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Abstract 
Have you ever thought about paying people off the street to come in and press buttons 
and turn knobs as a way of stress testing your user interfaces?  We have joked about 
bringing our kids in and letting them do this.  As impractical as this may be, we know 
that we need to test our code in a variety of ways to ensure that we have done our best 
to find defects before our customers do.  Though this practice of manual stress testing 
is still being used, it has significant weaknesses.  The primary weakness is once a 
problem is found; it is difficult or impossible to reproduce the defect because the tester 
was not following a pre-defined sequence of events. 
 
This paper describes what stress testing means, what some of the benefits and 
weaknesses are of automating stress testing, how we implemented automated stress 
testing to augment other testing strategies, and what some of the lessons learned are 
with our experience of using automated stress testing.  Our Graphical User Interface 
stress testing has been instrumental not only in finding problems within our software 
applications but also in the third party tool used to perform the stress testing.  
 

Introduction to Stress Testing 
 
In our organization, software testing parallels the entire software development cycle.  
This testing is accomplished through reviews (product requirements, software 
functional requirements, software designs, code, test plans, etc.), unit testing, system 
testing (also known as functional testing), expert user testing (like beta testing but in-
house), smoke tests, etc.  All these ‘testing’ activities are important and each plays an 
essential role in the overall effort but, none of these specifically look for problems like 
memory and resource management.  Further, these testing activities do little to quantify 
the robustness of the application or determine what may happen under abnormal 
circumstances.  We try to fill this gap in testing by using stress testing.  
 
Stress testing can imply many different types of testing depending upon the audience.  
Even in literature on software testing, stress testing is often confused with load testing 
and/or volume testing.  For our purposes, we define stress testing as performing 



 

random operational sequences at larger than normal volumes, at faster than 
normal speeds and for longer than normal periods of time as a method to 
accelerate the rate of finding defects and verify the robustness of our product.   
 
Stress testing in its simplest form is any test that repeats a set of actions over and over 
with the purpose of “breaking the product”.  The system is put through its paces to find 
where it may fail.  As a first step, you can take a common set of actions for your system 
and keep repeating them in an attempt to break the system.  Adding some 
randomization to these steps will help find more defects.  How long can your 
application stay functioning doing this operation repeatedly?  To help you reproduce 
your failures one of the most important things to remember to do is to log everything as 
you proceed.  You need to know what exactly was happening when the system failed.  
Did the system lock up with 100 attempts or 100,000 attempts?[1] 
 
Note that there are many other types of testing which have not mentioned above, for 
example, risk based testing, random testing, security testing, etc.  A good review of 
different testing types is provided by Cem Kaner and James Bach[2].  We have found, 
and it seems they agree, that it is best to review what needs to be tested, pick multiple 
testing types that will provide the best coverage for the product to be tested, and then 
master these testing types, rather than trying to implement every testing type.  
 
Some of the defects that we have been able to catch with stress testing that have not 
been found in any other way are memory leaks, deadlocks, software asserts, and 
configuration conflicts.  For more details about these types of defects or how we were 
able to detect them, refer to the section ‘Typical Defects Found by Stress Testing’. 
 
Table 1 provides a summary of some of the strengths and weaknesses that we have 
found with stress testing. 

Table 1 
Stress Testing Strengths and Weaknesses 

Strengths Weakness 
Find defects that no other type of test 
would find 

Not real world situation 

Using randomization increase coverage Defects are not always reproducible 
Test the robustness of the application One sequence of operations may catch 

a problem right away, but use another 
sequence may never find the problem 

Helpful at finding memory leaks, 
deadlocks, software asserts, and 
configuration conflicts 

Does not test correctness of system 
response to user input 

 

Background to Automated Stress Testing 
 



 

Stress testing can be done manually - which is often referred to as “monkey” testing.  
In this kind of stress testing, the tester would use the application “aimlessly” like a 
monkey - poking buttons, turning knobs, “banging” on the keyboard etc., in order to find 
defects.  One of the problems with “monkey” testing is reproducibility.  In this kind of 
testing, where the tester uses no guide or script and no log is recorded, it’s often 
impossible to repeat the steps executed before a problem occurred.  Attempts have 
been made to use keyboard spyware, video recorders and the like to capture user 
interactions with varying (often poor) levels of success. 
 
