

Copyright © 2009 Micro to Mainframe 1

Resource Monitoring During Performance Testing

Experience Report by Johann du Plessis

Introduction

During a recent review of performance testing projects I completed over the past 8 years, one of the goals was to
compare the most successful projects with the least successful ones. The idea was to establish what made the
successful projects so good and the other projects not so good. One of the items that repeatedly came up was
monitoring. Monitoring came up during discussions of successes as well as discussions of the projects I classified as
“not so great”.

The lesson learnt from this is the importance of monitoring. The very good projects all had proper monitoring in place,
while most of the not so great projects had very limited monitoring in place during test execution. This has changed the
way I approach monitoring on projects and even the way I plan test scenarios and execution.

Planning for Monitoring

Although monitoring is always mentioned somewhere at the start of a project, most of the people involved don’t realise
the important role it plays in determining how successful or useful the performance testing will be. Performance testing
is all about results and a successful test can be measured against the usefulness of the results. In my experience I’ve
seen many tests done with long hours and lots of money invested in performance testing, but unfortunately many tests
produce results that are not meaningful or useful.

So how do we ensure that the tests we run don’t end up being meaningless because the results are meaningless? I
believe it starts with the assessment and planning phases of a project. I include the importance of monitoring and the
need for useful results in all discussions when a new project starts and tell everyone that the testing is planned around
the results we want to get out of each test run. The important point here is to make sure all the necessary people are
involved and make them understand that without monitoring there will be no useful results.

All of this seems very basic for the experienced performance tester, but planning your tests to give the right results with
the right measurements can be quite a challenge. You have to know what will be monitored and which tool(s) will be
used to achieve this. Including the right people to get the results is just as important.

Doing this early in the project gives you time to deal with issues like administrator access and/or people that don’t want
to or can’t allow you to monitor certain resources on certain servers or in certain environments. I have one customer
where I’m never allowed to monitor the network because it is seen as part of production. I often experience problems
like this, where I can’t monitor certain areas, mainly because the specific administrator doesn’t allow any “outside”
people access to resource monitors. Getting administrator access for Windows’ Perfmon is a huge challenge and even
impossible on some projects while it is a logical formality on others. I believe this is more of a challenge for consultants
like me, than for performance testers with a permanent position within a company. The main goal is to emphasise the
importance of monitoring right from the start and fight (in a very polite way) for rights to get access where needed. I find
using examples from previous experiences work the best.

What to Monitor and Which Tools to Use

The most obvious rule is to make use of what is available. If you are using a commercial tool like LoadRunner you
have an advantage because it includes so many monitors. Results can be correlated easily and overlaying graphs can
be done quickly. Analysis is generally made a lot easier by the commercial tools. So if a commercial tool is available,
use the monitoring it offers.

Knowledge of the monitoring requirements of the tool is essential. Do you need any administrator access or
passwords? Do you need to install any agents on the server to be monitored? What measurements are available?

A very important note: I’m the performance testing expert on the project. I’m not the SQL, UNIX, Windows, Oracle,
WebSphere, network, database or any other type of specialist. I don’t know what all available measurements are for.
Over time I’ve learnt a lot about these and when and how to use them, but my area of expertise is performance testing.

Copyright © 2009 Micro to Mainframe 2

Talk to the relevant administrators and experts about monitoring their area. Ask them for input on metrics related to
their area. Ask, learn and take note. Maybe you can give advice on the next project.

If you’re not using a commercial tool or the license to monitor via the tool is not available, you move to the next best
option. I believe this to be the monitoring tools available in the different system software. A lot of applications
nowadays include good monitoring tools. This is also a good way to keep administrators and other relevant people
involved with the testing. I let them gather the stats and pass the data on to me for analysis afterwards. For this I make
use of spreadsheets. Most applications allow data to be exported to Excel. With Excel or any other spreadsheet graphs
can be manipulated and very good results made available.

If results or data is only available in the format used as output by the application used, this have to do. Correlating and
overlaying results might be more difficult and time consuming, but if this is done only for potential problem areas good
results are still possible. I always add the lack of monitoring or monitoring tools as a risk to the assessment report and
test plan. This prevents me form being blamed for bad results later on and can sometimes help to motivate the need to
get monitoring in place before the next test run. I also put names of responsible people next to monitoring if I’m not
doing it myself. This guarantees that I receive results from them after each test run.

