customerId).approved;
}
public string GetStoredName(){

return cd.GetCustomer(customerId).name;
}
public void Approve(){

cd.Approve();
}

}

And finally, here is the test table:

!|ActionFixture|
start	NetFit.RegistrationScript	
enter	name	Jango Fett
press	register	
check	getStoredName	Jango Fett
check	isCheckPending	true
check	isApproved	false
press	approve	
check	isCheckPending	false
check	isApproved	true

The executed test should look like the picture on the
right. Notice that the fixture class does not extend
ActionFixture, but fit.Fixture, and that the table uses
fit.ActionFixture as the test class, not our
RegistrationScript. Action fixtures script other
classes, and the scripted class appears in the second
row, after the start keyword.

Script commands use metaphors from user-
interfaces: enter, press and check. Enter modifies a
field or property value – like a column without the
question mark in the ColumnFixture. Check reads
the value of a property or a field, or executes a
method and checks the result – it is like a column
with a question mark in the ColumnFixture. Press is the equivalent of columns in ColumnFixture that
are just used to execute methods.

Notice how compact this script is – both the code and the table. To perform the same check with
ColumnFixture, we would have to write a separate table for each step, and pass the customer
identifier using symbols.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 14

Using ready-made classes to set symbol values: StringFixture and others

There are many other useful Fixture classes, both in the basic FIT framework and the popular
FitLibrary extension, but I will keep this introduction short and let you discover those utilities
yourself. (I'll provide a few pointers where to look on the end of this document.) However, I'll just
mention another very useful group of classes from an internal test suite. They are: StringFixture,
IntFixture, DoubleFixture, LongFixture, BoolFixture, FloatFixture and DecimalFixture. All these
classes have a field called Field which can be used to set and test values of the appropriate type. They
are great as utilities when you want to set symbol values. Here is an example:

|StringFixture|
|field|field?|
|Vogon Constructor Fleet|>>who|

Working with data-transfer objects

FitNesse requires all test fixtures to extend the Fixture class, which puts you in a tough spot if you
want to connect data transfer objects with table values, because a test fixture cannot easily inherit the
structure from a data-transfer class. You have already seen that RowFixtures can return arrays of
objects, which is ideal for checking values of data-transfer objects without wrapping them into
properties of the fixture class. However, populating data-transfer objects is not that easy. There is a
good solution, if the data transfer classes can be extended: a fixture can tell FitNesse to connect test
tables to another object – GetTargetObject method is used for that. By default, it returns the current
fixture object, but you can override it return an embedded data-transfer object. That will connect test
tables directly to the data-transfer class.

There is, however, one possible problem with this approach: you have to map all the columns to the
embedded object – even the test methods. The best way to do this would be to extend the data-transfer
class, add test methods, and then use the extended class as the fixture target. The fixture class then
just acts as a shell around the extended data-transfer object, telling FitNesse how to run the tests. But,
if the data-transfer class is sealed (cannot be extended), you will have to re-declare all the properties
in the fixture class and map them to an embedded object, or copy them manually.

Here is an example: we want to test the CreditCardValidator service, which validates credit cards.
Instead of passing individual properties of the card, we use CreditCardDTO data transfer class. To
make things simpler, we will just check if the card number has 16 digits, if the post code has at least
five characters and if the owner name has at least six characters.

public class CardValidator
{

public static bool IsValid(CreditCardDTO cc) {
return (
cc.cardNumber.Length==16
&& cc.postCode.Length>4
&& cc.owner.Length>5);

}
}
public class CreditCardDTO
{

public String cardNumber;
public String owner;
public String postCode;

}

The test fixture class will be a ColumnFixture, but will not declare any of the properties nor assertions
itself. Instead, we will extend the data transfer class and add the test method there.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 15

public class CardValidationTest: fit.ColumnFixture {
class ExtendedCreditCardDTO:CreditCardDTO {

public bool isValid() {
return CardValidator.IsValid(this);

}
}
private ExtendedCreditCardDTO card = new ExtendedCreditCardDTO();
public override object GetTargetObject() {

return card;
}

}

The test table can now directly access ExendedCardDTO methods and properties:

!|Card Validation Test|
owner	post code	card number	is valid?
Mace Windu	17171	4111111111111111	true
Mace Windu	121	4111111111111111	false
Mace Windu	17171	41111111	false
Mace	17171	4111111111111111	false

Making test pages easier to read

One of the original goals of FIT and FitNesse was to enable non-technical users to collaborate on
writing tests. Several syntax tricks and a bit of smart formatting can make the test pages much more
readable – closer to the English language than to C#.