Our applications are required to operate for long periods of time with no significant loss 
of performance or reliability.  We have found that stress testing of a software 
application helps in accessing and increasing the robustness of our applications and it 
has become a required activity before every software release.  Performing stress 
manually is not feasible and repeating the test for every software release is almost 
impossible, so this is a clear example of an area that benefits from automation, you get 
a return on your investment quickly, and it will provide you with more than just a mirror 
of your manual test suite.   
 
Previously, we had attempted to stress test our applications using manual techniques 
and have found that they were lacking in several respects.  Some of the weaknesses of 
manual stress testing we found were: 

1. Manual techniques cannot provide the kind of intense simulation of maximum 
user interaction over time.  Humans can not keep the rate of interaction up high 
enough and long enough. 

2. Manual testing does not provide the breadth of test coverage of the product 
features/commands that is needed.  People tend to do the same things in the 
same way over and over so some configuration transitions do not get tested. 

3. Manual testing generally does not allow for repeatability of command 
sequences, so reproducing failures is nearly impossible.   

4. Manual testing does not perform automatic recording of discrete values with 
each command sequence for tracking memory utilization over time – critical for 
detecting memory leaks. 

 
With automated stress testing, the stress test is performed under computer control.  
The stress test tool is implemented to determine the applications’ configuration, to 
execute all valid command sequences in a random order, and to perform data logging.  
Since the stress test is automated, it becomes easy to execute multiple stress tests 
simultaneously across more than one product at the same time.   
 
Depending on how the stress inputs are configured stress can do both ‘positive’ and 
‘negative’ testing.  Positive testing is when only valid parameters are provided to the 
device under test, whereas negative testing provides both valid and invalid parameters 
to the device as a way of trying to break the system under abnormal circumstances.  
For example, if a valid input is in seconds, positive testing would test 0 to 59 and 
negative testing would try –1 to 60, etc.   
 



 

Even though there are clearly advantages to automated stress testing, it still has its 
disadvantages.  For example, we have found that each time the product application 
changes we most likely need to change the stress tool (or more commonly commands 
need to be added to/or deleted from the input command set).  Also, if the input 
command set changes, then the output command sequence also changes given 
pseudo-randomization.   
 
Table 2 provides a summary of some of these advantages and disadvantages that we 
have found with automated stress testing. 
 

Table 2 
Automated Stress Testing Advantages and 

Disadvantages 
Advantages Disadvantages 

Automated stress testing is performed 
under computer control 

Requires capital equipment and 
development of a stress test tool  

Capability to test all product application 
command sequences 

Requires maintaince of the tool as the 
product application changes 

Multiple product applications can be 
supported by one stress tool 

Reproducible stress runs must use the 
same input command set 

Uses randomization to increase 
coverage; tests vary with new seed 
values 

Defects are not always reproducible 
even with the same seed value 

Repeatability of commands and 
parameters help reproduce problems or 
verify that existing problems have been 
resolved 

Requires test application information to 
be kept and maintained 

Informative log files facilitate 
investigation of problem 

May take a long time to execute 

 
 
 
 
In summary, automated stress testing overcomes the major disadvantages of manual 
stress testing and finds defects that no other testing types can find.  Automated stress 
testing exercises various features of the system, at a rate exceeding that at which 
actual end-users can be expected to do, and for durations of time that exceed typical 
use.  The automated stress test randomizes the order in which the product features are 
accessed.  In this way, non-typical sequences of user interaction are tested with the 
system in an attempt to find latent defects not detectable with other techniques. 
 
To take advantage of automated stress testing, our challenge then was to create an 
automated stress test tool that would:  

1. Simulate user interaction for long periods of time (since it is computer controlled 
we can exercise the product more than a user can). 



 

2. Provide as much randomization of command sequences to the product as 
possible to improve test coverage over the entire set of possible 
features/commands. 

3. Continuously log the sequence of events so that issues can be reliably 
reproduced after a system failure. 

4. Record the memory in use over time to allow memory management analysis. 
5. Stress the resource and memory management features of the system. 
 

Typical Defects Found by Stress Testing 
 
At Tektronix we have found that stress testing has been successful at finding asserts, 
memory leaks, deadlocks, and resource problems, etc.  We have found different 
techniques for identifying and reproducing these defects.  The following section defines 
these types of defects. 
 
A program application assertion occurs when something abnormal in the application 
occurs that the software designer believes should not happen.  Typically when a 
program assertion occurs the program halts and no further operations may be 
executed.  An assertion is a statement that is considered to always be true.  It is this 
statement that is used as a check against the code to demonstrate program 
consistency.  An assertion statement will not be executed under normal circumstances. 
 
