Forbidding the Clipboard for the specified process
Written by:

Vladimir Shamray,

Senior Developer of Apriorit Inc.

http://www.apriorit.com
Keywords

Windows Clipboard, Clipboard internals, SetClipboadData, GetClipboardData, win32k.sys, NtUserSetClipboardData, NtUserGetClipboardData, undocumented functions, unexported functions, undocumented Windows functions, how to find unexported function
Contents
31.
Introduction

31.1.
The task

31.2.
Who IS this article for

32.
About the Windows Clipboard

32.1.
Clipboard overview

42.2.
How does it all work?

53.
Solution description

53.1.
Possible task solutions

53.2.
Project implementation

53.2.1.
How to find an unexported function?

53.2.2.
Finding the signatures

63.2.3.
Function search implementation

93.2.4.
Setting hooks

113.2.5.
Hooks implementation

123.3.
Building the sample

123.4.
Supported Windows versions

124.
Conclusions

135.
Bibliography

1. Introduction

This article is based on the real task from the project I participated in, the task was to create a software system for protecting the Windows Clipboard against unauthorized data exchange. Though the Clipboard is one of the fundamental parts of the Windows operating system, there is little information about how it works, especially in the low level. In this article, I’m going to tell you something about the Clipboard internals by showing how you can forbid access to it. I simplified the task as much as it was possible to give you a possibility to focus on the most important parts.
1.1. The task
Create a program to forbid copying data via the Clipboard from one specified application (Wordpad) to another (Notepad). The names of the applications will be hardcoded. There will be no additional control possibilities. Also, no GUI is intended.
1.2. Who IS this article for

The article is written for C/C++ developers, who are familiar with Windows API and kernel-mode driver development and who are interested in how to work with the Clipboard on the low level.
The reader is supposed to have some knowledge in C programming language, Windows API (both user- and kernel-mode ones) and the OS architecture. The reader doesn’t have to be an expert in driver development but he/she has to know what drivers are and how to write the simplest one.
2. About the Windows Clipboard

2.1. Clipboard overview

As you know, the Clipboard is Windows component which enables applications to transfer data. An application places data into the clipboard for cut and copy operations and retrieves data from the clipboard for paste operations. Data in the clipboard can be in various formats. Each format is identified by an unsigned integer value.
An application places data into the clipboard in as many clipboard formats as possible, ordered from the most descriptive clipboard format to the least descriptive. For each format, the application calls the SetClipboardData function, specifying the format identifier and a global memory handle.

HANDLE SetClipboardData(

 UINT uFormat,

 HANDLE hMem
);
To retrieve data from the clipboard, an application first determines the clipboard format to retrieve. Typically, an application enumerates the available clipboard formats by using the EnumClipboardFormats function and uses the first format it recognizes. Alternatively, an application can use the GetPriorityClipboardFormat function. This function identifies the best available clipboard format according to the specified priority. An application can determine whether a format is available by using the IsClipboardFormatAvailable function.

After determining the clipboard format to use, an application calls the GetClipboardData function. This function returns the handle to a global memory object containing data in the specified format.
HANDLE GetClipboardData(

 UINT uFormat
);
Before doing some operations with the Clipboard, an application must open it with OpenClipboard function. After finishing all operations with the Clipboard it must be closed with CloseClipboard.
2.2. How does it all work?
The Clipboard is implemented as a part of the Windows subsystem. API functions of this subsystem, including Clipboard API, are in user32.dll dynamic library. But the main work is preformed in win32k.sys module, which is the kernel mode part of the Windows subsystem. Win32k.sys is responsible for many things like managing windows and window messages, drawing graphics, working with the clipboard, etc. Win32k.sys has more than 600 functions which are undocumented and not exported.
Before placing data into the Clipboard application allocates memory using GlobalAlloc function and copies the data to that memory. Eventually, application calls SetClipboard with a format code and a handle returned by GlobalAlloc as arguments. SetClipboardData in its turn makes call to the kernel-mode function NtUserSetClipboardData, which performes actual work.
[image: image3.emf]Process 1 Process 2

user32.dll

SetClipboardData

user32.dll

GetClipboardData

win32k.sys

NtUserSetClipboardData

NtUserGetClipboardData

SomeFunction OtherFunction

User mode

Kernel mode

When some other application wants to get data from the clipboard it calls GetClipboardData, which also calls the kernel-mode function inside itself, NtUserGetClipboardData. If retrieving the data is succeeded, it returns the handle of the data.
s
3. Solution description