Use names that are easy to read – FitNesse will find the right .Net equivalent

When mapping column values to class names, properties, variables and methods, FitNesse does a
case-insensitive search and ignores blanks. So, instead of:

|ConcatenateStrings|
|firstString|secondString|Concatenate?|
|Hello|World|Hello World|

you can write:

|Concatenate Strings|
|first string|second string|concatenate?|
|Hello|World|Hello World|

The test will look much better on the screen, it will be easier to read, and splitting the name into
several words solves the problem of automatic CamelCase conversion into links.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 16

Import namespaces

Instead of specifying fully qualified names of test classes, you can import a namespace using the
Import table. Start the table with a single word – import, and specify namespaces in following rows,
one in each row. Here is the Hello World example again:

!|import|
|NetFit|

!|Concatenate Strings|
|first string|second string|concatenate?|
|Hello|World|Hello World|

You need to import the namespace only once for the entire page (actually, once for the entire test
suite, I'll explain that later).

IMPORTANT: The include directive is, in fact, a special test table, defined in fit.dll. Although on-
line documentation does not mention any specific pre-conditions for the include directive, if it does
not work for you in .Net, add a line containing !path dotnet2/fit.dll to the start of the page. This will
make sure that basic FIT library is included in the search for fixtures.

Clean up the mess and start with a fresh Wiki

Unless you are going to develop FitNesse, you might want to clear the existing content and start from
a fresh web site. Edit run.bat and add -r MyTests into the command line, then restart FitNesse. This
will install a blank Wiki into the MyTests folder, and you can then fill it in with your pages.

Configure FitNesse to run .Net tests by default

FitNesse has a special page, /root, for storing global definitions. You might not see the Edit buttons
on the left when you browse to that page, but the URL /root?edit will open the root page straight in
edit mode. I suggest adding the following few lines into that page to define the .Net runner and load
basic .Net DLLs, so FitNesse will run .Net tests by default:

!define COMMAND_PATTERN {%m %p}
!define TEST_RUNNER {dotnet2\FitServer.exe}
!define PATH_SEPARATOR {;}
!path dotnet2*.dll

IMPORTANT: When I did this, the browser just waited and waited... the default content seems to
hang the server when root page is edited. However, if you create a fresh Wiki (which I suggest you
do anyway), as explained in Clean up the mess, the problem goes away.

Notice that PATH_SEPARATOR is also defined, and that just the basic libraries from dotnet2 folder
are loaded – I suggest that you keep project-specific paths in your tests for now, not in the root page.
When I explain how to organise tests into test suites, I'll give you a better option for defining the path
for project-specific DLL paths.

Use variables for string macro replacement

Variables in FitNesse are similar to named macros in programming languages. They are a great tool to
quickly parametrise the entire page (or a set of pages) – for example when the tests depend on a file
system path or URL of some internal test server, which can change in the future, or when each test
run should use a different sequence number. We use them to make sure that tests will not attempt to
create customers with duplicate data in consecutive runs, if we do not have time to clean the test
database between runs.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 17

Variables can be set with the !define directive – you have already used them to set the test runner and
DLL path. Variables are read by enclosing the variable name in ${ }, anywhere in the Wiki source.
Here is the customer registration test script again, but with a variable used in the name:

!define testRun {1177}

!|ActionFixture|
start	NetFit.RegistrationScript	
enter	name	Jango${testRun} Fett
press	register	
check	getStoredName	Jango${testRun} Fett
check	isCheckPending	true
check	isApproved	false
press	approve	
check	isCheckPending	false
check	isApproved	true

The difference between variables and symbols is in the processing
time. Variables are processed by FitNesse while building HTML
pages – they are not available in the Fixture code, but can be used to
build parts of cell content. Symbols, on the other hand, are processed
while executing tests – so they are available in the Fixture code, but
cannot be used to build parts of cells. Also, the type of variables is
irrelevant – they can be used in text or numerical fields, or even as
parts of those fields. Type information is important for symbols –
create a test that loads 111.1 into a symbol using StringFixture, and
then compare it to 111.1 using DecimalFixture, and the test will fail.

Also, you can clearly see when a symbol is used, but the page will
not show that a variable is used in cell content, it will just display a
comment where the variable is defined.

Use comments to provide information or disable tables

Any text outside of tables is just ignored – so you can write explanations, include images, provide
links to more information or modify those test pages in any way you feel would improve the
understanding – this is one of the best features of FitNesse. Easily providing such flexible contextual
information is not what most testing frameworks can be proud of.