A program application deadlock occurs when two processes are holding resources that 
each other require.  A deadlock situation is not likely to occur under normal 
circumstances.  However, putting the software application under stress is likely to 
cause a deadlock to occur.  A deadlock usually manifest itself by no longer executing 
commands and/or overflowing input/output buffers as new command requests continue 
to be exercised. 
 
A program application memory leak is the gradual loss of available memory when the 
program application repeatedly fails to return memory that it has obtained for 
temporary use.  As a result, the available memory for that application becomes 
exhausted and the program application begins to slow down or no longer functions. For 
a program that is frequently opened or called or that runs continuously, even a very 
small memory leak can eventually cause the program to begin to slow down or 
terminate.  A memory leak is the result of a program defect. 
 
 
Other resource problems can also occur, for example what happens when the hard 
disk becomes full?  How does the system react under this condition?  We have found 
that there are many other resource problems that can occur within a system.  Many of 
these resource problems can cause adverse effects like page faults, core dumps, etc. 
which cause the program to terminate unexpectedly. 
 
6.Totally distort the normal order of processing, especially processing that occurs at 
different priority levels. 



 

7.Force the exercise of all system limits, thresholds, or other controls designed to 
deal with overload situations. 

8.Greatly increases the number of simultaneous actions 
Requirements for an Automated Stress Test Tool 
 
There are many requirements that could be added to an automated stress test tool but 
the following is a list of the essential and desired requirements for an automated stress 
tool.  Though some of these requirements have been mentioned before, we will re-
hash them here for completeness and further describe some of the necessary 
attributes for each of the requirements.   
 
Essential requirements of an Automated Stress Test Tool include: 

• Reproducible Command Sequences:  The stress test tool should be able to 
produce a random yet repeatable series of command instructions.  This could be 
done using a pseudo-random generator, which uses a unique seed value to 
create a unique sequence of command instructions to be executed. 

• Command Sequence Logging: Each action executed by the system should be 
logged in a sequential file, ideally, the file can be played back in whole or in part 
to reproduce any problems that occurred during the test.  The file should also be 
able to track the seed number and the number of commands executed. 

• Memory and Resource Utilization Monitoring: At discrete intervals during the 
automated stress testing, values representing the free and allocated memory 
and other resources available in the system should be recorded.  This allows for 
memory leaks and resource depletion issues to be identified. 

• Fault Tolerance: The automated stress test should be able to handle minor 
failures when exercising the product application.  The automated stress test tool 
should be able to gracefully handle the fault situation, log messages as needed 
and continue with the test without significant reduction in the rate at which 
commands are sent to the system, and without itself impacting the available 
memory, resources or ability of the DUT to respond to simulated user inputs.  
On the other hand, if a deadlock condition occurs, then the stress test should 
stop.  

 
Desirable requirements of an Automated Stress Test Tool include: 

• The capability to pause the stress test after a set number of command 
sequences.  This allows the checking of status or provides the ability to run the 
stress test to just before the point where the DUT fails where the remaining 
operation(s) may be performed in a single step mode or entered by hand while 
the system is being debugged. 

• The capability to set a delay time between command sequences to support 
different application speeds, i.e. accessing pop-up menus on one application 
may take longer than another application. 



 

• The capability to increment the pseudo random seed number every set number 
of command sequences and store the state of the DUT, for example the stress 
test could run for 500 command sequences, save the state of the DUT, 
increment the seed number and then run for another 500 commands 
sequences. 

• The capability to execute the command set sequentially (this is mainly used for 
debugging purposes which can be used to check that the command set is 
entered correctly and are valid). 

• The capability to generate feedback while the test is running so the state of the 
test can be checked at anytime (test application identifier, number of commands 
executed, runtime, current seed value, etc). 

• The capability to randomize input values within a command.  For example, if a 
command accepts a parameter from 1 to 4 then any of the numbers 1, 2, 3, or 4 
should be selectable in a pseudo-random fashion. 

• The capability to recognize the test application configuration and make 
adjustments accordingly. 

 
Given these requirements for an automated stress test tool, our goal was to develop 
tools that could be used to augment our existing test methods, fulfill the stated 
requirements and fill the gaps to allow us to provide products that meet or exceed our 
customers’ expectations. 
 
