
CROSSTALK The Journal of Defense Software Engineering 23February 1999

The use of FPs is becoming a
widely supported method to
create meaningful software met-

rics. In the past year, there has been a
proliferation of software industry confer-
ences with an increased emphasis on
software measurement and FP-based
metrics. Even tracks within traditionally
non-measurement conferences now
feature software measurement and FP
presentations (the American Society for
Quality’s International Conference on
Software Quality, the Quality Assurance
Institute’s International Quality Confer-
ence, the Software Technology Confer-
ence, and The MITRE Corporation’s
Software Engineering and Economics
Conference, to name a few).

Prominent systems consultants are
also increasingly vocal and supportive of
FP-based metrics. For example, Howard
Rubin based many of his workflow mea-
surements on FPs (see IT Metric Strate-
gies, December 1997), Capers Jones
frequently highlights FPs as a basis for
year 2000, productivity, and quality
metrics; and Ed Yourdon discussed FPs
in his presentation at the Applications of
Software Measurement Conference (At-
lanta, Ga., October 1997).

As president of the International
Function Point Users Group (IFPUG), I
appreciate the visibility generated for FPs
by leading software practitioners, but I
am disappointed that many profession-
als remain unfamiliar or misinformed
about what functional size can and can-
not do. There are even professionals who
believe that by implementing FPs they
can throw away all other software mea-
sures—they think FPs are the measure-
ment program, but they are not.

FPs provide one additional project
management tool, but they are not the
entire toolkit. This article outlines the
major components involved in FP count-

ing, including counting examples. It
ends with a look at the misconceptions
about what FPs can and cannot do.
(Other published articles such as
“Demystifying Function Points – Under-
standing the Terminology” are available
from the author.) This article also pro-
vides project managers with enough
knowledge about FPs and their usage to
make informed decisions about when
and how to implement functional sizing
on their projects.

What Are Function Points?
FPs measure the size of a software
project’s work output or work product
rather than measure internal features
such as lines of code (LOC). FPs evalu-
ate the size of the functional user require-
ments that are supported or delivered by
the software. In simplest terms, FPs
measure what the software must do from
an external, user perspective, irrespective
of how the software is constructed. Simi-
lar to the way that a building’s square
measurement reflects the floor plan size,
FPs reflect the size of the software’s func-
tional user requirements.

However, to know only the square
foot size of a building is insufficient to
manage a construction project. Obvi-
ously, the construction of a 20,000
square-foot airplane hangar will be dif-
ferent from a 20,000 square-foot office
building. In the same manner, to know
only the FP size of a system is insuffi-
cient to manage a system development
project: A 2,000 FP client-server finan-
cial project will be quite different from a
2,000 FP aircraft avionics project.

I will carry the construction analogy
one step further. To exclusively count the
LOC (which many military departments
do) is similar to counting the total num-
ber of construction pieces, e.g., 850,000
individual components that weigh

15,000 tons. This counting method is
more indicative of construction methods
than the functions (FPs) contained
within a building. FPs are similar to
summing up the square footage of func-
tional items on a floor plan, e.g., the
square footage of four sets of 10 x 15-
foot restrooms, nine 12 x 20-foot meet-
ing rooms, one 30 x 20-foot boiler room,
two 10 x 40-foot staircases. FPs, like
square feet, provide a normalized size,
based on summing up the component
functions that the resultant product must
provide.

Because—no matter how large or
how small—most software is developed
to address user requirements, it can be
measured in FPs. Some practitioners use
the analogy of a “black box” to describe
how FPs measure software independent
of the inner workings of the software.

The process to calculate FPs is main-
tained by IFPUG and documented in its
Function Point Counting Practices
Manual (currently in release 4.0). Unlike
LOC, FPs are independent of the physi-
cal implementation and languages used
to develop the software, and they remain
consistent no matter what development
language or technique is used.

The fit between FPs and software
development can be described analo-
gously with square feet and construction
(Table 1).

Why Use Function Points?
FPs provide an objective project size for
use in estimating equations (together
with other factors) or to normalize pro-
ductivity or quality ratios. The value in
using FPs lies in the ratios and normal-
ized comparisons between ratios. Process
improvements can be found when nor-
malized ratios are compared and their
underlying project attributes evaluated.

Managing (the Size of) Your Projects
A Project Management Look at Function Points

Carol A. Dekkers
Quality Plus Technologies, Inc.

This article is an introduction, as well as a refresher, to readers who need to update their knowledge about
function points (FPs). It includes many of the concepts presented in my presentation, “Requirements Are
(the Size of) the Problem,” at the 1998 Software Technology Conference in Salt Lake City, Utah.

In the Classroom

24 CROSSTALK The Journal of Defense Software Engineering February 1999

In the Classroom

FPs provide a standard, normalized
measure of the work product or func-
tional size of software. Together with
other measures, FP-based software met-
rics highlight process improvement op-
portunities and can increase estimating
and prediction accuracy.