To quickly disable a test table, and turn it into a comment, just add a row with |Comment| on top of it.
Any tables beginning with a row containing the single word Comment are ignored during testing.

IMPORTANT: Again, like includes, comments are actually tests – if adding the Comment row on
top does not give you the expected results, add dotnet2/fit.dll to the path.

There is another type of comment, which can be used in the source of wiki pages – add a hash (#) to
the start of any line in the Wiki source to turn it into a comment – it will not display on the Web page.

Load custom cell handlers for simpler comparisons

FitNesse uses cell handlers to “understand” what you wrote in table cells. The default cell handler
just interprets the data literally, but the symbol retrieval cell handler looks up the symbol value. There
are a few non-standard cell handlers which you can use to write comparisons easier. A good example
is EndsWithHandler – which checks whether a string ends with a given substring. The syntax for this
handler is simple – put two dots and then the substring in the cell.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 18

These non-standard handlers have to be loaded on demand because they can obstruct expected
behaviour of other functions – when EndsWithHandler is loaded, two dots on the beginning of a
string have a special meaning – they are no longer interpreted literally.

To load a non-standard handler, just add a table with CellHandlerLoader in the first row, and then add
rows with two cells – first cell should contain the keyword load, and the second cell should contain
the class name of the handler. Here is an example:

|cell handler loader|
|load|ends with handler|

|String Fixture|
field	field?
Ford Prefect	..ect
Marvin	..vin

Other interesting non-standard cell handlers are IntegralRangeHandler (checks if a number is in a
numeric interval given as min..max), StartsWithHandler (similar to EndsWithHandler, but checks for
strings from the left; the syntax is substring..), SubstringHandler
(checks for substrings anywere; can replace EndsWithHandler and
StartsWithHandler, and the allowed syntax is ..substring, substring..
or ..substring..).

As you can see, all these handlers act on two dots, so to avoid
confusion you might want to unload them when the test is over. To do
that, use remove keyword in the Cell Handler Loader, followed by the
class name. Two other keywords can be used – clear drops all active
cell handlers, and loaddefaults will load the default handlers again.

The picture on the right shows an example test run –
EndsWithHandler is loaded first, then we test if the two strings end
with correct three characters. After that, EndsWithHandler is
unloaded, so the repeated test (same table as above) will fail this time,
as FitNesse will try to match ..ect and ..vin literally.

IMPORTANT: Numeric comparisons do not work as explained in the on-line documentation –
although it's written that you can use >10 to check if a value is larger than 10, there is no handler for
that expression in the current FitNesse.Net build – see page 28 for a possible solution.

Writing regression tests

If you leave a comparison cell blank, FitNesse will just print the current value of the relevant field,
property or method – without actually comparing anything. Along with the feature originally intended
for Excel import, this enables you to quickly snapshot current functionality of complex calculations,
and build regression tests. Here is a quick example, again using string concatenation.

Build a test table without expected results, just type in the input values and leave the third column
blank.

!|NetFit.ConcatenateStrings|
first string	second string	concatenate?
Time is an illusion.	Lunchtime doubly so.	
I demand that I may	or may not be Vroomfondel!	
Ford, you're turning into	a penguin.	

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 19

Run the test – it will not fail, but just print
out calculated values in the third column.
Now select the entire table in the browser
(directly from the rendered page, not from
the HTML source nor Wiki source), and
copy it. Internet Explorer allows you to get
just a few rows at a time, but some versions
of Firefox require you to select the entire
table in order to copy it properly. Try to
paste what you copied into Notepad – you
should see the table, with column values
separated by tabs. Edit the test page again –
replace the old table with tab-separated content from the clipboard, and then click on the Spreadsheet
to FitNesse button. That should turn the tab-separated table into a FitNesse table, and even add the
exclamation mark to the first row automatically.

You can also build data regression tests with RowFixtures – just a bit harder than in the previous
example. Write the table header with data structure, but without any data rows.

!|NetFit.ListActiveUsersWithParam|hhgg|
|name|username|

Now execute the test – it will fail, printing everything
that the RowFixture actually returned. Again, copy the
table into the clipboard. Paste it into an editor –
Notepad will do just fine. Do a global search & replace
of surplus into an empty string (you can also include
one blank before surplus). After the replacement is
done, edit the page, paste the new table and press
Spreadsheet to FitNesse again, and that's it – you have
built the regression test!

