
 

 

  

A Code Coverage Study 

   A Study 

Code Coverage – Ensuring 
Quality 
Benefits   .   Tooling Evaluations   . Case Study.   
Strategy  

Vijayan Reddy, Nithya Jayachandran 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 2 

 

Table of Contents 

Table of Contents 
1.0. Introduction .................................................................................................................................. 3 

2.0. Why Code Coverage ...................................................................................................................... 3 

3.0. Benefits of Code Coverage ............................................................................................................ 4 

4.0. Code Coverage Terminologies ...................................................................................................... 4 

4.1. Instrumentation ........................................................................................................................ 4 

4.2. Merge ........................................................................................................................................ 4 

4.3. Coverage Types ......................................................................................................................... 4 

5.0. Code Coverage Analysis ................................................................................................................ 5 

6.0. What Code Coverage is and is Not ................................................................................................ 6 

7.0. Tooling Infrastructure ................................................................................................................... 7 

8.0. Tool Deployment .......................................................................................................................... 8 

8.1.1. Cobertura : Integrated Instrumentation with the build process .......................................... 9 

8.1.2. Cobertura : Deployment of Code Coverage instrumented application ................................ 9 

8.1.3. Cobertura : Auto-Collection of Coverage data during testing ............................................ 10 

8.1.4. Cobertura : Merge & Final Report Generation ................................................................... 10 

8.2. NCover Deployment for .NET based Applications .................................................................. 12 

9.0. Tools Evaluation .......................................................................................................................... 12 

10.0. Some Popular Tools Reference ................................................................................................... 14 

11.0. Appendix ..................................................................................................................................... 14 

 

Table of Figures 
 

Figure 1 : Global Summary Report   ................................................................................................................................. 5
Figure 2 : Package Summary Report   .............................................................................................................................. 5
Figure 3 : Class Summary Report   ................................................................................................................................... 5
Figure 4 : Class Detail Report   ......................................................................................................................................... 6
Figure 5 : Tool Deployment Workflow   ........................................................................................................................... 7
Figure 7 : Tool Evaluation Parameters   ......................................................................................................................... 13
Figure 8 : Popular Tool References   .............................................................................................................................. 14



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 3 

 

 

1.0. Introduction 
Code Coverage is an important measurement in Software Quality Engineering. While Software testing 
ensures correctness of the applications, a metric is required to track the completeness and effectiveness 
of the testing undertaken. Code Coverage helps achieve reliable quality through identifying untested 
areas of the application.  

It is still a challenge to identify the right Code Coverage tooling solution. The next challenge lies in 
formulating the strategy for deployment of the tool and the process. This paper discusses Code 
Coverage tooling solutions and deployment strategy for quick benefits. 

2.0. Why Code Coverage 
Software testing is a challenging function. The testers need to ensure complete functional and non-
functional correctness of the product. Considering the complex workflows and use cases of modern day 
applications, the number of unique cases that the software can be used often run into millions, which is 
not feasible to be covered under testing exercise. The testers thus need to  

- While Planning Tests 
o Ensure covering all workflows in terms of decision trees in the code 
o Ensure covering all data values – by identifying patterns rather covering millions of 

values 
- While testing 

o Ensuring the testing is completely exercising the whole application with planned and 
exploratory tests. 

 
At the end of testing, the decision to stop testing and release the product still remains subjective, based 
on the presence or absence of bugs, inflow of new bugs, success rate of each test cycle, confidence 
rating of the testers or users, etc.  Whereas the definitive metric of quantifying how much of the 
application was really tested, is missed. 

Code Coverage is measured as quantification of application code exercised by the testing activities. Code 
Coverage can be measured at various levels – in terms of programming language constructs – Packages, 
Classes, Methods, Branches or in terms of physical artifacts - Folders, Files and Lines. 

For Eg. A Line Coverage metric of 67% means the testing exercised 67% of all executable statements of 
the application. A Code Coverage metric usually is accompanied by Code Coverage Analysis Report – 
which helps identify the un-tested part of the application code, thereby giving the testers early inputs 
for complete testing. 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 4 

 

 

 

 

3.0. Benefits of Code Coverage 
• Objective Indicator of Test Coverage of application code  

o Pointers to uncovered Packages / Classes / Methods / Branches  
o Pointers to uncovered Folders / Files / Lines 
o Drill down to untested part of source code and devise new tests 

• Early Indicator for Testing Quality and Fixing it by adding new tests. 

