

 www.xensight.com Page 1
© 2010 xensight. All rights reserved.

Publication Date: 19 July 2010

Automation Framework and Impact Traceability

By Randy Raymond

Recently, automation engineers at xensight were asked to design an automation
framework for use in automated testing of several enterprise applications while
simultaneously creating a configuration management plan that avoids regression
problems in the automation code itself. The goal was to reduce the maintenance
costs of the "write once, use many places" automation code base. The more
applications that used the automation framework the more important it became to
lock down the automation framework code so that changes made for one
enterprise application did not impact the automation suites for the other
enterprise applications.

Solution Architects at xensight came up with an interesting solution that also
turned out to be an extremely valuable tool for automation code configuration
management which dramatically improved maintainability. The inspiration for the
solution was taken from the physical product world, specifically automobile
manufacture and testing. We have all seen the TV commercials of automobiles
being crash tested or seen the documentaries where crash test dummies are
used in automobile crash testing. In vehicle crash testing both the vehicles and
the dummies are instrumented to measure the forces during a crash.

The solution was to instrument the framework code to measure where it was
being used, how often it was being used, and then produce dashboards to report
the results. Instrumenting the automation framework was remarkably easy while
delivering powerful decision making information.

Instrumentation was in the form of adding a function to framework and other
automation components that counted the times the component was used during
execution while documenting the application, test case, and business
requirement being tested.

To see how the instrumentation would work a picture of the automation
architecture needs to be shown. Figure 1 shows the automation architecture.

 www.xensight.com Page 2
© 2010 xensight. All rights reserved.

Figure 1. Automation architecture.

Base Reusable Framework (BRF)

The base reusable framework is automation code written to be used across
many different applications and is designed to speed development of automation
of all applications in the enterprise. This is "write once, use many places"
automation code that saves the bulk of time and money when creating new
automation. This code is an accelerator but needs to be very carefully managed
using tight configuration management policy since one change affects many
different places.

Application Specific Reusable Framework (ASRF)

The application specific reusable framework functions identical to the base
reusable framework except the ASRF code is directed at one application.
Something unique to the application under test requires customized code that
cannot be used globally yet can be reused many places when automating the
single application. This code makes use of the BRF.

 www.xensight.com Page 3
© 2010 xensight. All rights reserved.

Application Specific Code

The application specific code is automation code written to automate a specific
application. It is constructed with both ASRF and BRF along with any custom
code needed to automate the application.

Instrumentation

Instrumenting the automation is a straight forward job. The pseudo code shown
below provides a very good description how instrumentation was accomplished
in our case and can be accomplished in your automation situation.

' Global variables

Dim strApp as string 'Application being tested
Dim strTestCase as string 'Test case name or serial number

Function bfw_IsCheckBox_Selected(strObjCheck As String)As Integer
 Call bfw_Log_Script_Usage("bfw_IsCheckBox_Selected", strApp, strTestCase)
On Error GoTo ErrorTrap
 Dim strRetval As Integer
 Dim intRet As Integer
 bfw_IsCheckBox_Selected=0
 intRet=SQAGetProperty("Type=CheckBox;Name=" &
strObjCheck,"checked",strRetval)
 IF strRetval = -1 Then bfw_IsCheckBox_Selected=1
 Exit Function
ErrorTrap:
 Call fw_trapError("bfw_IsCheckBox_Selected" , Err, Erl)
End Function

The function bfw_IsCheckBox_Selected is a BRF function that inspects a
checkbox to determine if the checkbox is selected. The automation tool is
Rational Robot and this strategy will work for any of the market leading test
automation tools.

Each function and subroutine in the ASRF and the BRF calls the subroutine
bfw_Log_Script_Usage which records the name of the function or subroutine
being executed, the name of the application under test, and the test case that
was being executed. The resulting information logged during test suite
execution provides the following;

• Number of times a BRF component is used during execution of a specific
test case

• Number of times a BRF component is used during execution of all tests in
an application

• Number of times an ASRF component is used during execution of all tests
in an application

 www.xensight.com Page 4
© 2010 xensight. All rights reserved.