Be gone with all those pipes

Although FitNesse Wiki syntax is really simple, you do not have to use it to write scripts. You can
write your tables in Excel (or almost any other spreadsheet program), and then just copy them into
FitNesse like the tables in regression examples. Clipboard automatically picks up data from most
spreadsheet programs in tab-separated format, which can be directly converted to FitNesse with
Spreadsheet to FitNesse button. If your spreadsheet program behaves differently, it should be able to
export tab-separated files.

You can also convert a FitNesse table to tab-separated data with FitNesse to Spreadsheet button in
page editor, and then copy that into Excel for editing.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 20

Managing Wiki content
FitNesse is not just a test-server. It is also a great collaboration content management tool, which
allows you to add requirements, specifications, useful links and supporting documentation to the tests,
and exchange ideas with the team. It is no coincidence that tests tables can look more like English text
than a code-related script.

Formatting text

FitNesse is a Wiki – a relatively free-form content management system that allows users to build
pages and link them together. Instead of using HTML directly, Wikis use a special markup syntax –
you have already seen pipes (|) used to create tables. Here are a few more interesting markup symbols:

Markup Effect

!1 Apply Heading 1 style to the rest of the line

!2 Apply Heading 2 style to the rest of the line

!3 Apply Heading 3 style to the rest of the line

!c Align to centre

---- Horizontal line (4 or more dashes)

!img url Display image from url

!img-l url Display image, left aligned

!img-r url Display image, right aligned

'''text''' Bold - three single quotes enclosing text on each side.

''text'' Italics – two single quotes enclosing text on each side.

Comment – ignore the rest of the line

Check out http://FitNesse.org/FitNesse.MarkupLanguageReference for a detailed reference of the
Wiki markup language of FitNesse.

Links

FitNesse automatically recognises most links and builds proper HTML code for them – external links
should just begin with http:// and internal links are built from CamelCase words – beginning with a
single capital letter and containing at least one more capital letter. If the url ends with .gif or .jpg,
FitNesse will automatically replace the url with the image. You can create additional links yourself by
putting [[label][url]] anywhere in on the page. This can be used to create links which FitNesse does
not recognise (if the word is not in CamelCase), or to change the default label for the link.

Preventing Wiki formatting

FitNesse does a lot of formatting on it's own, most of the times guessing the right thing to do.
However, in some cases you explicitly want to prevent 'smart' formatting. For example, formatting
should not be applied to code examples, class names, and generally to test tables.

You already know that you can use an exclamation mark (!) to prevent any smart formatting of table
contents. However, some basic formatting (such as variable replacement) will still be done. If you
want to prevent all formatting, enclose the text into !- and -!. To prevent FitNesse from parsing and
formatting large blocks of text, enclose those blocks into three curly braces ({{{ and }}}) – you
should typically do this with code examples, but you can use that trick to enclose any pre-formatted
block of text.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 21

http://fitnesse.org/FitNesse.MarkupLanguageReference

Managing pages

Pages are units of content in FitNesse – and you will use pages to group related tests (and create
testing scripts). Putting tables on a single page guarantees that they will be executed in sequence, in a
specific order (top-down, and left to right).

To create a new page, either write the page name after
http://localhost:8888/ or edit one of the existing pages and add the page
name to the content. FitNesse will automatically create a link from
CamelCase words, or print a question mark link if the referenced page
does not exist. So, try this:

 click on the top-left dial icon to go to the homepage (or open
http://localhost:8888/)

 click on the Edit button on the left
 add MyTestPage to the bottom of the page content
 click on Save

When the homepage loads again, it will display MyTestPage on the
bottom, and a question mark with a link after that. Click on the link and you will open the new page in
edit mode – now enter some lines, a heading, maybe even a test table. Click on Save and that's it – the
new page is in the Wiki, with a working link from the home page. You can now click on Properties
and specify actions which can be executed on the page.

What if there are no buttons?

If the Properties button is not there when you need it, just add ?properties to the URL. If there is no
Edit button there, add ?edit to the URL. Sometimes ?edit will help create the page if FitNesse does
not offer it (for example, when the page name is not a CamelCase word – though it's best to keep to
CamelCase page names, as some versions of FitNesse throw a NullPointerException when you try to
edit such a page).

Group common pages into sub-wikis

Sub-wikis are the FitNesse equivalent of Web folders or C# namespaces– they can be used to group
related pages and control their common properties (I'll explain this in more detail in the chapter about
test suites). Instead of a slash (/), the dot(.) is used to separate levels of hierarchy in FitNesse. So, for
example, http://localhost:8888/CustomerTests.OpenNewAccount leads to OpenNewAccount page in
CustomerTests sub-wiki.