The Key to Counting Function
Points: “Think Logical”
A fundamental feature of FP counting is
that everything is counted from a logical
user perspective, based on functional user
requirements.1 This is a paradigm shift
for developers who are excellent at pro-
gramming and physical configuration
management. It does not matter to the
functional size (FPs) whether it takes one
thousand lines of COBOL code and
eight subroutine calls or 100 lines of
C++ code to perform a given business
function; the FP count remains the same
because the user function is the same.

Because excellent developers are akin
to excellent plumbers involved in home
construction, it takes a change in their
mind-set to remove themselves from the
physical implementation and look only
at the floor plan. At this point, perhaps
I have lost some developers who may
think, “But the plumbing is important
to keeping the house functioning. If we
do not count other aspects of the soft-
ware like the development language, we
cannot accurately predict how long it
will take to build.” This assertion is
absolutely correct, but functional size
(FPs) is not the same as work effort.
Here is the relationship:

Size (in FPs): An independent mea-
sure of the software’s logical size. (Like
the total room count and square foot-
age of the finished building, which are
constant regardless of construction
methods.)

Work effort (in hours): A dependent
measure of how long the software will
take to develop, equal to a function of
size, language, platform, skills, methods,
team size, risks, and many other variables.

Productivity (in hours per FP): A
dependent result, dependent on all the
same factors as work effort. Note that an
independent variable (FP) divided by a
dependent variable (hours) yields a depen-
dent result.

This means that just as the quality of
the raw materials, piping configuration,
and house layout affects the work effort it
will take to plumb a house, so, too, will
the language and other attributes affect
software development time. However,
regardless of how the house is designed
and constructed, the functional size of
the house stays the same. With software,
the software size (in FPs) is independent
of the language, skills, physical configu-
ration, and other factors used in the
development. When you use FPs, you
are talking only about the software size.

What Gets Counted in Function
Point Counting?
To count FPs, evaluate the following five
logical components of the software based
on the user requirements (Figure 1):2

• Internal logical files (ILFs) – Logi-
cal, persistent entities maintained by
the software application.

• External interface files (EIFs) –
Logical, persistent entities referenced
only by this software application but
which are maintained by another
software application.

• External inputs (EIs) – Logical,
elementary business processes that
cross into the application boundary
to maintain the data on an ILF or to
ensure compliance with user business
requirements, e.g., control data.

• External outputs (EOs) – Logical,
elementary business processes that
result in data leaving the application
boundary to meet a user requirement,
e.g., reports, data files, tapes, and
screen alerts.

• External queries (EQs) – Logical,
elementary business processes that
consist of a data “trigger” followed by
a retrieval of data that leaves the
application boundary.
The five types of logical components

counted are not the same as physical
components. Discussion of ILFs, for
example, does not refer to the physical
files or data sets. ILF refers to the logical,
persistent entities maintained through a
standardized function of the software—
they are the stand-alone, logical entities
that typically would appear on an entity
relationship diagram. For example, in a
human resources application, an associ-
ate or employee entity would be main-
tained. This entity would be counted as
an ILF.

Another illustration of counting
logical components is when referring to
EIs, which are the logical, elementary
business processes that maintain the data
on an ILF or that control processing.

Figure 1. IFPUG function point components in
relation to the application.

Table 1. Function points as a construction analogy.

cirteM noitcurtsnoC
fostinU
erusaeM

tIsInehW
ottnatropmI

?erusaeM

fostinUTI
erusaeM

tIsInehW
ottnatropmI

?erusaeM

tcejorPdetamitsE
eziS

.teeferauqS .egatssnalproolfgniruD .PF rostnemeriuqergniruD
.egatstcartnoc

llarevO,tsoCtinU
tsoC

erauqsreptsoC
.tsoclatot,toof

noitcurtsnocgniruD
.noitaitogentcartnoc

,PFreptsoC
.tsoc

ogonroogerofeB
.noisicedtnempoleved

kroWdetamitsE
troffE

.shtnom-naM ronoitcurtsnoctuohguorhT
.sruccoegnahcrevenehw

-namrosruoH
.shtnom

rotnempolevedtuohguorhT
.sruccoegnahcrevenehw

egnahCfoeziS
sredrO

tsoc,teeferauqS
.)tcapmi(

siegnahcrevenehW
.deifitnedi

ro,tsoc,PF
.)tcapmi(sruoh

siegnahcrevenehW
.deifitnedi

CROSSTALK The Journal of Defense Software Engineering 25February 1999

The logical business process of adding an
associate would be one user function;
therefore, in function point counting,
you would count one EI. The size in FPs
for this one EI would be the same re-
gardless of how we physically imple-
mented it because in every implementa-
tion, it performs one logical user
function. For example, the count for

“add associate” is the same regardless of
the number of screens, keystrokes, batch
programs or pop-up data windows
needed to complete the process.