• Number of times an ASRF component is used during execution of a
specific test case

The log in a very simplified spreadsheet may appear as shown in figure 2.

Figure 2. Simplified log.

Traceability and Impact Analysis

Figure 2 is very simplified and yet it shows a very valuable picture of how to
reduce automation suite maintenance regression problems through traceability
and impact analysis.

Individual reusable framework modules have been traced to a specific test case
and a specific application. See figure 3.

Figure 3. Framework module traced to application.

 www.xensight.com Page 5
© 2010 xensight. All rights reserved.

If you are following best practices on requirements traceability to test cases you
can trace each framework automation module to an application requirement.
See figure 4.

Figure 4. Framework module traced to requirement.

This traceability arrangement means that if a requirement changes then
corresponding test case changes can be identified and ultimately automation
modules used in the automated testing can be identified.

Single Application Impact Analysis

The basic measures described in the Instrumentation section above can be used
for impact analysis with respect to configuration management of the automation
code. Disciplined configuration management of the automation code leads to
lowered maintenance costs.

For example, if a test case is changed, the change might necessitate a change in
automation code. If that change is in the application specific automation code
then the change is easy, you simply make the change. If that automation code
change is in the BRF or ASRF code a change in either of these two areas can
impact a large number of test cases that have been automated. The automation
engineers managing the code configuration can perform traceability research to
see what other test cases will be impacted with the needed automation code
change. The results of the traceability analysis will determine if the BRF or
ASRF code can be changed or if another code solution is warranted.

The big benefit is in maintainability and automation suite reliability. The
configuration management team can make informed decisions on where to make
changes. The regression problem of making a change in one place causing
something to break in other places is materially reduced since the configuration
management team is making informed decisions by knowing all test cases that
are impacted before changing any automation code. In our example, we are
avoiding making an automation code change to accommodate a modified test

 www.xensight.com Page 6
© 2010 xensight. All rights reserved.

case and having that automation code change break our automation in one or
more places elsewhere.

Multiple Application Impact Analysis

Configuration management of BRF is much more important since this automation
code is used to construct automated tests for more than one application.
Changes to the BRF automation code should not be made without thorough
understanding of the impact so as to not introduce maintenance problems in all
of the test automation for the several applications using the BRF. See figure 5.

Figure 5. BRF multi-application impact.

Downside to Instrumentation

The downside to the approach described in this paper is that the numbers start
getting very large as you execute your test suites over time. This will be
particularly evident in the base framework components that have been used to
construct many other pieces of your automation. Over a couple of years some
BRF components will have been used during execution millions of times.

A second, and probably the most important downside, is that the data source
where you choose to send your log data needs to always be available when you
run your scripts. Most of the time the data store will be a database of some kind.
Your automation suite will need connectivity to all enterprise applications under
test and the data store.

 www.xensight.com Page 7
© 2010 xensight. All rights reserved.

Lastly, since your instrumentation is constantly writing to a data store the
execution of the test scripts themselves will be slowed down. Execution time will
be expended incrementing a number instead of directing a test at the AUT.

Like all technical activities there will be tradeoffs. You will need to decide for
yourself if the management information and control over the automation
framework is worth accepting the downside complexities.

What We Have Omitted

We have omitted on the details of the logging function, bfw_Log_Script_Usage, in
our example above. The design of the logging function is entirely based on your
specific situation which could include;

• The automation testing tool is being used
• The logging data store - text file, spreadsheet, Access database on the

local machine, other database located on the network, etc.
• The form and location of your requirements trace matrix (RTM) that traces

application requirements to test cases
• How to relate the logging data store to the RTM
• How traceability is reported for one application like our simplified figure 2

and how traceability is reported across multiple applications

The design of this function, the data store, how it relates to the RTM, and how
traceability is reported becomes a critical success factor. You should spend a
significant amount of time planning this architecture then be perfect in your
implementation.

Conclusion

Retaining the promised value of creating a test automation framework involves
significant configuration management and change control discipline over the
framework itself. The more applications that are automated using the framework
the tighter this configuration management and change control discipline must
become in order to reduce regression defects - i.e. reduce maintenance costs - in
the automation code.