3.1. Possible task solutions
Now, let’s get back to the task. We want to forbid copying data from one specific process to another. Copying some data via the Clipboard is actually separated on two independent operations: copy (or cut), which is represented by SetClipboardData and paste, represented by GetClipboardData. So, on copying we have to save the process name from which data is copied and on pasting we can choose, to allow or to forbid the copying.
There are two approaches. The first approach is to hook SetClipboardData and GetClipboardData in the user mode. Both functions are well documented and, that is much more important, they are exported. This is the main advantage. But this approach requires setting hooks for all processes in the system. Also we need to track creation of the new processes to set hooks in their address spaces too.
The second approach, which is described in this article, is to hook kernel-mode functions NtUserSetClipboardData and NtUserGetClipboardData. In this case we need to set hooks only once. But both functions are not exported from win32k.sys, so it is quite a problem to find them..
3.2. Project implementation

3.2.1. How to find an unexported function?
Hooking a couple of functions is not a big problem. But before that we need to find them. How to find a function which is not exported? One way is to hardcode the function address in the program. The address can be easily found manually, using WinDbg, for instance. Unfortunately, it is necessary to keep a base of these addresses for each operating system (and, probably, for each service pack) which you’re going to support.
Other way is to keep not an address but some sequence of bytes from which that address can be obtained. This sequence of bytes is called unique signature. It can be a piece of the function’s code or a piece of code from where the function is called. Though this way is not very portable too, it much less depends on differences between the various operating system versions.
3.2.2. Finding the signatures

First of all, we need to find the unique signatures for two functions: NtUserSetClipboardData and NtUserGetClipboardData. Both of them are in the win32k.sys. To do it, we will use WinDbg. Let’s start with the signature for NtUserGetClipboardData.
As I mentioned the function we’re looking for is in the win32k.sys and this module is mapped to a session address space, it means that it is available only in the context of some interactive process, like explorer.exe. To switch to explorer.exe, you can use !process 0 0 explorer.exe to get the address of its EPROCESS and then use .process command.
kd> !process 0 0 explorer.exe

PROCESS 81946990 SessionId: 0 Cid: 063c Peb: 7ffd4000 ParentCid: 060c

 DirBase: 09b85000 ObjectTable: e19cafb8 HandleCount: 260.

 Image: explorer.exe
kd> .process /p 81946990

Implicit process is now 81946990

.cache forcedecodeuser done

Let’s take a look at the NtUserGetClipboardData. We can see its disassembly using u debugger command
kd> u win32k!NtUserGetClipboardData win32k!NtUserGetClipboardData+93

win32k!NtUserGetClipboardData:

bf8e9569 6a20 push 20h

bf8e956b 6888b198bf push offset win32k!`string'+0x268 (bf98b188)

bf8e9570 e84376f1ff call win32k!_SEH_prolog (bf800bb8)

...
Now, look at the piece in the middle of the function code, where xxxGetClipboardData is called. The first function argument is copied to a local variable, then the values of the three registers are placed into the stack and finally the xxxGetClipboardData is called. That piece of code seems to be suitable for using as the unique signature. On the one hand, it can be unique (actually, it is) and on the other hand, we can hope that it can be used not only for this version of Windows.
The last byte of the second instruction is an offset of a local variable which can be easily changed in another build. So, it won’t be included in the signature, as well as the last byte of the third instruction.
[image: image1.png]=lolx|

Fle Edt Vew Debug Window Help

S ER BRI BTE 0O IRIEEOREEO0EE|E A E
[bfBe950r OfES6CIffir Jne wimzk/NoUserGetcliphoardDatatOxs (bSe9501) -
lbeessas 330 or eax,esx

lbeessar ssco test eex,eax

lbfeesson ofes7errrrze ne wimdzk!NeUserGecClipboardDatatOX3f (b8e951s

lbfeessor seas3eson: push offset windzk!Userbereferencedbiect (h903dS

lbeessas saasao lea eax, [ebp-30m

lbeessar so push eax

lbeessas 57 pusn eai

lbfeessas secz0azizs call windzk!PushUSzThresdlock (RES02870

— wov eoxeat

pf8eSSbD £fiSc4a7oBbf call dvord ptr [windzk! imp_ObfReferenceObject (bfSBa7cd)]
|of8e95b6 8b4508 mov eax, dvord ptr [ebp+8]