• Remove redundancy in testing 

• Increased Confidence for Releases 

4.0. Code Coverage Terminologies 

4.1. Instrumentation 
Instrumentation is the process to add code to the application to be able to output Code Coverage data. 
Instrumentation can be done at Source Level or at Intermediate language level, and rarely at run-time as 
information collection. 

• Source Level Instrumentation: Prior to compilation, instrumentation code are inserted by the 
code coverage tool to the application. This will be compiled into the application code. 

• Object level Instrumentation: Post compilation of the Application, executable lines to collect 
Coverage data are injected into the Object code. 

4.2. Merge 
Ability to run tests in batches, or in different environments, yet consolidate the overall coverage reports. 
Most of good coverage tools support offline merge feature.  

4.3. Coverage Types 
 

• Folder Coverage 

• File Coverage 

• Lines Coverage 

• Package Coverage 

• Class Coverage 

• Method Coverage 

• Branch Coverage 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 5 

 

 

5.0. Code Coverage Analysis  
Code Coverage Metrics in isolation are of limited help. But Code Coverage Report helps in analyzing the 
uncovered areas of code.  

The following report tracks the code Coverage at Package level for a Java based application – The tool 
used below is Cobertura, and the Code Coverage report was on Cobertura’s testing. 

 

Figure 1 : Global Summary Report 

Attached below is Code Coverage report at Class Level. The following report lists all the classes in a 
particular package, and tracks Branches & Lines Covered. 

 

Figure 2 : Package Summary Report 

Detailed Class level report – Header below: This report states the percentage of lines covered -79% (75 
of 95 lines) and branches covered. 

 

Figure 3 : Class Summary Report 

 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 6 

 

The following is an example of detailed code coverage report. The tool links to the source code – and 
reports the untested lines. The color scheme used is GREEN for hit code and RED for unhit code. The 
second column registers the number of times the code is visited. 

The tester thus gets two sets of valuable inputs: 

1) Track the un-tested code and create a new test case that exercises the code effectively. 
2) Identify duplicate tests that visit the same part of code redundantly – thereby reducing the tests 

without compromising quality and reducing the test cycle times. 

 

Figure 4 : Class Detail Report 

 

6.0. What Code Coverage is and is Not 
- 100% Code Coverage Does Not say the product is bug free, it ensures product is 100% tested. If 

the product was tested wrongly, Code Coverage can’t help. 
- Code Coverage testing does not require any special test methods – On the instrumented build – 

any testing that is carried out will generate coverage data. Regular using of the instrumented 
application will generate coverage information as well. 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 7 

 

- Code Coverage is not about Whitebox testing. Code coverage is generated when you test the 
application in Any way. To analyse the code, the review happens at Code Level. It is not 
Whitebox testing. 

- Code Coverage is not only through Unit Testing or Automated Testing. 
- Code Coverage does not require extra testing efforts 
- Code Coverage is not an end game activity, the earlier the better. It gives scope to improve tests 

and cover more code, thereby ensuring higher quality. 
- Code Coverage instrumented builds can’t be used for Performance Testing. It will add 

performance overhead. 

 

7.0. Tooling Infrastructure 
For Code Coverage analysis the ideal infrastructure would be 

- Integrated Instrumentation with the build process 
- Deployment of Code Coverage instrumented application 
- Auto-Collection of Coverage data during testing 
- Merge & Final Report automation 

Code Coverage reports can be generated on every test cycle if tests. 

 

 

Figure 5 : Tool Deployment Workflow 

Instrument

• Source / Object Level Instrumentation 
•Generate Instrumented Object,  Blank Coverage Files

Run Test

•Deploy Instrumented Build & Coverage Files
•Perform Regular Testing on the Instrumented Build

Report

•Merge Coverage Files if done in different sessions/environments
•Generate Analysis Reports



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 8 

 

 

8.0. Tool Deployment 
To illustrate the usage of Code Coverage tools, two popular tools that are rich in features, ease of 
integration with existing build & test processes and documentation. These two tools are picked, one 
each from a leading enterprise application development technology.  