What Is Involved in Function
Point Counting?
The basic steps3 involved in function
point counting include
• Determine type of count, e.g., new

development project, application or
base count, or enhancement project
count.

• Identify the application boundary,
i.e., what functions must the software
perform? This creates a context dia-
gram for the application or project.

• Count the data function types.
• ILFs – logical data groups main-

tained within the application
boundary.

• EIFs – used only for reference by
the application.

• Count the transactional function
types.

• EIs – data entry processes and
controlled inputs.

• EOs – e.g., reports.
• EQs – e.g., question-and-answer

pair that results in data retrieval.
• Evaluate the complexity of each of

the five function types identified
above. IFPUG provides several
simple matrices to determine whether
a function is low, average, or high,
based on data element types (user
recognizable, non-recursive data
fields), record element types (subsets
of user-recognizable data), and file
types referenced (number of logical
data groupings required to complete
a process). Table 2 summarizes the
number of FPs assigned to each func-
tion type. Following the IFPUG
guidelines, count and rate all the
identified functions and add the FPs
together. The resulting number is the
unadjusted FP count.

• Determine the value adjustment
factor (VAF), which reflects the user
problem complexity for the devel-
oped software. The VAF is calculated
via an equation (VAF = 0.65 + (sum
of GSCs x .01) and the evaluation of
the following 14 general system
characteristics (GSCs). Specific
evaluation guidelines for the follow-
ing GSCs are provided in the IFPUG
Function Point Counting Practices
Manual.

• Data Communication.
• Distributed Data Processing.
• Performance.
• Heavily Used Configuration.
• Transaction Rate.
• On-Line Data Entry.
• End-User Efficiency.
• On-Line Update.
• Complex Processing.
• Reusability.
• Installation Ease.
• Operational Ease.
• Multiple Sites.
• Facilitate Change.

• Calculate the final adjusted FP count
(adjusted function count = unad-
justed FP count x VAF).

Table 2. Unadjusted FP values by component.

Without getting into IFPUG Function Point Count-
ing Practices Manual specifics of how to rate
components as low, average, or high complexity,
the following illustrates how to arrive at the
unadjusted FP count for an application or develop-
ment project. Following are the functional user
requirements.

• Create an application to store and maintain
employee records consisting of the following
data fields: name, number, rank, street
address, city, state, ZIP code, date of birth,
telephone number, office assigned, and date
the employee data was last modified.

• The application must provide a means to add
new employees, update employee informa-
tion, terminate employees, and merge two
employee records.

• The application must provide a weekly report
on paper that lists which employees’ informa-
tion has changed during the past week.

• The application must provide a means to
browse employee data.

• No data outside the application is referenced,
and all data validation edits are done using
hard coded (not modifiable) data.

The FP components to be counted based on the
above include

• One IOne IOne IOne IOne ILLLLLF F F F F for the employee data because it is
a persistent logical entity maintained by the
application. Based on an evaluation of the
data elements and logical record types

(contained in the counting practices manual),
this ILF would be categorized low and be
worth seven FPs.

• FFFFFour Eour Eour Eour Eour EI processes: I processes: I processes: I processes: I processes: One EI each for add
employee, update employee, terminate
employee, and merge employee records.
Assuming each one is of low complexity
(each requires only one logical entity and
requires fewer than 16 data elements), each
EI would be worth three FPs for a total of
12 FPs.

• One EOne EOne EOne EOne EO process:O process:O process:O process:O process: The weekly report would
be categorized as an external output and
typically would consist of fewer than 20 data
elements and require only the employee
logical file. Based on the counting rules, this
external output would be classified low and
be worth four FPs.

• One EOne EOne EOne EOne EQ process.Q process.Q process.Q process.Q process. The process to browse the
employee data would be classified as an EQ.
Based on the number of data elements (fewer
than 20) and the number of logical files
accessed (the employee ILF), this EQ would
be classified low and be worth three FPs.
Total components from the above four points:

26 unadjusted FPs. The final step would be to
determine the value adjustment factor based on
the user business constraints evaluated per the
Function Point Counting Practices Manual. Guide-
lines are provided in the manual to help FP practi-
tioners properly evaluate the adjustment factor.

Making Adjusted FP Counts

noitcnuF
epyT

woL egarevA hgiH

IE 3x 4x 6x

OE 4x 5x 7x

QE 3x 4x 6x

FLI 7x 01x 51x

FIE 5x 7x 01x

Managing (the Size of) Your Projects: A Project Management Look at Function Points

26 CROSSTALK The Journal of Defense Software Engineering February 1999

The Logical Boundary
One of the first steps of counting FPs is
to identify the logical boundary around a
software application. This “boundary”
separates the software from the user
domain. (Users can be people, things,
other software applications, departments,
other organizations, etc.) As such, the
software may span several platforms and
include both batch and on-line processes.
The boundary is not drawn around the
software in terms of how the system is
implemented but rather in terms of how
an experienced user would view the
software. This means that a single appli-
cation boundary can encompass several
hardware platforms, e.g., both main-
frame and PC hardware used to provide
an accounts receivable application would
be included within the application
boundary.

