
sqaMethods Approach to Building Testing
Automation Systems

By

Leopoldo A. Gonzalez
leopoldo@sqaMethods.com

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 2 of 11

BUILDING A TESTING AUTOMATION SYSTEM...3

OVERVIEW...3

GOALS FOR AN AUTOMATION SYSTEM..3

BEGIN WITH THE END IN MIND...4

THE THREE TIER SYSTEM..5

APPLYING THE CONCEPT ...6

BREAKING DOWN THE COMPLEXITY..8

CONCLUSION ...10

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 3 of 11

Building a Testing Automation System

Overview

While there may be many ways of building a testing automation system and

most implementations can perform a certain level of automation, I believe that

ultimately the automation system should give testers the capability of an easy transition

from a manual test script to an automated one. It is up to the automation engineer to

hide the complexities of code behind an elegant set of instructions that manual testers

can understand.

This paper is a collection of thoughts and approaches that describe my

experience in building such a system.

Goals for an Automation System

Early in my testing automation career I realized that in order for an automation

system to be successful, it had to provide five basic functions. Without these

capabilities, the automation system would lack in flexibility and reliability.

1. The automated script must be able to be executed as a single entity.

This simply means that the tester must be able to pick a script from a list of

scripts and choose to run it alone. The script must know that it is not

running as part of a suite and if needed, be able to gather its own

information.

2. The automated script must be able to be executed as a suite.

The same script must know that when running as part of a suite, it cannot

stop and gather information from the user as it would defeat the purposed of

running unattended. Also there are times when you don’t want the script to

exit the application under test only to be re-launched by the next script in the

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 4 of 11

suite. This is a waste of time and only prolongs the execution time. The

script must know not to exit but to return to a HOME state.

3. The script must be data driven.

The data the script uses must reside somewhere other than in the script

itself. There should never be hard coded data inside the script. Data driven

scripts allow the tester to create multiple test case scenarios without having

to modify the code itself.

4. All of the test scripts in a suite must execute.

This means that the failure of one script should not affect the execution of

the next one. If during the execution of a script, the application aborts, the

script must be able to recover from that failure and attempt to continue with

the next script in the suite.

5. The automated script should use the same logic flow as the manual script

The transition between a manual script and an automated one will be a lot

easier if when converting a script, the tester can follow the same logic flow

and use some of the same language he used before.

While each of the above goals is worthy of its own analysis, this paper will not

cover all five goals, however I will talk a little on the last one.

Begin with the End in mind

 Let’s begin with a visualization of what a testing automation system should be

for a QA shop. This system should be treated as a useful tool to be used during the QA

test cycle. It should be the first line of tests to be executed when a new build is

created (smoke test). It should be used as a regression test mechanism (regression

test), it should be updated with new test cases for new functionality and finally, if

performance test is included, it should be used to measure the system’s performance

under varying loads.

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 5 of 11

But the question is, how do get from where you are to a system that is part of a

well oiled QA testing machine?

The Three Tier System

The three tier system of software development is very well known and utilized

for big projects. It is modular; it separates functions at their right domain area and is

just about the right size to avoid too much complexity.

By the same token, in my experience I found out that this model works fine for

testing automation systems as well. The only difference is that rather that breaking the

model down to SQL, Business Objects and GUI as in the traditional three tier approach,

a testing automation system should be made out of Common Utilities, Business Objects

and Test Cases.

The methods in the Common Utilities would be inherited by the Business

Objects, and these would be inherited by the Test Case scripts. As illustrated in Figure

1.

Figure 1

This model allows us to grow capability at the right level of abstraction. If I

need a method that would be useful to all of the automation system, I would write it at

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 6 of 11

the Common Utilities tier. However, if the method falls inside one of the business

domains, such as ordering, navigation, admin, etc., then I would write it at the Business

Object tier. The last tier to build is the actual test script. The syntax used by the test

script should follow closely the logic used in the manual test script. Be aware that you

will not be able to completely remove the flavor of the language from your testing

automation tool, but at least you will have a system on which a tester can venture out

and try to develop an automated script by himself even though he may not be a

programmer.

Applying the Concept

To see the benefit of this model, let’s examine a manual test case and create the

necessary components that will allow us to mirror the syntax of the manual test case.

The typical format of a manual test is as follows:

Test Step Expected Outcome Actual Outcome Result

Launch the Internet Explorer
The system should display

the internet browser
Pass / Fail

Login to the system by

accessing URL

“www.mytest.com”

The system should display

the login page
Pass / Fail

Verify the layout of the login

page

The page should display

elements according to the

agreed style guide …

Pass / Fail

Login as customer user

“Bob”

The system should display

the order page
Pass / Fail

Etc …

Table 1

Interestingly enough, IBM Manual Tester ® implements a different format for

manual testing that deserves a second look. The instructions above are flattened out

and the tool provides the ability to either place it in the log via the Verification Point

attribute or skip it by assuming it was a test step. This flat format allows the creation

of multiple steps for a single verification point or vice versa; a single step with multiple

verification points. In the case of step #3 “Verify the layout of the page”, the system

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 7 of 11

would allow you to enter many verification points for the many objects displayed on the

screen. Table 1 above table would read something like Figure 2:

Figure 2

The goal I set for myself when building a testing automation system is to closely

match the syntax of the flatten format. I understand that while I may never get to the

point where it reads the same, I can certainly copy the flow of the manual test case by

making calls to the methods that give me that functionality. Figure 3 demonstrates this

idea.