• Cobertura for Java/J2EE 

• NCover for .NET  

The following section is not meant as User manual for any tool, but for illustrating the ease of use and 
integration with the build process, the usage is showcased. Please refer the product manuals for more 
details. 

8.1. Cobertura Deployment for Java based Applications 

We will study the Code Coverage Deployment using Cobertura for Java/J2EE applications. Cobertura 
offers excellent integration with build processes with Command line based executables, or with 
Cobertura ANT tasks. We will discuss both briefly.  

In order to use Cobertura’s command line executables, please add the Cobertura installation directory 
to the System path. 

The ANT Snippets are used from Cobertura’s online documentation for consistency 
for reference. 

In order to use Cobertura’s ANT tasks, we must do  

- Add Cobertura.jar that ships with Cobertura tool, to the ANT’s lib directories – or 
Add it in the class path reference variable in the build script. 

Eg. 
<property name="cobertura.dir" value="<<<SPECIFY COBERTURA INSTALL DIR>>>" /> 
<path id="cobertura.classpath"> 
    <fileset dir="${cobertura.dir}"> 
        <include name="cobertura.jar" /> 
        <include name="lib/**/*.jar" /> 
    </fileset> 
</path> 
 
To be a able to use the ANT Tasks, the following code snippet would help: 
<taskdef classpathref="cobertura.classpath" resource="tasks.properties" /> 

 
 

 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 9 

 

8.1.1. Cobertura : Integrated Instrumentation with the build process 
ANT Usage: 

Cobertura supports a task “Cobertura-instrument” for the instrumentation process. The parameters 
supported are, 

• datafile (Optional – defaults to ‘Cobertura.ser’ in the current directory. It is advised to set this 
explicitly to a convenient place that can be used to store and be picked for reporting) 

• maxmemory (Optional – Good to set larger JVM max memory, if the instrumentation covers 
large number of classes) 

• todir (Optional – To avoid the not instrumented classes being overwritten with the 
instrumented classes, it is good practice to specify output directory) 

Eg for cobertura-instrument usage 

Please note that it is a good practice to delete the Instrumentation serialized file (“Cobertura.ser” in the 
snippet below). 

<delete file="cobertura.ser" /> 
 
<cobertura-instrument todir="${instrumented.dir}"> 
    <ignore regex="org.apache.log4j.*" /> 
    <fileset dir="${classes.dir}"> 
        <include name="**/*.class" /> 
        <exclude name="**/*Test.class" /> 
    </fileset> 
    <fileset dir="${guiclasses.dir}"> 
        <include name="**/*.class" /> 
        <exclude name="**/*Test.class" /> 
    </fileset> 
    <fileset dir="${jars.dir}"> 
        <include name="my-simple-plugin.jar" /> 
    </fileset> 
</cobertura-instrument> 

 

Commandline Usage: 

The command-line usage for Cobertura is : 

cobertura-instrument.bat [--basedir dir] [--datafile file] [--destination dir] [--
ignore regex] classes [...] 

Eg: 

cobertura-instrument.bat --destination C:\MyProject\build\instrumented 
C:\MyProject\build\classes 

8.1.2. Cobertura : Deployment of Code Coverage instrumented application 
After generation of the instrumented classes, pointed to by 

- ${instrumented.dir} in the ANT task or 
- --destination dir in the Commandline usage 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 10 

 

Please deploy the ‘instrumented application’. If the build process creates a JAR, WAR or a EAR file as 
part of the build process, or any other processing, the usage of originally compiled classes be replaced 
with the instrumented classes.  

Rest of build and deployment process remains unchanged for either ANT or manual methods. 

8.1.3. Cobertura : Auto-Collection of Coverage data during testing 
While testing, please ensure the Cobertura classpath is set – 

- If the tests are run through an ANT script, then add Cobertura classpath to the test task’s 
classpath (Explained below) 

- If the tests are run though batch file, command-line or any other mode, ensure that the current 
system path, and any classpath passed to the JVM as arg, has Cobertura classpath included, and 
the instrumented classes are in classpath before the un-instrumented classpath. 