Automated Stress Testing Implementation 
 
Automated stress testing implementations will be different depending on the interface 
to the product application.  At Tektronix, the types of interfaces available to the product 
drive the design of the automated stress test tool.  The interfaces fall into two main 
categories: 

1) Programmable Interfaces:  Interfaces like command prompts, RS-232, 
Ethernet, General Purpose Interface Bus (GPIB), Universal Serial Bus (USB), 
etc. that accept strings representing command functions without regard to 
context or the current state of the device. 

2) Graphical User Interfaces (GUI’s):  Interfaces that use the Windows model to 
allow the user direct control over the device, individual windows and controls 
may or may not be visible and/or active depending on the state of the device. 

 
At Tektronix, many of our products also have front panels with actual buttons and 
knobs.  Many of these products also have ‘backdoor’ programmable access and/or 
alternative interfaces (like USB), which simulate the actual button pushes and knob 
turnings.  Granted this is not quite the same as actually pushing the mechanical button 
or twisting knobs but we are able so simulate these and test the software’s reactions. 
 



 

Programmable Interfaces 
Tektronix has been using programmable interfaces for many years (starting in the 
1970’s).  These interfaces have allowed users to setup, control, and retrieve data in a 
variety of application areas like manufacturing, research and development, and 
service.  To meet the needs of these customers, the products provide programmable 
interfaces, which generally support a large number of commands (1000+), and are 
required to operate for long periods of time, for example, on a manufacturing line 
where the product is used 24 hours a day, 7 days a week.  Testing all possible 
combinations of commands on these products is practically impossible using manual 
testing methods. 
 
Programmable interface stress testing is performed by randomly selecting from a list of 
individual commands and then sending these commands to the device under test 
(DUT) through the interface.  If a command has parameters, then the parameters are 
also enumerated by randomly generating a unique command parameter.  By using a 
pseudo-random number generator, each unique seed value will create the same 
sequence of commands with the same parameters each time the stress test is 
executed.  Each command is also written to a log file which can be then used later to 
reproduce any defects that were uncovered. 
 
For additional complexity, other variations of the automated stress test can be 
performed.  For example, the stress test can vary the rate at which commands are sent 
to the interface, the stress test can send the commands across multiple interfaces 
simultaneously, (if the product supports it), or the stress test can send multiple 
commands at the same time. 
 
Graphical User Interfaces 
In recent years, Graphical User Interfaces have become dominant and it became clear 
that we needed a means to test these user interfaces analogous to that which is used 
for programmable interfaces.  However, since accessing the GUI is not as simple as 
sending streams of command line input to the product application, a new approach was 
needed.  It is necessary to store not only the object recognition method for the control, 
but also information about its parent window and other information like its expected 
state, certain property values, etc.  An example would be a ‘HELP’ menu item.  There 
may be multiple windows open with a ‘HELP’ menu item, so it is not sufficient to simply 
store “click the ‘HELP’ menu item”, but you have to store “click the ‘HELP’ menu item 
for the particular window”.  With this information it is possible to uniquely define all the 
possible product application operations (i.e. each control can be uniquely identified).   
 
Additionally, the flow of each operation can be important.  Many controls are not visible 
until several levels of modal windows have been opened and/or closed, for example, a 
typical confirm file overwrite dialog box for a ‘File->Save As…’ filename operation is not 
available until the following sequence has been executed: 

1. Set Context to the Main Window 
2. Select ‘File->Save As…’ 
3. Select Target Directory from tree control 



 

4. Type a valid filename into the edit-box 
5. Click the ‘SAVE’ button 
6. If the filename already exists, either confirm the file overwrite by clicking the ‘OK’ 

button in the confirmation dialog or click the cancel button. 
 
In this case, you need to group these six operations together as one “big” operation in 
order to correctly exercise this particular ‘OK’ button.  
 
Data Flow Diagram 
A stress test tool can have many different interactions and be implemented in many 
different ways.  Figure 1 shows a block diagram, which can be used to illustrate some 
of the stress test tool interactions.  The main interactions for the stress test tool include 
an input file and Device Under Test (DUT).  The input file is used here to provide the 
stress test tool with a list of all the commands and interactions needed to test the DUT.   
 

 
Figure 1:  Stress Test Tool Interactions 

 
Additionally, data logging (commands and test results) and system resource monitoring 
are very beneficial in helping determine what the DUT was trying to do before it 
crashed and how well it was able to manage its system resources. 
 
