
Test Coverage and Traceability

July 2007 - Pragmatic Software Newsletters

Upon embarking on a new software development project, it is important to ensure
that the software will be thoroughly testing during the Quality Assurance phase. But
how do you know if you have adequate test cases for each requirement in the new
software?

Traceability

Traceability is a term that refers to the ability to review all the test cases you have
defined for each requirement specification. Traceability also includes the ability to
review any defects that have been associated with failed test cases. By reviewing
traceability, you can ensure that each requirement has an adequate number (and
level) of testing, and you can determine which requirements spawned the most
defects during the testing process.

Requirements Review

Quality starts with requirements definition. Upon defining a requirements
specification, it is important to have a team review of the requirement
specification. The owner of the requirement specification should distribute the
requirement specification to all team members for review (this includes the project
manager, analyst that created the specification, the programmer(s) that will perform
the coding, and the tester(s) that is responsible for testing the new requirement).
Prior to the meeting, each person should have already reviewed the requirement in
detail and should come prepared with comments for the review. Below are things
that should be reviewed:

1. Completeness - Is the requirement defined in enough detail to code and test
against?

2. Accuracy - Is the requirement accurately defined and logical? Are there
missing elements?

3. Testable - Is the requirement testable (can a complete set of test cases be
written for it)?

Test Case Review

Once the requirement specification has been reviewed and approved by the
reviewers, the test team should begin developing test cases. As each test case is
created, it should be identified as belonging to the requirement specification. This
ensures that you can quickly determine exactly what test cases belong to each
specification, which provides traceability. Once all test cases have been defined for
the requirement specification, the tester should distribute the test cases to all team
members for review (the same people that attended the requirements review). Like
the requirements review, the reviewers should review the test cases in detail and
should come prepared with comments for the review. Below are the things that
should be reviewed:

1. Positive Test Cases - Positive test cases are designed to test the feature per

the design. It does not try to break the feature, it is simply test cases that
demonstrate how a user might use the software in a normal environment. The
review should ensure that there are an adequate number of test cases for this.

2. Negative Test Cases - Negative test cases are designed to test the feature in
ways that the developer may not have envisioned. This includes bounds and
logical tests. For example, try testing invalid dates, entering alphabetic
information in numeric fields, entering numeric information outside of the
bounds that it was designed for (e.g. try entering 101% in a percentage field
that should only allow up to 100%), and entering field values that are larger
than the field size (e.g. try entering 101 characters in a field that is designed
for 100 characters). The review should ensure that there are an adequate
number of test cases for this.

3. Performance - Performance test cases ensure that the code will not become
unusable with large amounts of data. For example, import 50,000 items and
record the timings. Compare those timings to when you only have 50 items.
For most applications, acceptable response time is anything under 5 seconds,
while good response time is anything under 2 seconds. This may vary depending
on the application and your own performance guidelines. The review should
ensure that there are an adequate number of test cases for this.

4. Security Testing - If the feature is a secured feature, there should be security
test cases to ensure that the correct rights are granted before specific actions
can occur. The review should ensure that there are an adequate number of
test cases for this.

5. Regression Testing - If the feature will become a base part of your product,
identify specific test cases from this test suite that would be a good candidate
for Regression Testing in future releases. The review should ensure that there
are an adequate number of test cases for this.

Defect Linkage

Once testing commences, it is important to identify the defects that were created
based on the specific test case that failed. Good defect management solutions will
allow you to automatically generate a defect when a test case fails and provide a
linkage between the failed test case and the automatically generated defect.
Assuming your test cases are linked back to the original requirement specification,
you can then link the defects by requirement. This allows you to determine which
requirements spawn the most defects.

Traceability Report

Good defect management solutions will provide a report that shows you the
traceability mentioned above. If yours does not, you can put this together manually,
but it does require a bit of work and must be updated frequently. Here is an
example of a traceability report:

http://www.pragmaticsw.com/newsletters/TraceabilityReport.pdf (when you click this link, zoom to
150% to see it better).

Helpful Templates

http://www.pragmaticsw.com/newsletters/TraceabilityReport.pdf

Pragmatic Agile Development (PAD) Overview -
http://www.PragmaticSW.com/PADOverviewPresentation.pdf

PAD Road Map - http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf

PAD Best Practices Excerpt - http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf

Additional PAD Information - http://www.pragmaticsw.com/PADOverview.pdf

Project Management Guidelines -
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

User Acceptance Test Release Report -
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

All Templates - http://www.PragmaticSW.com/Templates.htm

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

Software Planner - http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp

Defect Tracker - http://www.DefectTracker.com

Remoteus (Remote Desktop Sharing) - http://www.PragmaticSW.com/Remoteus.asp

About the Author
Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com).
With over 21 years of experience, Steve has extensive knowledge in project
management, software architecture and test design. Steve publishes a monthly
newsletter for companies that design and develop software. You can read other
newsletters at http://www.PragmaticSW.com/Newsletters.asp. Steve's email is
steve.miller@PragmaticSW.com.

Below are some helpful templates to aid you in developing software solutions on-time
and on-budget:

Pragmatic Software Co., Inc.
383 Inverness Parkway
Suite 280
Englewood, CO 80112

Phone: 303.768.7480
Fax: 303.768.7481
Web site:
http://www.PragmaticSW.com

E-mail: info@PragmaticSW.com

http://www.PragmaticSW.com/PADOverviewPresentation.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf
http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf
http://www.pragmaticsw.com/PADOverview.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp
http://www.DefectTracker.com
http://www.PragmaticSW.com/Remoteus.asp
http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.asp
http://www.PragmaticSW.com