ANT Usage: 

In case of ANT, the following snippets can be used in any task that runs the tests, the referred  

• fork="yes" arg to be passed for ANT  

• <sysproperty key="net.sourceforge.cobertura.datafile" file="cobertura.ser" /> 
(Please ensure the file reference is right, or provide the right path to this file) 

• <classpath location="${instrumented.dir}" /> 
(The variable instrumented.dir is referred the way it is used in example snippets above) 

• <classpath refid="cobertura_classpath" /> 
(The variable Cobertura.classpath is referred the way it is used in example snippets above) 

8.1.4. Cobertura : Merge & Final Report Generation 
Once the tests are completed, we may need to  

- Merge the separate .SER files, 
o  if we used different instrument tasks with separate .SER files for the application and we 

need to integrate them to a single report 
o If we used different copies of the same .SER file for different environments and need to 

merge for overall report 
o If we used different copies for the same .SER files for different kinds of testing and need 

to merge for the overall report 
- Create the Report in HTML / XML 

ANT Usage: 

Cobertura-merge task is used to merge the different .SER files. It majorly requires two inputs – 

• List of input .SER files, the folder and file name for each of them 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 11 

 

• Where the output datafile to be created (defaults to “Cobertura.ser”, as illustrated in the 
example below where no datafile has been specified). 

Eg. 

<cobertura-merge> 
    <fileset dir="${test.execution.dir}"> 
        <include name="server/cobertura.ser" /> 
        <include name="client/cobertura.ser" /> 
    </fileset> 
</cobertura-merge> 

 

Cobertura-report task is used for report generation. It accepts parameters such as, 

• Datafile (Location & Name of the .SER file from which the coverage data is read) 

• Destdir (Where the generated report will be written to) 

• Format (defaults to HTML) 

• Srcdir (Where the source code for the instrumented classes are located – this is important for 
source linking from the coverage reports) 

• Maxmemory (JVM param, optional, but recommended to set for larger value for large code 
bases). 

Eg. 

<cobertura-report format="html" destdir="${coveragereport.dir}" > 
    <fileset dir="${src.dir}"> 
        <include name="**/*.java" /> 
        <exclude name="**/*Stub.java" /> 
    </fileset> 
    <fileset dir="${guisrc.dir}"> 
        <include name="**/*.java" /> 
        <exclude name="**/*RB.java" /> 
    </fileset> 
</cobertura-report> 

Command-line Usage: 

cobertura-merge.bat [--datafile file] datafile [...] 

Eg. 

cobertura-merge.bat --datafile C:\MyProject\build\cobertura.ser 
C:\MyProject\testrundir\server\cobertura.ser 
C:\MyProject\testrundir\client\cobertura.ser 
 

cobertura-report.bat [--datafile file] [--destination dir] [--format (html|xml)] source code directory [...] [-
-basedir dir file underneath basedir...] 

Eg. 

cobertura-report.bat --format html --datafile C:\MyProject\build\cobertura.ser --
destination C:\MyProject\reports\coverage C:\MyProject\src 
 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 12 

 

8.2. NCover Deployment for .NET based Applications 
NCover supports integration with build process through MS Build & NAnt. The tasks are supported by 
the DLLs provided as part of NCover. 

For using NCover NAnt Build tasks, the DLL should be included like, 

<loadtasks assembly="NCoverExplorer.NAntTasks.dll"/> 

For using NCover MSBuild Tasks, the inclusion should be done like, 

UsingTask TaskName="NCoverExplorer.MSBuildTasks.NCoverExplorer" 
  AssemblyFile = 
  "C:\Program Files\NCover\Build Task Plugins\NCoverExplorer.MSBuildTasks.dll"/> 
<UsingTask TaskName="NCoverExplorer.MSBuildTasks.NCover" 
  AssemblyFile = 
  "C:\Program Files\NCover\Build Task Plugins\NCoverExplorer.MSBuildTasks.dll"/> 
<UsingTask TaskName="NCoverExplorer.MSBuildTasks.NUnitProject" 
  AssemblyFile = 
  "C:\Program Files\NCover\Build Task Plugins\NCoverExplorer.MSBuildTasks.dll"/> 

 

More information along the usage and deployment of NCover using MS Build and NAnt is available in 
the Online documentation for NCover. 