The basic flow control of an automated stress test tool is to setup the DUT into a 
known state and then to loop continuously selecting a new random interaction, trying to 
execute the interaction, and logging the results.  This loop continues until a set number 
of interactions have occurred or the DUT crashes.  The following c-code is an example 
of the basic structure of an automated stress test tool. 
 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
 long seed = 1;   // Initialize random number seed 
 
short random_number (void) { 
 int increment = 1;  // Random number increment value 
 int multiplier = 0x15a4e35L; // Magic number for random number generator 
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 seed = multiplier * seed + increment; // Generate new seed value (i.e. random #) 
 return ((short) (seed >> 16) & 0x7fff);  
} // END random number generator 
 
 
 
int main (int argc, char **argv) { 
 char buffer [5][32];   
 
 int command;   // Interaction to select from 
 int commands;   // Total interactions to choose from 
 int count  =  0;  // Number of commands executed 
 int total  = 10;  // Number of commands to execute 
 
 
 // create dummy array of interactions 
 commands = 5; 
 sprintf (buffer[0],"%s", "do file close"); 
 sprintf (buffer[1],"%s", "do file delete"); 
 sprintf (buffer[2],"%s", "do file open"); 
 sprintf (buffer[3],"%s", "do file print"); 
 sprintf (buffer[4],"%s", "do file save"); 
 
 // initialize random number generator and DUT to a known state 
 do { // Loop until total interactions have occurred or instrument crashes 
  // Generate which command to select 
  command = (int)((((double)(random_number() * commands)) / 32767.0) + 1.0); 
 
  count++; 
  // Send command to interface and log to data file; check application crash 
  // Here we will just use a printf statement 
  printf ("Command %2d is:  %s\n", count, buffer [command -1]); 
 
  _sleep (0);   // Delay time between sending commands 
 
  // If system resources are to be logged that could be done here 
 } while (count < total);  // Only send total commands  
}      // END of Example Program 

 
This c-code example will output “do file …” in a pseudo-random sequence.  If the seed 
value and command buffer are not changed then the program output sequence will be 
the same every time the program is run.  If the seed value were to be changed, then 
the program output sequence will also change.  Likewise, if commands are added to or 
deleted from the buffer, even the same seed will generate different sequences of 
commands. 
 
Programmable Interface Stress Test Tool 
Tektronix has been using a programmable interface stress test tool for many years.  
This tool has proven to be highly valuable in catching obscure faults in the DUT that 
would be difficult or impossible to find using other test methods.  Things like assertion 
failures, memory leaks, pointer problems and the like have been detected and fixed 
where previous to the implementation of the tool, and these defects would likely have 
passed through the testing process.  Indeed, the tool has uncovered defects that have 
existed in the field for some time, but are either obscure or so difficult to reproduce that 
users have never reported them. 
 
The programmable interface stress test tool uses log files, which record the sequence 
of commands, applied to the product and have been necessary to analyze system 
failures since the failure may have actually occurred earlier (for example, a memory 



 

leak may be detected after a particular sequence of operations, or over a long period of 
time).  One item that was not in our early versions of stress was the ability to track 
system resources like memory.  This has since become a requirement. 
 
The stress test tool command sequences should also be able to handle randomization 
of parameters within a command, for example if a command takes a parameter of type 
integer then the stress test should be able to select an integer value within a pre-
defined range and reproduce the value on a subsequent re-test.  There are many types 
of input parameters some numeric (like integers and real numbers), some are 
alphanumeric (like names, labels, etc), and some are enumerations (like selections).  
We also have also found that supporting macros and other complex algorithms has 
helped us instantiate random complex math expressions and the like. 
 
The stress test tool should also have some idea on how to terminate on a failure.  For 
the most part a timeout value can be used.  The timeout value is the value in which the 
program application must respond before it is considered to have had a failure.  Since 
each program application is different the timeout value is generally selectable at 
runtime. 
 
Graphical User Interface Stress Test Tool 
Though many of the requirements for GUI stress testing were identical to those for 
programmable interface stress testing, we found ourselves making design decisions 
based upon the capabilities of the third party test automation tool.  Where our 
programmable interface stress test tool uses a flat-file listing of programmable interface 
commands, the GUI stress test tool uses various object recognition methods to identify 
and act upon each control in the GUI.  Each control had its own context defined by the 
window that contained it, and therefore it was possible to have objects share non-
unique object recognition methods.  We decided that the best way to store and use this 
information was to use a database. With the information stored in the database, not 
only could a unique command sequence be generated but also unique parameters for 
the enumeration of buttons, checkboxes, or numeric/alphanumeric input fields. 
 