! Launch Internet Explorer

! The system should display the internet browser

! Login to the system by accessing URL “www.mytest.com”

! The system should display the login page

! Verify the layout of the page

! The page should display the elements according to the agreed style guide.

! Login as customer user “Bob”.

! The system should display the order page.

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 8 of 11

Figure 3

Don’t be taken back by the amount of code necessary to produce the same

result as the manual script; after all we are creating a testing automation system, and

that requires some coding. What I do want to point out is that the steps from the

manual test have been replicated by the sections bounded by the dashes. The code is

readable because the methods are named after the words used by the manual tester.

Breaking down the Complexity

In spite of the Java flavor of the script shown in Figure 3, the script hides a lot of

infrastructure work that allows the testing automation system to run smoothly. For

<java headers and declarations …>

public void testMain(Object[] args) {
TestResult tr = new TestResult();

// ---

// Launch the browser to the URL provided

tr = launchBrowser("http://www.sqaMethods.com");

// If the launchBrowser method fails for whatever reason, then we need to log it and exit

if (tr.getTestVerdict() == FAILED) {
logMessage(FAILED, "Sorry, I could not launch the browser “);

System.exit(0);

}

// Object tr needs to be cleared out

tr = null;

// ---

// Verify the components in the header

cellwin().performTest(HeaderElementsVP());

// Verify the contents of the main page

tabletable().performTest(MainPageVP());

// ---

// Login user type USER Bob

tr = loginUser("Bob", USER);

// If the loginUser method failed for whatever reason, then we need to log it and exit

if (tr.getTestVerdict() == FAILED) {

logMessage(FAILED, "Sorry, I could not log user Bob”, TRUE);

System.exit(0);

}

tr = null;

}

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 9 of 11

example, the launchBrowser method hides that if the browser cannot be launched, it

will return a verdict of FAILED. I can then instruct the script not to bother any more

and exit gracefully.

Notice that in the process of launching the browser, I created an object of type

TestResult, this object contains the typical results gathered during a test or during

the execution of a method. A test can result in a Pass/Fail state and with either

result; it could generate data gathered during the process. Inside the object type

TestResult, there is a field that will hold the value of the data gathered. In this

example I do not show that capability but I bring it up to illustrate that the object is

flexible enough to hold other data types if needed.

The next sections are the verification points that check for the properties of the

header and the main html document. I don’t write custom code in these sections

because I believe that the Verification Point feature from the automated tool does a

better job in checking these properties than I could. Also I don’t do anything with the

results of the verification point tests, I let the tool log it and then continue.

Let’s look at the loginUser method, at first glance it appears that this method

is not that complicated, after all, how hard is it to log Bob in? However, when you look

at how this method has been implemented you will realize that the concept of

inheritance is well at work. The loginUser was implemented at the Business Object

layer and is part of the Login class.

The Login class was inherited by the automated script and therefore all of the

methods defined in that class are now part of the automated script. In turn, the

loginUser method utilizes methods from the Common Utilities layer also via

inheritance. These are the readData and the loadDriver methods that take the

name of “Bob” and perform a database read to the table “Users”; where Bob and his

password are stored.

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 10 of 11

In this case, I don’t consider that hard coding the name of Bob as breaking my

own rules since using the name makes the script a lot more readable. Trying to

abstract the name would only add more layers of unnecessary complexity.

Notice that throughout the script I check for the state of my TestObject tr,

and if it fails, then I write it to the log. The logMessage method is implemented at

the Common Utilities layer and allows the tester to write items to the log. The log can

even accept a parameter to take a snapshot of the screen to capture the moment the

script failed.

As you can see, trying to replicate the logic flow from the manual test case can

be a bit challenging since at the same time, I’m trying to stay true to my own goals.

The code sample above provides just a glimpse of how this can be accomplished, and

while it did not show the other features, it provides an idea as to how I go about

architecting a testing automation system.

Conclusion

Developing a testing automation system should be approached with the same

care and analysis as any other software development. However, the automation

engineer must not lose sight that the system he/she is building needs to provide a

solution to the QA team as quickly as possible. Building a system for the sake of

creating something “cool” harms the company and the testing automation industry.

Therefore, in choosing whom you trust to develop your testing automation

system should be a top priority. Make sure that the person you hire has the ability to

articulate his/her vision and approach to developing an automation system and that

he/she has experience doing it.

For more information on how to implement this type of automation system in

your company, visit us at w w w . s q a m e t h o d s . c o m or contact me at

leopoldo@sqaMethods.com.

sqaMethods Approach to Building Testing Automation Systems

© 2008 sqaMethods Page 11 of 11

About Leopoldo Gonzalez

I started my career in the Software Development industry in 1984.

During this time I have performed duties as a Developer, Tester, User

Group Test Coordinator and Testing Automation Architect.

I have compiled my experiences, best practices and practical tools in a

workshop I call “Software Testing 101 - What Every Tester
Needs To Know About Software QA”. This workshop is aimed at

individuals who are new to the world of Software Testing and QA, but

also has valuable information for seasoned Testers such as the subject

discussed in this paper.

For more information on my workshop, visit us at

www.sqaMethods.com