lbeessng 8945ac wev dvord per [ehp-24h,eax

loeessne sasdac lea ecx, (ebp-24n

lbeessns 51 push ecx

lb8es5e0 50 pusn eax

lbeessct 57 pusn eai

lbfeesscs c839000000 call wimdzk!xxxGetCliphosrdbaca (ESe3600

S wov ebx,eax

lbeessca s3sszcon and avord prr (ebp-41,0

lbeessca sbTaoe wov edi,auord per [ebpoCH

|bf8e95d0 alc09h9abf mov eax,dword ptr [win32k!Win32UserProbeiddress (bf9adhe0)]
lbeessas sbze cmp eatesx

lbeessar 7383 Ja= windzk!NrlserGerCliphoardDatatingd (f3esssc

lbeessas sarsac lea esi,[ebp-zam

lbeessac as wovs aword per es:[eai],dvord per [esi

lbeessad as wovs dword pir es:[eail,dvord pir [esi

lbeessae as wovs dword ptr es:(eail,dvord pir [esi

lbeessar s3satces or avord prr (ebp-4),OFFFFFFFFL &
e =

[in3, Col 1[5y OKasrvi5 [Pro 0000 [Thra 0000 [4511 [0k (265 [Num

After checking some other versions of Windows we decide to use the described sequence of bytes as the unique signature for the NtUserGetClipboardData function. Unique signature for the NtUserSetClipboardData can be found in the same way.
3.2.3. Function search implementation
Signatures of the functions are pieces of binary code inside them. Therefore, the process of finding a function address consists of two steps: search forward for the signature and search back for the start bytes of the function.

[image: image2.emf]Unique signature Unique signature

Whole function Whole function

First bytes First bytes

Searching forward for the signature Searching forward for the signature

Searching back for the first bytes Searching back for the first bytes

Because signatures may have “holes” (insignificant bits), it is necessary to implement comparison with mask, to compare only significant parts. It is implemented in function PlCompareSequence. PlSearchSequence contains implementation of the forward search using comparison with mask.
static int PlCompareSequence(const MASK_BUFFER* pPattern, const BUFFER* pTarget)

{

 size_t i = 0;

 if(pTarget->nSize < pPattern->nSize)

 return 0;

 for(i = 0; i < pPattern->nSize; ++i)

 {

 if ((pTarget->pStart[i] & pPattern->pMask[i]) != pPattern->pStart[i])

 return 0;

 }

 return 1;

}

PLSTATUS PlSearchSequence(const MASK_BUFFER* pPattern,

 const BUFFER* pTarget,

 const char ** ppFirstPosition)

{

 size_t i = 0;

 if(pTarget->nSize < pPattern->nSize)

 return PL_STATUS_NOT_FOUND;

 for(i = 0; i < pTarget->nSize - pPattern->nSize; ++i)

 {

 BUFFER bufCurrentPiece = {pTarget->pStart + i, pPattern->nSize};

 if (PlCompareSequence(pPattern, &bufCurrentPiece))

 {

 *ppFirstPosition = pTarget->pStart + i;

 return PL_STATUS_SUCCESS;

 }

 }

 return PL_STATUS_NOT_FOUND;

}

Back search implementation is very similar to the forward search.
Structure MASK_BUFFER represents buffer which may have insignificant bits. It is represented by pointer to data, pointer to mask and length of both data and mask. This structure is used for storing signatures. Structure BUFFER represents plain buffer in memory, described by pointer to buffer and its length.
typedef struct MASK_BUFFER_

{

 const char* pStart;

 const char* pMask;

 size_t nSize;

} MASK_BUFFER;

typedef struct BUFFER_

{

 const char* pStart;

 size_t nSize;

} BUFFER;

Function PlGetProcAddress is used for searching functions by signature. Firstly, it searches for the specified signature. If a match for the signature is found, it checks, is there are another matches for it. If there is only one match for the signature, then back search for the start bytes is performed.
PLSTATUS PlSingatureDuplicates(const BUFFER* pModule,

 const MASK_BUFFER* pSignature,

 const char* pMatchedSignature)

{

 const char* pTemp=0;

 BUFFER bufTemp = {pMatchedSignature + 1, pModule->nSize - (int)(pMatchedSignature - pModule->pStart)};

 return (PlSearchSequence(pSignature, &bufTemp, &pTemp) == PL_STATUS_SUCCESS);

}

//

static size_t PlCalculateSearchAreaSize(const BUFFER* pModule,
 const char* pSignature,
 size_t nMaxSize)

{

 size_t nSignatureOffset = (size_t)(pSignature - pModule->pStart);

 return (nSignatureOffset < nMaxSize) ? nSignatureOffset : nMaxSize;