Monitoring Makes Testing Useful

Case Study 1 – Minimum Monitoring Available

The first example I want to refer to was a web application in a Microsoft environment. I usually enjoy Microsoft
environments because so many metrics are available for monitoring. The only challenge is administrator rights needed
to monitor system and database resources. On this particular project I wasn’t allowed any access and the various
administrators and architects agreed to do the monitoring themselves. Although I greatly disagree with this, there are
times where I have to continue testing like this.

Luckily this was a web application and I used LoadRunner for the testing. This meant that monitors for web resources
like throughput, hits per second and connections were available. This is the case with most web performance testing
tools and these resources should always be monitored. I always keep track of throughput and hits per second with
response times. A lot can be seen about system behaviour by keeping an eye on these three metrics.

Load balancing was also very important on this project. Users were balanced between two servers through parameters
linked to their user ids. I decided to monitor what I could for both servers separately to confirm load balancing and to
add a bit of meat to my results. At least I could compare response times, throughput and hits per second for the two
servers with no other monitoring available to me. I achieved this by running separate scripts for the users with the
various user ids. The analysis tool from LoadRunner then allowed me to filter the results per host, giving me the
separate results for each server.

Scripting and initial testing were run on the one server only and response times were good throughout scripting and
baseline testing. However, average transaction response times were much slower during the test with load balancing
to the two servers. The fact that I was able to show results for each server on its own proved crucial.

Lesson learnt: plan your tests so that you can produce separate results for each active server in the environment.
Always include transaction response times in this planning. Confirm response times are the same from all application
servers. Start taking note of response times when scripting starts.

The graphs below show the average response times for the test.

Copyright © 2009 Micro to Mainframe 3

Overall average response times for the test:

Average response times from Server1

Copyright © 2009 Micro to Mainframe 4

Average response times from Server2

Average transaction response times during the test were slower than the response times of previous tests that
connected to Server2 only. The results show that the response times from Server1 are notably slower than response
times from Server2. The first reaction was to blame load balancing with more users on the one server resulting in
slower response times. However, the connections graph showed the same number of connections per server, meaning
the same number of users per server with load balancing working fine. Throughput and hits per second were
marginally less on the “slower” server, but with no other monitoring in place, it was very difficult to establish what the
problem was.

In the end the problem was the NIC on the one server that was set to half duplex. A configuration problem, but I
identified the fact that there was a problem with minimal monitoring available to me by making full use of what was
available.

Lesson learnt: make maximum use of the metrics available during testing. Do so even more when limited monitoring is
available.

Case Study 2 – Full Monitoring Available

The second example shows the benefit of having proper monitoring in place during test execution. The test was run in
production after a software upgrade. Although everything passed with results as expected, a memory utilization
monitor showed a decline over time in available memory. In this system there is more than enough memory available
and memory didn’t run out during the load test, but would have if the test was run long enough.

What is very important with this example is that everything appeared fine during the test, with performance meeting all
requirements. Everything was fine indeed, while there was still memory available. If the memory graph is taken out of
the equation, the results look good with no errors or failures for the duration of the test. When the memory graph is
added to the results, it shows there is a problem. After analysing the results, I made a recommendation that the test
should be run again for a longer time. The customer followed my recommendation and we repeated the test two weeks
later. This time I ran the test longer and only 11 minutes after the previous stop time the memory did indeed run out.
This was great for me as a potential system crash in production was avoided.

Copyright © 2009 Micro to Mainframe 5

Lesson learnt: Review and analyse all available results carefully, even if everything looks fine. Make sure that
everything is fine in all the available graphs and results. Don’t assume nothing is wrong in a specific area because the
graphs “look okay”.

This example demonstrates how important monitoring is during test execution. If the memory wasn’t monitored, the
results would all have been fine and memory would have run out over time in production. Good response times alone
are not enough evidence that the system will perform well. You need more results to be able to confirm a system will
be fine in production.

The following graph shows average response times for the test with no problems noticeable. The test was run for
90mins and response times look good with 300 users for the duration of the test. The requirement was all responses
below 5 seconds with 300 users working on the system.

The CPU utilization also looks very good with no problems noticeable.

Copyright © 2009 Micro to Mainframe 6

Available memory clearly shows a problem and is much lower towards the end of the test.

Case Study 3 – Full Monitoring Available

I use this example often to motivate the need for monitoring and the need for proper monitoring tools if adequate
monitoring and/or tools are not available.

Two big problems were solved by analysing the results from the monitoring I had in place during the testing. The
spiking in response times and the increase in response times about 10 minutes into the test. I found this example
useful because results were used from two tools. It also demonstrates that spending time analysing all results after a
test is a definite requirement for any performance tester.