We augment the third party test tool by creating our own library functions.  For 
example, while the test is running, we use custom library functions to handle the output 
of the command sequences to one log file and the test results to another log file.  At 
the same time, values for critical memory and resource values are captured using API 
functions and written to the test result log file.  One advantage we have found to using 
our own logging functions is that we have control of these log files when the system 
crashes and do not lose data due to log database corruption in the third party test tool. 
 
Lessons Learned with GUI Automated Stress Testing 
 
This section points out some of the lessons we have learned from GUI based 
automated stress testing including tips for design and development, early stages of 
stress testing, problems found through test execution, and techniques used to isolate 
defects. 



 

 
Design and Development 
During the development of our GUI-based stress test tool, several issues arose that 
had not been fully considered at the outset.  These were: 
 
Object Recognition 
The third party test automation tool could not recognize the custom tightly coupled 
(embedded) OCX controls in our product applications.  This necessitated the 
development of a custom object recognition library that required significant effort to 
implement.  We also learned that early and well thought-out effort to create an object-
recognition map would pay large dividends in reduced maintenance throughout the 
project.  A table (Object Recognition Map) could be used to assign unique recognition 
information for each object in the product application.  Changes made to a single 
definition of an object can then propagate throughout the code with little or no effort. 
A crud example of Object Recognition Map using Notepad® would be to add a layer of 
abstraction for the ‘File->Save’ operation.  To do this the ‘File->Save’ operation would 
be like: 
 #define Notepad_File_Save “File->Save“ 
By de-referencing the ‘File->Save’ operation to Notepad_File_Save, if the ‘File->Save’ 
operation were to change then only the object recognition map would have to be 
changed.  All the underlying test case code would remain the same since it is using 
Notepad_File_Save.  This is very handy while the underlying GUI interface is still under 
development but the underlying product features are concrete.   
 
Stress Input Data Source Control 
The ability to go back and reproduce the same set of operations, using the same input 
file and seed value, must be maintained.  Because of this, we have found that we must 
keep the input file/database in a configuration management system.   
 
Inadequate Test Logs 
The test log capability provided by the third party tool generated as output during script 
execution was inadequate for the examination of memory and resource values, 
executed command sequences and other data that would have been beneficial in 
analyzing the applications behavior during and after the test. Additionally, in the event 
of a test-tool related failure or system crash, the log file was left in an incomplete state, 
and at times was rendered inaccessible due to file corruption. Therefore, a custom set 
of logging functions was developed that collected the necessary data and wrote it off to 
external files for later analysis.  
 

Early Stages of Stress Testing 
Typically when we first start stress testing on a new DUT in the early stages of 
integration, the stress test may only run for a short period of time.  To help isolate faults 
as each new subsystem is integrated into the application we, will run stress testing for 
that subsystem only.  Once the subsystem becomes stable, we add the commands for 
that subsystem to the main stress data input file and run the integrated set of 



 

commands.  This process continues until all subsystems have been individually added 
to the main stress data input file, allowing the integrated DUT to be fully tested. 
 
The following graph in Figure 2 shows how the number of commands in a given stress 
test of the DUT increased over time.  The flat region of the chart (< 1000 commands) 
roughly represents the period when integration build was adding new subsystems to 
the DUT, while the region in which the number of commands increases geometrically 
represents the period when the system was fully integrated and more difficult-to-detect 
issues were found.   
 

 
 

Figure 2:  Application Stress Testing Over Time 
 

Execution  
 
Third Party Tool Memory Management Issues 
During execution of GUI stress we found that the third party tool had serious memory 
management issues that would occur when the tests were run.  We found that each 
time we would run our tests, the third party test tool would leave blocks of memory 
open causing increased swap file usage, which in time increased the time it took to 
execute a command sequence.  Left unchecked, the system would hang or crash well 
before useful data from the DUT could be obtained.  Also, the memory loss from within 
the third party tool tended to mask memory and resource management issues from 
within the DUT. 
 