}

//

static PLSTATUS PlGetProcStart(const BUFFER* pModule,

 const char* pSequenceStart,

 size_t nMaxSignOffset,

 const MASK_BUFFER* pFncStart,

 void ** ppAddress)

{

 // Define search area

 size_t nSignatureOffset = (size_t)(pSequenceStart - pModule->pStart);

 size_t nSearchArea = PlCalculateSearchAreaSize(pModule,
 pSequenceStart,
 nMaxSignOffset);

 BUFFER bufFncSearchArea = {pSequenceStart, nSearchArea};

 // Search back for the function start bytes

 return PlSearchSequenceBack(pFncStart,
 &bufFncSearchArea,
 (const char**)ppAddress);

}

PLSTATUS PlGetProcAddress(const BUFFER* pModule,

 const MASK_BUFFER* pSignature,

 size_t nMaxSignOffset,

 const MASK_BUFFER* pFncStart,

 void ** ppAddress)

{

 const char* pSequenceStart=0;

 // check unique key

 int status = PlSearchSequence(pSignature, pModule, &pSequenceStart);

 if(status != PL_STATUS_SUCCESS)

 return status;

 // check duplicate

 if (PlSingatureDuplicates(pModule, pSignature, pSequenceStart))

 return PL_STATUS_SIGNATURE_NOT_UNIQUE;

 // now find the begining of the function

 return PlGetProcStart(pModule,
 pSequenceStart,
 nMaxSignOffset,
 pFncStart,
 ppAddress);

}
3.2.4. Setting hooks

To hook the functions we’ll use a very common technique, so if it is familiar to you, you can just skip this part of the article.

The technique implies replacing the first bytes of a target function with a jump to our hook function, which has the same prototype. First bytes of the target function are to be copied to somewhere to keep the possibility to use the function. Hence, when user calls the target function he gets to the hook function.
But there is one thing to remember. You cannot divide an instruction into parts, so only whole instructions should be copied. It makes us to detect lengths of instructions we move. Also, if there are some relative addresses, they must be corrected after moving. To detect instruction length and relative addresses we’ll use slightly modified Hacker Disassembler Engine, a small library by Veacheslav Patkov which suits well for the task.
Here are functions for moving binary code and writing jump instructions:
size_t CodeWriteJump(code_t* pFrom, const code_t* pTo)

{

 const code_t cInstrCode = '\xE9'; // JUMP

 const size_t nInstSize = 1 + sizeof(void*);

 (code_t)(pFrom + 0) = cInstrCode; // Instruction code

 (size_t)(pFrom + 1) = pTo - (pFrom + nInstSize); // Offset

 return nInstSize;

}

size_t CodeDisplaceInstruction(code_t* pNew, code_t* pOld)

{

 // Parse instruction

 hde32s hs;

 hde32_disasm(pOld, &hs);

 // Copy instruction

 RtlMoveMemory(pNew, pOld, hs.len);

 // Correct relative address, if there's any

 if ((hs.flags & F_REL8) == F_REL8)

 (uint8_t)(pNew + hs.imm_offset) -= (pNew - pOld);

 if ((hs.flags & F_REL16) == F_REL16)

 (uint16_t)(pNew + hs.imm_offset) -= (pNew - pOld);

 if ((hs.flags & F_REL32) == F_REL32)

 (uint32_t)(pNew + hs.imm_offset) -= (pNew - pOld);

 return hs.len;

}

size_t CodeDisplace(code_t* pDestination, code_t* pCode, size_t nSize)

{

 size_t nMoved = 0;

 while (nMoved < nSize)

 nMoved += CodeDisplaceInstruction(pDestination + nMoved,
 pCode + nMoved);

 CodeFreeBuffer(pCode, nMoved);

 return nMoved;

}
This functionality is used by PatchFunction function to perform hook in the way described above.
void* PatchFunction(void* pFunction, void* pHook)

{

 code_t* pFncStart = NULL;

 size_t nPosition = 0;

 ULONG oldCR0 = DisableWriteProtection();

 // Move some first bytes of original function

 pFncStart = CodeAllocate(100);

 if (pFncStart == NULL)

 return NULL;

 nPosition = CodeDisplace(pFncStart, pFunction, CodeJumpSize());

 nPosition += CodeWriteJump(pFncStart + nPosition,
 (code_t*)pFunction + nPosition);

 // Patch original function

 CodeWriteJump(pFunction, pHook);