Average response times

Copyright © 2009 Micro to Mainframe 7

JVM Resources with Used Memory Highlighted in Red

The correlation between the spikes in the two graphs is obvious and by overlaying the two graphs I could see this
clearly.

This is a very good example to show the importance of resource monitoring and in this case the use of good tools to
get useful results. Garbage collection for the JVM was investigated and changes were made to settings for garbage
collection that eliminated the spikes in the response times.

Lesson learnt: work through all results and look for graphs with similar trends or patterns. Compare spikes with spikes
or look for resources that reach a maximum at the point where another graph shows a problem.

The second problem I looked at was the decline in performance from 10 minutes into the test onwards. This seemed to
be directly linked to users ramping up, but I couldn’t find any resource or other graph that showed a similar pattern. I
worked through all the available results and also made sure I understood what each graph was showing me. As I was
looking at the connections graph I read that the graph showed the number of open TCP/IP connections during the test.
It also explained that two connections are opened per user for each Web server and if the number of connections

Copyright © 2009 Micro to Mainframe 8

reaches a plateau, and the transaction response time increases sharply, adding connections would probably cause a
dramatic improvement in performance.

Two things got my attention: I was running the test with 100 users and my connections graph showed a maximum of
162 connections and I certainly experienced a sharp increase in response times. On the graph it certainly looks as if
the number of connections reached a plateau.

Connections graph from the test

I mentioned this to the system architect and after investigating he confirmed that the maximum connections available
were 162. This was increased to 210 and I ran the test again. The results were fantastic.

Average response times after the number available connections were increased

Copyright © 2009 Micro to Mainframe 9

Connections graph with 100 users and enough connections available

Lesson learnt: Understand what each graph or measurement is showing. Share what you find with the appropriate
people.

Important Measurements for Identifying Problems

Looking at the different cases discussed in this paper, it is clear that response times are always very important. CPU
Utilization and memory are two more metrics that should always be included. Throughput and hits per second are just
as important. I’ve identified two memory leaks by looking at throughput and hits per second graphs during load tests. A
steady decline over time is usually an indication that all is not well.

The graphs below show the steady decline in throughput and hits per second when a memory leak is present. I’ve
experienced a memory leak without this decline, but in most case this will be present. In fact, a lot of problems can first
be noticed by looking at the throughput and hits per second during a test. The decline is not limited to memory only and
nearly any resource that reaches a limit will show, and can first be spotted, by the decline in throughput and hits per
second.

Copyright © 2009 Micro to Mainframe 10

Throughput and hits per second showing decline because of a memory leak

Another very useful graph is the transaction response time distribution graph. The graph is not available in all tools, but
I use it often to show where the bulk of the response times were. The graph is handy if maximum responses are slow
and can be used to show that the bulk of transactions were good and only a few had slow response times. An example
of the transaction response time distribution graph is shown below.

Copyright © 2009 Micro to Mainframe 11

Summary

There are so many metrics available for monitoring that I don’t try to know or master them all. I rely on the architect,
administrator or expert on site to guide me when I have to decide which measurements to monitor during a
performance test. I always ask for specific monitoring requirements and this usually gets the relevant person involved
to help me with the decision. Everything can’t be monitored, but I make sure that monitoring is in place to cover the
whole infrastructure.

The table below contains the monitors I use most often. These are the monitors I use if no specific requirements for
monitoring exist.

Web resource monitors
Hits per second
Throughput
Connections
HTTP responses per second

Transaction monitors
Transaction response times
Transaction response times under load
Transaction response time distribution

Windows resource monitors
CPU utilization
Memory utilization

UNIX resource monitors
Average load
CPU utilization
System mode CPU utilization
User mode CPU utilization

Microsoft IIS monitors
Bytes sent
Bytes received
Get requests
Post requests
Maximum connections
Current connections

WebSphere monitors
Used memory
Free memory
Connection pool size
Connection wait time
Connection percent maxed
Connection percent used
Rolled back
Timeouts
Current requests
Session size

SQL monitors
Cache hit ratio
User connections

Oracle monitors
Current open cursors
Current logons

Copyright © 2009 Micro to Mainframe 12

Contact Details

Johann du Plessis

Technical Test Consultant

Micro to Mainframe

johannd@mtom.co.za

+27 76 601 4840

www.mtom.co.za

www.performancetesting.co.za

