
Best Practices for Software Projects - Software Measurements

October 2004 - Pragmatic Software Newsletters

Most software projects fail to deliver on-time and on-budget. To reduce the risk of failure, project
managers should implement measurements, allowing them to more accurately estimate projects and
to enhance the quality of releases.

The key to efficient measurement is to first determine what goals you are trying to accomplish and
what problems you are attacking. Many organizations waste time and money by measuring more
things than are necessary. Before beginning a measurement strategy, determine the goals for your
measurement. Here are some common reasons for not delivering on-time and on-budget:

Software coding efforts are not properly estimated
Testing efforts are not properly estimated
Software quality is poor, therefore the testing duration is longer than need be
Customer changes impact the software project, thereby extending the project dates

Attacking the Common Problems

Software Coding Efforts are Not Properly Estimated

This problem normally arises due to these issues:

Customer Requirements - To properly estimate coding effort, you must create solid customer
requirements. The requirements must contain adequate detail to allow the programmers to
create detailed designs. From a measurement perspective, you should track the amount of
time it takes to develop each customer requirement. Track both estimated and actual hours so
that you can use this information to improve future estimates.
Detailed Designs - It is impossible to estimate coding effort without creating a detailed design.
The detailed design allows the developer to think through all the tasks that must be done to
deliver each requirement. From a measurement perspective, you should track the amount of
time it takes to develop each detailed design. Track both estimated and actual hours so that
you can use this information to improve future estimates.

Testing Efforts are Not Properly Estimated

This problem normally arises due to these issues:

Test Plans - Once the customer requirement and detailed design is created and estimated, the
test leader should create a detailed test plan that estimates the testing effort. This is done by
thinking through the test cases that will be created based on the requirement and design. From
a measurement perspective, you should track the amount of time it takes to develop each test
plan. Track both estimated and actual hours so that you can use this information to improve
future estimates.

Software Quality is Poor

This problem normally arises due to these issues:

No Code Reviews - If regular code reviews are not done, there is a much higher chance of
delivering software with poor quality. For large projects, these problems are compounded over
time, so it is best to do code reviews early and often (at least weekly). From a measurement
perspective, you should track the amount of rework time required due to failed code reviews.
This can aid you in planning for rework on future projects.
Failed Smoke Tests - By running weekly smoke tests, you can shorten the testing phase as
issues are caught early in the coding and testing cycle. From a measurement perspective, track

Page 1 of 3Best Practices for Software Projects - Software Measurements

10/4/2004file://C:\inetpub\wwwroot\Newsletters\newsletter_2004_10_SP_NoAd.htm

file://C:inetpubwwwrootNewsletters
ewsletter_2004_10_SP_NoAd.htm

Project Management Guidelines - http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

User Acceptance Test Release Report - http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

All Templates - http://www.PragmaticSW.com/Templates.htm

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

the number of test cases passed and failed during smoke tests, week by week. The goal is to
reduce the number of failed test cases as the project progresses.
Defect Tracking - As testing commences, track the number of open defects vs. total defects to
help predict project release dates. Track the number of defects found during code reviews vs.
test case execution. This will help track and improve estimation accuracy. Track the
percentage of total defects before product release, as this will help assess product quality.

Customer Changes Impact the Software Project

This problem normally arises due to these issues:

Missing Change Control Processes - As a project progresses, clients sometimes ask for features
to be changed or for features to be added or removed. Before making any changes to the
project, each request should be thoroughly investigated and a risk assessment should be done
for each request. If changes are necessary and agreed upon by the client, project timelines are
adjusted. From a measurement perspective, track the number of change requests, how many
were approved vs. rejected, and the effort for estimating reviewing and assessing each change
request. This information can be used in future projects to predict the number number of
change requests that are approved and estimated as to build time into your projects to mitigate
that risk.

Using Online Tools

The project software life cycle can be greatly improved by managing all phases of the software life
cycle online. A web-based tool can sometimes be easiest to use, as it requires no client configuration.
There are many solutions to choose from, consider Defect Tracker or Software Planner, depending on your
needs. What ever tool you select should have the ability to collect metrics (like number of defects
over time, etc.) without much extra effort on your part. Both of the products mentioned have this
capability:
 http://www.pragmaticsw.com/GuidedTours/Default.asp?FileName=Reports

The tool you select should also allow you to create your own custom lists of information. This is
especially important as to allow you to create your own screens to track measurements for each area of
the system you wish to track measurements for. Defect Tracker and Software Planner both have a List
Manager feature that allows you to create custom screens to track anything you like. You can use that
to track your measurements:
 http://www.pragmaticsw.com/GuidedTours/Default.asp?FileName=ListManager

Conclusion - Helpful Templates

As you can see, implementing measurements can greatly improve your software quality and can
prepare your team for delivering on-time and on-budget. Below are some helpful templates to aid you
in developing software solutions on-time and on-budget:

Page 2 of 3Best Practices for Software Projects - Software Measurements

10/4/2004file://C:\inetpub\wwwroot\Newsletters\newsletter_2004_10_SP_NoAd.htm

http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.pragmaticsw.com/GuidedTours/Default.asp?FileName=Reports
http://www.pragmaticsw.com/GuidedTours/Default.asp?FileName=ListManager
file://C:inetpubwwwrootNewsletters
ewsletter_2004_10_SP_NoAd.htm

Software Planner - http://www.SoftwarePlanner.com

Defect Tracker - http://www.DefectTracker.com

EggPlant (Automated testing by Redstone Software) - http://www.redstonesoftware.com

Remoteus (Remote Desktop Sharing) - http://www.PragmaticSW.com/Remoteus.asp

About the Author
Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com). With over 20 years
of experience, Steve has extensive knowledge in project management, software architecture and test
design. Steve publishes a monthly newsletter for companies that design and develop software. You can
read other newsletters at http://www.PragmaticSW.com/Newsletters.htm. Steve's email is
steve.miller@PragmaticSW.com.

Pragmatic Software Co., Inc.
1745 Shea Center Drive
Suite 400
Highlands Ranch, CO 80129

Phone: 720.344.4846
Fax: 720.344.4847
Web site: http://www.PragmaticSW.com

E-mail: info@PragmaticSW.com

Page 3 of 3Best Practices for Software Projects - Software Measurements

10/4/2004file://C:\inetpub\wwwroot\Newsletters\newsletter_2004_10_SP_NoAd.htm

http://www.SoftwarePlanner.com
http://www.DefectTracker.com
http://www.redstonesoftware.com
http://www.PragmaticSW.com/Remoteus.asp
http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.htm
http://www.PragmaticSW.com
file://C:inetpubwwwrootNewsletters
ewsletter_2004_10_SP_NoAd.htm

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