All relative links from OpenNewAccount will lead to pages in CustomerTests sub-wiki. To go to the
top level, prefix a page name with a dot. So the link to .FrontPage leads always to the homepage of
the site. Similar, the carret (^) leads to a sub-level (^OpenNewAccount link on CustomerTests page
leads to CustomerTests.OpenNewAccount).

Create a couple of pages in the CustomerTests sub-wiki and then open the main page of the sub-wiki:
http://localhost:8888/CustomerTests. Put just one line containing !contents into the page body and
save it. This page will display links to all the other pages in the sub-wiki. Using !contents is a quick
and easy way to build tables of contents for the sub-wikis, so that you do not have to add links for
each page manually. Add -R after !contents to build the table of contents for the complete hierarchy –
including contents of all sub-sub-wikis.

Define common content with special pages

Special pages PageHeader and PageFooter are included on the top and bottom of all other pages in a
sub-wiki. Edit those pages to define common headers or links that are always displayed.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 22

http://localhost:8888/CustomerTests
http://localhost:8888/CustomerTests.OpenNewAccount
http://localhost:8888/
http://localhost:8888/

Organising tests into test suites
FitNesse supports grouping tests into test suites with sub-wikis. Putting tests into a test suite allows
you to:

 Execute them together with a single click
 Manage their files easier as a group
 Define common properties like DLL paths only once
 Define common actions that should be executed before and after each test
 Define common actions that should be executed before and after the entire suite

Creating test suites

Any sub-wiki can be turned into a test suite by enabling the Suite property for the main page of the
sub-wiki. When you do that, the Suite button will appear on the top of the left column, and pressing
that button will run all tests in the suite.

Let's go through an example – we'll create a test suite with two tests. Point your browser to
http://localhost:8888/TestSuite.ConcatenateStrings – create that page, mark it as a test and put the
following table into it:

!|Concatenate Strings|
|first string|second string|concatenate?|
|Hello|World|Hello World|

Now point your browser to http://localhost:8888/TestSuite.ListActiveUsers – create the page, mark it
as a test and paste the following content into it:

!|List Active Users With Param|jedi|
name	username
Obi-Wan Kenobi	kenobi
Mace Windu	windu
Qui-Gon Jinn	quigonn

Notice that there are no DLL path definitions nor namespace imports this time – just the tests. All
common properties will be defined globally for the entire test suite.

Now open the main page of the sub-wiki: http://localhost:8888/TestSuite – edit (or create) the page,
and paste the following content (replace the DLL path with the appropriate path on your system):

!path examples\netfit.dll
!contents -R

Now click on Properties on the left, and check the Suite checkbox,
then save the properties. A suite button will appear on the left, and the
page will display sub-wiki contents. Notice that the DLL path is
defined in the main suite page – that will automatically load the
referenced DLL for all tests in the suite.

Next, open http://localhost:8888/TestSuite.SetUp and put the
following content into it (no need to mark it as a test):

!|import|
|NetFit|

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 23

http://localhost:8888/TestSuite.SetUp
http://localhost:8888/TestSuite
http://localhost:8888/TestSuite.ListActiveUsers
http://localhost:8888/TestSuite.ConcatenateStrings

SetUp is executed before each test – so individual tests do not have to import the namespace.
The test suite is ready now. Go to http://localhost:8888/TestSuite and click on the Suite button on the
left. All tests in the suite will run, and you will see a summary report on the top, with test results
below:

Common actions

In addition to SetUp, you can also create a TearDown page (it will be executed after each test). There
is also an option to create SuiteSetUp and SuiteTearDown pages, which will be executed when the
entire suite starts/ends. Common content, as mentioned in the section on sub-wikis, can also be
defined with PageHeader and PageFooter, and we also used the main suite page and the root site
page to add common definitions. So, which of them should you use for what? Here are a few simple
guidelines:

 Common HTML content should be put into PageHeader and PageFooter, as they are pasted
directly into the page code. SetUp and TearDown are included into special, framed sections.

 Global path and runner definitions, such as including basic Fit libraries and setting up a .Net2
runner can be added to /root if you use FitNesse only for .Net testing.

 Project-specific DLL paths should be added to the test suite main page. FitNesse looks for
path definitions up the hierarchy, so this ensures that correct DLLs will be loaded for all the
tests.

 Variables global for the entire test suite scope (utility URLs, randomiser sequence numbers
etc) should be added to SetUp. SuiteSetUp is not included directly into the test page content,
so FitNesse will not see variables defined in SuiteSetUp on individual test pages.

