
Top 10 Negative Test Cases

September 2007 - Pragmatic Software Newsletters

Negative test cases are designed to test the software in ways it was not intended to
be used, and should be a part of your testing effort. Below are the top 10 negative
test cases you should consider when designing your test effort:

1. Embedded Single Quote - Most SQL based database systems have issues when
users store information that contain a single quote (e.g. John's car). For each
screen that accepts alphanumeric data entry, try entering text that contains
one or more single quotes.

2. Required Data Entry - Your functional specification should clearly indicate
fields that require data entry on screens. Test each field on the screen that
has been indicated as being required to ensure it forces you to enter data in the
field.

3. Field Type Test - Your functional specification should clearly indicate fields
that require specific data entry requirements (date fields, numeric fields,
phone numbers, zip codes, etc). Test each field on the screen that has been
indicated as having special types to ensure it forces you to enter data in the
correct format based on the field type (numeric fields should not allow
alphabetic or special characters, date fields should require a valid date, etc).

4. Field Size Test - Your functional specification should clearly indicate the
number of characters you can enter into a field (for example, the first name
must be 50 or less characters). Write test cases to ensure that you can only
enter the specified number of characters. Preventing the user from entering
more characters than is allowed is more elegant than giving an error message
after they have already entered too many characters.

5. Numeric Bounds Test - For numeric fields, it is important to test for lower and
upper bounds. For example, if you are calculating interest charged to an
account, you would never have a negative interest amount applied to an
account that earns interest, therefore, you should try testing it with a negative
number. Likewise, if your functional specification requires that a field be in a
specific range (e.g. from 10 to 50), you should try entering 9 or 51, it should
fail with a graceful message.

6. Numeric Limits Test - Most database systems and programming languages allow
numeric items to be identified as integers or long integers. Normally, an
integer has a range of -32,767 to 32,767 and long integers can range from
-2,147,483,648 to 2,147,483,647. For numeric data entry that do not have
specified bounds limits, work with these limits to ensure that it does not get an
numeric overflow error.

7. Date Bounds Test - For date fields, it is important to test for lower and upper
bounds. For example, if you are checking a birth date field, it is probably a
good bet that the person's birth date is no older than 150 years ago. Likewise,
their birth date should not be a date in the future.

8. Date Validity - For date fields, it is important to ensure that invalid dates are
not allowed (04/31/2007 is an invalid date). Your test cases should also check
for leap years (every 4th and 400th year is a leap year).

Pragmatic Agile Development (PAD) Overview -
http://www.PragmaticSW.com/PADOverviewPresentation.pdf

PAD Road Map - http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf

PAD Best Practices Excerpt - http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf

Additional PAD Information - http://www.pragmaticsw.com/PADOverview.pdf

Project Management Guidelines -
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

User Acceptance Test Release Report -
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

All Templates - http://www.PragmaticSW.com/Templates.htm

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

Software Planner - http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp

Defect Tracker - http://www.DefectTracker.com

Remoteus (Remote Desktop Sharing) - http://www.PragmaticSW.com/Remoteus.asp

About the Author
Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com).
With over 21 years of experience, Steve has extensive knowledge in project
management, software architecture and test design. Steve publishes a monthly
newsletter for companies that design and develop software. You can read other
newsletters at http://www.PragmaticSW.com/Newsletters.asp. Steve's email is

9. Web Session Testing - Many web applications rely on the browser session to
keep track of the person logged in, settings for the application, etc. Most
screens in a web application are not designed to be launched without first
logging in. Create test cases to launch web pages within the application
without first logging in. The web application should ensure it has a valid logged
in session before rendering pages within the application.

10. Performance Changes - As you release new versions of your product, you
should have a set of performance tests that you run that identify the speed of
your screens (screens that list information, screens that add/update/delete
data, etc). Your test suite should include test cases that compare the prior
release performance statistics to the current release. This can aid in
identifying potential performance problems that will be manifested with code
changes to the current release.

Helpful Templates

Below are some helpful templates to aid you in developing software solutions on-time
and on-budget:

http://www.PragmaticSW.com/PADOverviewPresentation.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf
http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf
http://www.pragmaticsw.com/PADOverview.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp
http://www.DefectTracker.com
http://www.PragmaticSW.com/Remoteus.asp
http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.asp

steve.miller@PragmaticSW.com.

Pragmatic Software Co., Inc.
383 Inverness Parkway
Suite 280
Englewood, CO 80112

Phone: 303.768.7480
Fax: 303.768.7481
Web site:
http://www.PragmaticSW.com

E-mail: info@PragmaticSW.com

http://www.PragmaticSW.com