 EnableWriteProtection(oldCR0);

 return pFncStart;

}
3.2.5. Hooks implementation

Here is the implementation of the hook functions:
typedef struct _CLIPBOARD_CONTEXT

{

 UNICODE_STRING usFrom;

 UNICODE_STRING usTo;

}

CLIPBOARD_CONTEXT, *PCLIPBOARD_CONTEXT;

static PCLIPBOARD_CONTEXT g_pContext = NULL;

//

BOOLEAN IsPasteAllowed(PCLIPBOARD_CONTEXT pContext)

{

 UNICODE_STRING usWordpad, usNotepad;

 RtlInitUnicodeString(&usWordpad, L"wordpad.exe");

 RtlInitUnicodeString(&usNotepad, L"notepad.exe");

 if ((RtlCompareUnicodeString(&pContext->usFrom, &usWordpad, TRUE) == 0) &&

 (RtlCompareUnicodeString(&pContext->usTo, &usNotepad, TRUE) == 0))

 {

 DbgPrint("Copying from WORDPAD.EXE to NOTEPAD.EXE is denied\n");

 return FALSE;

 }

 else

 {

 return TRUE;

 }

}

//

ULONG __stdcall NtUserSetClipboardData_Hook(ULONG uFormat, HANDLE hParam, PULONG pParam)

{

 ULONG uRetVal;

 NTSTATUS status;

 uRetVal = g_pNtUserSetClipboardData(uFormat, hParam, pParam);

 // Create clipboard context to store process names

 status = CreateContext(&g_pContext);

 if (!NT_SUCCESS(status))

 goto cleanup;

 // Save name of the process, which puts data to the clipboard

 status = AllocUnicodeString(&g_pContext->usFrom, 256);

 if (!NT_SUCCESS(status))

 goto cleanup;

 status = GetCurrentProcessName(&g_pContext->usFrom);

 if (!NT_SUCCESS(status))

 goto cleanup;

cleanup:

 if (!NT_SUCCESS(status))

 FreeContext(g_pContext);

 return uRetVal;

}

//

HANDLE __stdcall NtUserGetClipboardData_Hook(ULONG uFormat, PVOID pParam)

{

 HANDLE hRetVal;

 NTSTATUS status;

 // Call the original function

 hRetVal = g_pNtUserGetClipboardData(uFormat, pParam);

 if (g_pContext == NULL)

 goto cleanup;

 // Save the name of the process, which gets data from the clipboard

 status = AllocUnicodeString(&g_pContext->usTo, 256);

 if (!NT_SUCCESS(status))

 goto cleanup;

 status = GetCurrentProcessName(&g_pContext->usTo);

 if (!NT_SUCCESS(status))

 goto cleanup;

 // If paste is forbidden, return NULL to the caller

 if (!IsPasteAllowed(g_pContext))

 hRetVal = NULL;

cleanup:

 return hRetVal;

}
To store names of the source and destination processes, structure CLIPBOARD_CONTEXT is used. When NtUserSetClipboardData is called we save name of the current process in the usFrom field. When NtUserGetClipboardData is called, the name of the current process is stored in the usTo field. If both names match the forbidding rule, we return NULL to caller, which indicates an error.
3.3. Building the sample
To build the code sample, you need to install Windows Driver Kit. Also you have to set an environment variable BASEDIR to the path where you have installed WDK.
After that you can just use Visual Studio to build the sample.
3.4. Supported Windows versions
The project was tested on the following versions of Windows:

1. Windows XP (SP2 and SP3)

2. Windows 2003 Server

3. Windows Vista (SP1)

4. Conclusions

In the article I described how to forbid the Clipboard for the specified process from a kernel-mode driver. Because of the code sample in this article is made rather for educational purposes, it has some limitations. First of all, the sample works only on x86 operating systems. It also has never been tested on Windows 2000 and Windows 7. The sample may work incorrectly in a Remote Desktop session.
There is also one thing about forbidding copying data from the some process to itself. Some applications, like Microsoft Excel, can detect when data is copied and pasted within one process. If so, such applications may not use Clipboard API at all, therefore it makes some problems when you want to forbid it.
5. Bibliography

1. MSDN Clipboard documentation
2. Mark E. Russinovich, David A. Solomon. Microsoft Windows Internals (4th Edition): Microsoft Windows Server 2003, Windows XP, and Windows 2000
3. Sven B. Schreiber. Undocumented Windows 2000 Secrets - A Programmer's Cookbook
Download sample source code from the Apriorit site - .