 Package includes and initialisations like setting up a database connection pool can be added to
either SuiteSetUp or SetUp – however, I strongly suggest using SetUp for that - this makes
sure that the environment will be properly initiated for all the tests if they are executed
separately. SuiteSetUp will not be run when you execute individual test pages in the suite.

 Only the actions that really have to be executed once and only once for the entire suite run
should be added into SuiteSetUp.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 24

http://localhost:8888/TestSuite

Writing better test scripts
So far, you know all the basics of FitNesse – before you continue the journey on your own, I'd like to
show you how to efficiently write test scripts. This chapter will introduce one more test class type –
the versatile DoFixture, and a couple of shortcuts and tricks which will enable you to write test scripts
quicker and make them easier to read.

From ActionFixture to DoFixture

DoFixture is a part of FitLibrary, a popular extension to
Fit, which is distributed in the main FitNesse.Net
package. Instead of following a UI metaphor, DoFixture
table looks more like a story – rows do not have to follow
the same structure, and most lines can seem like English
sentences.

Rows two to seven in the picture on the right set-up the
test – populating a Roulette table with coins. Most of
them would have to be written as two or three 'enter' and
'press' actions of ActionFixture. Rows 8-10 test if the
coins have been appropriately placed, corresponding to
combinations of 'enter' and 'check' actions. Row 11 is like
a single 'press' action in the ActionFixture, and the
following four rows are again compound checks. All in all, the equivalent action fixture would be at
least twice as long.

Each row of the table (apart from the header one) corresponds to a single method of the Fixture class.
Odd cells are combined to produce a method name, and even cells are used as parameters. So, the
third row actually calls method PlayerPlacesCoinsOnNumber with parameters “Arthur”, 10 and 12.
Methods that just set-up data don't return anything, and the comparison methods return a bool value –
if that value is true, the row is coloured green, and the test passes. If the value is false, the test will fail
(and the row will be coloured yellow).

Here is the source code for the test class (download the complete source code for the Roulette Game
from http://gojko.net/fitnesse):

public class RouletteTest:fitlibrary.DoFixture {
private FixedRouletteAlgorithm algorithm;
private RouletteGame game;
public RouletteTest() {

algorithm=new FixedRouletteAlgorithm();
game= new RouletteGame(algorithm);

}
public void PlayerPlacesCoinsOnNumber(string player, int coins,int field)
{

game.PlaceBet(player,new NumberBet(coins,field));
}
public void PlayerPlacesCoinsOnNumbers(string player, int coins,

string numtype) {
game.PlaceBet(player,
new OddEvenBet(coins,numtype.ToLower().Equals("odd")));

}
public bool PlayerWonCoins(String player, int won) {

return game.GetWinnings(player)==won;
}
public bool WheelStoppedOn(int number) {

return game.GetWheelPosition()==number;
}

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 25

http://gojko.net/fitnesse

public void SpinWheel() {
game.SpinWheel();

}
public void DefineSequence(int[] sequence) {

algorithm.SetSpins(sequence);
}
public bool PlayerBetCoins(String player, int coins) {

return game.GetTotalBet(player)==coins;
}

}

IMPORTANT: Notice how a comma-separated list of values was automatically converted into an
array for the DefineSequence method – this is not a property of DoFixture and you can use that trick
with all fixture classes.

If you read the example carefully, you might have
noticed that there was no API to report the actual
value of a failed test – change the table so that
one of the tests fails, and you will see the row in
red, but will not know what actually happened.

DoFixture provides a way to report both expected
and actual value – prefix the row content with
check and put the expected value in the last cell.

To use the check keyword, change test-methods
in the previous example to return expected
values:

public int PlayerWon(String player) {
return game.GetWinnings(player);

}
public int WheelStoppedOn() {

return game.GetWheelPosition();
}
public int PlayerBet(String player) {

return game.GetTotalBet(player);
}

Split the table to make tests
more readable

If the DoFixture is started by the first
table on a page, it takes over page
processing. This allows you to split the
rows into sub-tables, and Fitnesse will
treat them as a single table.

See the picture on the right for an
example, functionally equivalent to the
previous one. Notice how the test is much
more readable – rows are split into
logical groups, and comments between
rows explain test steps.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 26

IMPORTANT: You cannot use Fitnesse keywords and symbols in DoFixture, but there are
replacements for most of them. For example, you cannot use a blank cell to print the actual value
without any testing, but you can achieve the same thing by prefixing a row with show keyword.
Likewise, error keyword cannot be used to expect that a test will throw an exception, but you can
prefix the row with reject. Note that in the current Fitnesse.Net build reject does not fail if there was
no exception.