 

9.0. Tools Evaluation  
To evaluate good Code Coverage tools, one would require listing the evaluation parameters and rating 
the tools on these.  With that in mind, this paper lists major requirements for Code Coverage tools. 
These need to be diligently checked and applied as relevant. 

Parameter Weightage Notes 

Coverage Levels 
 

 

Package /Namespace Level Coverage 2 Java – Package, .NET –NameSpace 

Class Level Coverage 2  

Method level Coverage 3  

Block Coverage 3  

Line Coverage 3  

File Level Coverage 2  

Report Clarity 
 

 

Source Linking 3 Ability to link Coverage report and Source files. 

Hit Count 3 No. of times the statement/code block has been hit. 

Exclusion Management 
 

Being able to exclude certain areas of code from reporting 

Exclusion Provision 3  

Namespace/Package level Exclusion 2  

Class Level Exclusion 2  

Method Level Exclusion 3  

Line Level Exclusion 2  



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 13 

 

Exclusion Patterns Definition 1  

Source File Exclusion 2  

Exclusion Reporting & Validation 2  

Advanced Reporting 
 

Exportable Reports 

HTML reports 2  

Spreadsheet Export 2  

Baselining & Versioning 2 To track coverage for only the newly added code 

Incremental Reporting 2  

Platform & Coverage 
 

 

GUI Support 3  
Command Line / Batch Mode 
Support 1 

 

Windows Vista Support 2  

Windows - 64 bit support 2  

Support for Build Script 2  

Child Process Coverage 3  

Stand Alone .NET apps Support 3  

IIS Hosted ASP .NET apps 1  

Windows Service Apps 3  

Licensing & Logistics 
 

 

Detailed Documentation 3  

Open Source 2  

Commercial 2  

Paid Support 3  

Community based Free Support 3  

Technical Aspects 
 

 

Source Level Instrumentation 3  

Object Level Instrumentation 2  

Auto Saving Frequency 3  

Performance Increase 1  

Compilation Time Increase 3  

Merging 3  
Standalone Instrumentation 
independent of build 2 

 

Code Size Increase 1  
Figure 6 : Tool Evaluation Parameters 

 

 

 



CODE COVERAGE – ENSURING QUALITY 
January 2, 

2009 
 

 14 

 

10.0. Some Popular Tools Reference 
 

S.No Technology Tool Names 
1 Java Emma, Cobertura 
2 .NET NCover, PartCover 
3 C/C++ BullsEye, CoverageMeter 
4 .NET & C++ DevPartner, Rational 

PureCoverage etc. 
5 Flex FlexCover 
Figure 7 : Popular Tool References 

 

11.0. Appendix 
1. http://en.wikipedia.org/wiki/Code_coverage : Has very limited information – has list of some 

tooling solutions 
2. http://www.bullseye.com/coverage.html 
3. http://www.cenqua.com/clover/doc/coverage/intro.html 
4. http://cobertura.sourceforge.net/anttaskreference.html 
5. http://www.ncover.com/documentation/buildtasks 

http://en.wikipedia.org/wiki/Code_coverage�
http://www.bullseye.com/coverage.html�
http://www.cenqua.com/clover/doc/coverage/intro.html�
http://cobertura.sourceforge.net/anttaskreference.html�
http://www.ncover.com/documentation/buildtasks�

	Introduction
	Why Code Coverage
	Benefits of Code Coverage
	Code Coverage Terminologies
	Instrumentation
	Merge
	Coverage Types

	Code Coverage Analysis
	What Code Coverage is and is Not
	Tool Deployment
	Cobertura : Integrated Instrumentation with the build process
	Cobertura : Deployment of Code Coverage instrumented application
	Cobertura : Auto-Collection of Coverage data during testing
	Cobertura : Merge & Final Report Generation
	NCover Deployment for .NET based Applications

	Tools Evaluation
	Some Popular Tools Reference
	Appendix

