
Tests Configurations Management in Automation Testing
The writer is an independent consultant for automation testing in the fields of networking and J2EE
applications. Guy_Arieli@hotmail.com. Tel: +972-54-7899446.

Abstract
The dynamics in the QA organization is not doing
well to the automation project. The changing pressure
on this organization doesn’t enable the luxury of
resources dedicated to automation. The bottom line is
most of the automation projects are not going through
the needed requirements analysis and design phases.
It increase tendency to jump into the writing of the
tests and having “quick results”.
So it end up in situation were every test has its own
configuration. Thousand tests with thousand
configurations.
In this article I will present a mechanism that enables
common configurations between tests.

Problems of usual situation
So what is the problem with the current status?

• It creates restrictions for tests execution order.
Tests can’t be executed independently and
need other test to be executed before they do.

• When one test fails it can affect the other
tests. It doesn’t enable a reasonable recovery
mechanism. So usually when one of the tests
in the tests chain fails other tests will follow.

• You have more code and more code
repetitions.

• You get longer tests execution time.
The severity of the problems grows when the project
main target are system functional tests (and not unit
or integration tests).

Configuration models
The 2 common options for configurations
managements are:
Creating a bank of configurations and hierarchy of
configurations.

Bank of configurations
In figure 1 the big bullets represents configurations.
There is the root configuration. In this case there are
3 configuration linked to the root configuration C1,
C2 and C3. The small bullets are tests. T1, T2 and T3
are bind to C1 configuration T4 is bind to C2
configuration and so on.

Figure 1

The root configuration is usually a minimal
configuration that is easy to obtain.
Every configuration (C1, C2 and C3) define 2
processes. The first is moving from the root to the
configuration and the second is moving from the
configuration to the root.
I will call them setup and teardown (JUnit
conventions).
Every test is bind to a configuration. The bind
mechanism could vary.
The framework should be aware of the system
current configuration status. Let’s say we are in the
root and we would like to execute T1 T2 and T5.
First of all C1 setup will be executed, then T1 follow
by T2. Then C1 teardown follows by C3 setup and
T5.
It’s important to understand that the movement
between configurations should be done automatically
by the automation framework.
Test as a guideline should not change the
product/system configuration.
You can consider add additional process to the
configuration that will be executed on test fail. The
teardown-fail will be run every time a test under the
specific configuration fails.
It will include severe actions (that usually consume
more time).

mailto:Guy_Arieli@hotmail.com

For example if I would like to run T1 and T2. If T1
failed, C1 teardown-fail will be executed then C1
setup and then T2.

Hierarchy of configurations
In the hierarchy configurations model you create a
tree of configurations (figure 2). As in Bank of
Configurations, every configuration as the setup and
teardown processes.
For example (look at the second diagram) the system
is in the root and I would like to run T1 and T2. I will
execute C1 setup run T1 then C2 setup and finally
run T2.

Figure 2

I recommend using hierarchy of configurations in 2
cases:

• When the configuration time is very long and
time is a critical factor. By using a
configuration tree the movement time
between configurations will be shorter.

• When the number of configurations is very
big and configuration tree will help you
manage them.

Methods Benefits
I used the 2 models with great success in a few
projects. I found the following benefits:

• It reduces the tests code in the project
dramatically.

• It simplifies the writing of unit testing when
the tests should run in the system
environment.

• When one test fails it doesn’t likely to cause
other tests to fail.

• It shortens the over all tests set (suite)
execution time.

• It’s an excellent tool to support manual
testing. In complicated systems the efforts
invested in setting the condition for the tests
usually greater then the testing itself. Such a
tool can save a loot of time and efforts.

Implementation suggestion
Personally I’m in favor of JUnit. JUnit is excellent
framework for unit testing and with few simple
extensions it becomes excellent for integration and
system testing as well. Tests configurations
management is one of those extensions.
You should be aware that hierarchy of configurations
contains the bank configuration model. So if you
work on many projects it will be wise to implement
the hierarchy of configuration and use it to the bank
of configuration as well.
I define new interface with setup and teardown
methods. Every instance of this interface will
represent a configuration. I use the package
mechanism of java as the base of the tree.
If I would like to implement the Bank model I just
define one of the hierarchies in the package to be
configuration hierarchy.
In order to make it a tool you should add a graphical
view that will present the configuration tree. It should
show the current state and enable the movement
between configurations.

	Abstract
	Problems of usual situation
	Configuration models
	Bank of configurations
	Hierarchy of configurations

	Methods Benefits
	Implementation suggestion

		2004-07-15T10:34:37+0200
	Guy Arieli
	I am the author of this document