Embed other fixture types to write even more compact tests

When DoFixture takes control of the page, you can use other
fixture types normally – the control will be returned to DoFixture
after the table is finished.

However, DoFixture provides yet another useful shortcut – you can
embed other fixture types into a DoFixture by returning them from
methods. For example, the winnings could be checked much more
efficiently if they were in a RowFixture. Instead of comparing
individual values, just create a method that returns a RowFixture
and list winnings in a table. Fit will automatically report any
surplus or missing players and compare winnings.

public RowFixture CheckWinnings() {
return new WinningsRowFixture(game);

}

Wrap business objects in three lines

In many previous examples the Fixture just wraps around a business object and forwards the calls,
acting as a glue between Fitnesse and your objects. DoFixture helps again – just set the protected
mySystemUnderTest property to your business object, and call methods of that object directly. It does
not have to sub-class the Fixture. Here is a short example that tests how .Net Queues work:

public class MessageLog:fitlibrary.DoFixture {
Queue<string> queue=new Queue<string>();
public MessageLog() {

mySystemUnderTest=queue;
}
public void GenerateMessages(int count) {

for (int i = 0; i < count; i++)
queue.Enqueue("M" + count);

}
}

If there is no matching method in the test class, appropriate
method of the system under test will be called. So, in the
example on the right, Enqueue and Dequeue calls are forwarded
directly to the Queue object, likewise the count property is read
directly from the queue. Generate 12 Messages row matches a
test class method, so that method is called. This way you can
mix and match – wrap a business object in three lines and
augment it with test-specific methods.

Important: In the online documentation (for Java version), the
same effect is achieved with a method – setSystemUnderTest().
This method does not exist in the .Net version, and is replaced
with mySystemUnderTest property.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 27

Use business objects in table cells

So far, we have used standard .Net types like strings and decimal numbers in cell values – but
FitNesse can also utilise your own business classes in cells. Instead of converting strings into business
objects manually, define a static method Parse to convert strings into business objects, and FitNesse
will do the rest. Overriding Equals and ToString is typically a good idea, as it enables FitNesse to
compare values and print them in cells. Here is the message queue example again, but with business
objects instead of strings:

public class Event {
public string Name;
public Event(string eventName) {

this.Name = eventName;
}
public static Event Parse(string s) {

return new Event(s);
}
public override string ToString() {

return Name;
}
public override bool Equals(object obj) {

if (obj is Event) {
return ((Event)obj).Name.Equals(Name);

}
return false;

}
}
public class EventLog:fitlibrary.DoFixture {

private Queue<Event> queue=new Queue<Event>();
public EventLog() {

mySystemUnderTest=queue;
}
public void GenerateEvents(int count) {

for (int i=0; i<count; i++)
queue.Enqueue(new Event("E"+count));

}
}

This test table looks like the previous one – but test rows two
and six work directly on Event objects, not strings. In the second
row, FitNesse uses 'Test Event 1' to generate an Event using
static Parse method of that class. In the sixth row, the object is
compared to the dequeued value using Equals.

Some other shortcuts

In order to write tests for a large .Net project more efficiently, I
developed a few extensions for .Net Fit/FitNesse library:

 numeric comparisons >, >=, < and <= can be used in cells for checks
 Nullable types like int? and bool? work properly
 !blank keyword can be used to check if a string is not blank
 symbols (<<name) can be used as fixture parameters. Fixture will get the symbol value

directly.
 Fixtures can handle object arguments (not just string arguments) with protected ArgsObjects

array
Those patches are not part of standard FitNesse distribution, but are free to use, and can be
downloaded from http://gojko.net/fitnesse.

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 28

http://gojko.net/fitnesse

Continuing the journey
Congratulations, you are now well on your way through the wonderful world of FitNesse. You should
have enough knowledge (and code that can be copied/pasted and used as a template) to continue the
journey on your own. Here are just a few pointers where to go next:

 Online documentation: http://www.FitNesse.org – containing the official User Guide (Java
version), full reference of Wiki markup syntax and further examples.

 FIT online documentation: http://fit.c2.com/ - the engine powering FitNesse under the hub.
Contains additional documentation, FAQ and more examples.

 Online acceptance tests for the .Net implementation:
http://FitNesse.org/FitNesse.DotNet.SuiteAcceptanceTests - a very good source of ideas.
Browse through it to find new features and see how to use them.