Where Do Function Points Fit In?
Once the adjusted FP count for a project
or application has been created, it be-
comes the size of the work product. Just
as the total functional size of a house
does not equal the speed at which a
house can be built or its construction
time, the FP size does not equal produc-
tivity or work effort. FPs measure the size
of what the software does, rather than
how it is developed and implemented.
This means that given a common set of
logical user requirements, the FP size of
the software will be the same whether it
is developed using COBOL or DB2 or

and is a project editor
within the ISO func-
tional size measurement
workgroup (ISO/IEC/
JTC1/SC7 WG12). She
is a frequent presenter
and trainer at both U.S.

and international quality and measure-
ment conferences and is credentialed as a
certified management consultant, a certi-
fied function point specialist, a profes-
sional engineer (Canada), and an Infor-
mation Systems professional.

Quality Plus Technologies, Inc.
8430 Egret Lane
Seminole, FL 33776
Voice: 727-393-6048
Fax: 727-393-8732
E-mail: dekkers@qualityplustech.com
Internet: http://www.qualityplustech.com

Notes
1. If you do not have “functional user

requirements,” does that mean you
cannot count FPs? There are always
requirements, although they may not be
fully articulated by users or documented
in a clear and complete fashion. In the
early stages of software development,
you may have to estimate the require-
ments or make assumptions about the
user requirements and subsequently
base your count on those assumptions.
(See “Requirements Are [the Size of]
the Problem,” ITMetric Strategies,
March 1998, which further explores the
topic.)

2. The components listed are taken from
the IFPUG Function Point Counting
Practices Manual, Version 4.0, February
1994. The explanatory text in italics
below each component is my wording
to describe each component. For fur-
ther information or to obtain the
manual, contact the IFPUG adminis-
trative office in Westerville, Ohio at
614-895-7130 or visit the Web site at
http://www.ifpug.org.

3. These steps condense the full details of
function point counting included in the
Function Point Counting Practices
Manual, Version 4.0. Additionally, there
are full case studies of FP counts, done
at differing phases of application devel-
opment, that can also be ordered
through the IFPUG office.

Types of Function Point Counts
The full details of FP counting procedure is contained in the IFPUG Function Point Counting Practices
Manual, Version 4.0. There are two major types of FP counts:

••••• Application or base FApplication or base FApplication or base FApplication or base FApplication or base FP countP countP countP countP count: This count is the size of an installed base application. (Think of it in
terms of total square feet of an existing house). The base size in FP is a point-in-time snapshot of
the current size of an application. This number is useful whenever comparisons are required between
different applications, e.g., defects divided by base FPs.

••••• PPPPProject or enhancement Froject or enhancement Froject or enhancement Froject or enhancement Froject or enhancement FP count: P count: P count: P count: P count: This count reflects the size of the functional “area touched” by
an enhancement project. An enhancement project count is the result of summing the new functions
added in the project plus the functions removed from the application by a project plus the functions
changed by the project. (Think of this count in terms of a renovation project where the square foot of
the project equals the sum of the area of a new living room, a removed bathroom, and a remodeled
kitchen). This count is useful in project-based metrics, e.g., relative cost in dollars divided by devel-
opment FP.

As the project is finished, the application or base FP count must be updated by the net, i.e., new minus
removed plus the net difference in the changed functions.

using rapid application development or
structured development methods.

Where Can I Learn More About
Function Points?
If you are going to get serious about
software measurement or FPs or just
want further information on how to get
started with a measurement program,
contact IFPUG or me. Incorporated in
1986, IFPUG is a not-for-profit users’
group that has become a leader in estab-
lishing and publishing function point-
related documents, including the Func-
tion Point Counting Practices Manual, the
Guidelines to Software Measurement (cur-
rently in release 1.1), Function Points as
Assets guide, and several detailed FP case
studies. IFPUG remains a volunteer
organization (with a small, paid adminis-
trative staff), is active in International
Organization for Standardization (ISO)
standards, sponsors conferences and
workshops, and certifies FP training,
counters (certified function point spe-
cialists), and FP software. Currently, paid
membership represents over 30 countries
worldwide. ◆

About the Author
Carol A. Dekkers is president of Quality
Plus Technologies, Inc., a management
consulting firm specializing in training
and consulting in function points, soft-
ware metrics, requirements, and estima-
tion process improvement. She is presi-
dent of the IFPUG board of directors

In the Classroom

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