We isolated the memory problems within the third party tool by running them against 
known ‘good’ applications like Notepad®.  We did this by creating an data input file for 
the application and then use the stress test tool to stress the application while 
monitoring the system resources.  We found that each time certain stress test tool error 
conditions were encountered; it left blocks of memory open.  We resolved the memory 
losses within the stress test tool by working with the vendor to fix the defects over time, 



 

however, great care needs to be taken to ensure that the stress test tool can work 
gracefully under the test conditions.  
 
Test Execution Time was Variable 
As the stress test runs for longer durations of time, it was noticed that the overall 
performance decayed (related to memory management issues mentioned above), 
which lead to increasing time for display of GUI objects.  Given sufficient run length, 
the rate at which commands could be delivered to the system dropped well below what 
was possible for a normal user to generate.  The situation was improved, but not 
entirely eliminated by implementing a “wait for object” structure in place of the original 
“wait for time delay” to prevent the script from overrunning the DUT application. 
 

Techniques Used to Isolate Defects 
Depending on the type of defect to be isolated, two different techniques are used:   

1. System crashes – (asserts and the like) do not try to run the full stress test from 
the beginning, unless it only takes a few minutes to produce the defect. Instead, 
back-up and run the stress test from the last seed (for us this is normally just the 
last 500 commands).  If the defect still occurs, then continue to reduce the 
number of commands in the playback until the defect is isolated.  

2. Diminishing resource issues – (memory leaks and the like) are usually limited to 
a single subsystem.  To isolate the subsystem, start removing subsystems from 
the database and re-run the stress test while monitoring the system resources.  
Continue this process until the subsystem causing the reduction in resources is 
identified. This technique is most effective after full integration of multiple 
subsystems (or, modules) has been achieved. 

  
Some defects are just hard to reproduce – even with the same sequence of 
commands.  These defects should still be logged into the defect tracking system.  As 
the defect re-occurs, continue to add additional data to the defect description.  
Eventually, over time, you will be able to detect a pattern, isolate the root cause and 
resolve the defect.   
 
Some defects just seem to be un-reproducible, especially those that reside around 
page faults, but overall, we know that the robustness of our applications increases 
proportionally with the amount of time that the stress test will run uninterrupted. 
 
Future Improvements 
 
We are continuously looking at ways to improve our stress test tools.  Our GUI stress 
tool still relies on a third party application as the front end to perform object recognition.  
We are working on moving away from this dependency by developing an in-house 
stand-alone stress test tool.  This will increase the number of platforms on which the 
stress test can be run since we will no longer be limited to those supported by the third 
party application.  
 



 

Another area for improvement includes standardizing the data input file.  Currently our 
programmable interface stress test tool uses a standard database file that works with 
all of our applications.  We are now applying the same constraints to the GUI stress 
test tool.  This will make it easier to support more applications with fewer stress test 
tool changes.   
 
Last, we are considering a control-sequencing application that would recursively 
inspect the DUT to create our database.  Currently, it takes significant effort to create a 
new database since all the control attributes must be entered by hand. 
 
Summary 
 
Our company has a heritage of delivering products of highest quality and reliability.  
One of the methods we use to ensure this high quality and reliability is through stress 
testing.  Manual stress testing has proven to be very ineffective or impractical.  We 
created an automated GUI stress test tool using a model similar to our existing 
programmable interface stress test tool that has been effective for many years.  
Automated GUI stress testing has proven to be an effective way to find elusive and 
difficult to reproduce defects that were not identified by any other means.  
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Glossary   

Command Set A set of all commands to be exercised by the stress test tool. 
Command Sequence A sequence of commands generated from a command set 

using a pseudo-random generator. 
DUT Device Under Test.  The application software/hardware to be 

tested. 
GPIB General Purpose Interface Bus, also referred to as IEEE Standard 

488. 
GUI Graphical User Interface. 
Load Testing A type of testing which evaluates how will a system operates 

under extreme load conditions.  Used to test the system capacity. 
PI Programmer Interface is a set of commands that are used to 

develop custom applications that interact with the DUT. 



 

RS-232 Interface between Data Terminal Equipment and Data 
Communications Equipment Employing Serial Binary Data 
Interchange, also referred to as EIA Standard RS-232-C. 

Stress Testing A type of testing which is used to perform random operational 
sequences at larger than normal volumes, at faster than normal 
speeds and for longer than normal periods of time as a method to 
accelerate the rate of finding defects and verify the robustness of 
our product. 

 Volume Testing A type of testing that is used to expose a system to large volumes 
of data. 
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