 FitNesse Yahoo group: http://tech.groups.yahoo.com/group/fitnesse/ - online discussion
forum, mailing list and a file repository. This is where to ask for help.

 Subversion repository for FitNesse.Net on SourceForge:
https://svn.sourceforge.net/svnroot/fitnessedotnet/trunk – browse the latest source code for
FitNesse .Net integration and see how things really work.

 FitLibrary: http://fitlibrary.sourceforge.net/ - lots of additional useful Fixture types.
 Mike Stockdale's page on FitNesse.Net plans: http://www.syterra.com/FitNesseDotNet.html
 Blogs with good articles on Fitnesse and .Net: http://codebetter.com/blogs/jeremy.miller/,

http://www.cornetdesign.com/ and http://xman892.blogspot.com/
 Integrating FitNesse and Nant: http://sourceforge.net/projects/fnessenanttasks/
 Integrating FitNesse and CC.Net:

http://fitnesse.codebetter.com/blogs/jeffrey.palermo/archive/2005/09/13/131914.aspx
 “FIT for developing software”, the reference book about FIT (ISBN: 0321269349)
 Examples from that book ported to .Net: http://www.vlagsma.com/fitnesse/
 Storyteller - new tool for efficient management of automated testing with FitNesse –

http://storyteller.tigris.org/.

About the author
Gojko Adzic is an all-round software architect/programmer with extensive hands-on experience in a
wide variety of technologies and platforms, ranging from Python utilities for mobile devices to J2EE
trading systems. His software story so far includes equity and energy trading, mobile content delivery,
e-commerce, on-line betting and complex configuration management. He has also been involved in
several IT newspapers and magazines, with more than 200 published articles about programming,
operating systems, Internet and new technologies, and held the position of Editor-in-Chief of PC
World in Serbia for two years. He is currently based in United Kingdom, where he helps companies
evaluate and utilise new technologies, and build better software.

In his free time, Gojko maintains a blog about programming on www.gojko.net. Feel free to contact
him by sending an e-mail to .

Getting Fit With .Net / Copyright © Gojko Adzic 2006-2007 / www.gojko.net 29

http://www.gojko.net/
http://storyteller.tigris.org/
http://www.vlagsma.com/fitnesse/
http://www.amazon.com/gp/product/0321269349?ie=UTF8&tag=swingwiki-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321269349
http://www.amazon.com/gp/product/0321269349?ie=UTF8&tag=swingwiki-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321269349
http://fitnesse.codebetter.com/blogs/jeffrey.palermo/archive/2005/09/13/131914.aspx
http://fitnesse.codebetter.com/blogs/jeffrey.palermo/archive/2005/09/13/131914.aspx
http://sourceforge.net/projects/fnessenanttasks/
http://xman892.blogspot.com/
http://www.cornetdesign.com/
http://codebetter.com/blogs/jeremy.miller/
http://www.syterra.com/FitnesseDotNet.html
http://fitlibrary.sourceforge.net/
https://svn.sourceforge.net/svnroot/fitnessedotnet/trunk
http://tech.groups.yahoo.com/group/fitnesse/
http://fitnesse.org/FitNesse.DotNet.SuiteAcceptanceTests
http://fit.c2.com/
http://www.fitnesse.org/

	Introduction
	Why are we here?

	Getting started
	Hello, World
	Now, go and play!

	Writing tests
	Writing scripts
	Saving time and effort with specialised test types
	Batch comparisons: RowFixture
	Simple scripts: ActionFixture
	Using ready-made classes to set symbol values: StringFixture and others
	Working with data-transfer objects

	Making test pages easier to read
	Use names that are easy to read – FitNesse will find the right .Net equivalent
	Import namespaces
	Clean up the mess and start with a fresh Wiki
	Configure FitNesse to run .Net tests by default
	Use variables for string macro replacement
	Use comments to provide information or disable tables
	Load custom cell handlers for simpler comparisons

	Writing regression tests
	Be gone with all those pipes

	Managing Wiki content
	Formatting text
	Links
	Preventing Wiki formatting

	Managing pages
	What if there are no buttons?
	Group common pages into sub-wikis
	Define common content with special pages

	Organising tests into test suites
	Creating test suites
	Common actions

	Writing better test scripts
	From ActionFixture to DoFixture
	Split the table to make tests more readable
	Embed other fixture types to write even more compact tests
	Wrap business objects in three lines

	Use business objects in table cells
	Some other shortcuts

	Continuing the journey
	About the author

