

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
1 of 16

UML based Model-Driven Development for C

 By I-Logix

Abstract
The Unified Modeling Language (UML) and Model-Driven Development (MDD) are
rapidly becoming very hot topics and many companies are realizing the advantages
made available by these technologies of better, standardized communication (UML) and
the ability to reduce development time while producing higher quality designs by finding
errors earlier in the process. The Object Oriented (OO) and C++ embedded community
have rapidly adopted these technologies, but the spread into the C developer
community has not been as fast. Up to now, the two main reasons that C Developers
are reluctant to adopt UML were the unfamiliarity with OO constructs and the lack of
ability to efficiently reuse legacy code. These challenges are being overcome through
the introduction of natural C concepts such as files, functions and variables into the
modeling language that enable the developer to think and work with the concepts that
they are used to. Producing code structures the way C Developers always have makes
it more intuitive and lowers the risk of change. In addition, developers can now
integrate their existing code with the model by visualizing the external library or legacy
code as part of a UML diagram without changing it, allowing them the advantages of
graphical modeling while maintaining the full integrity of their legacy code. By being
able to model using the same concepts they do today while being able to leverage the
benefits of reusing code they have already written enables embedded C developers to
gain the benefits of faster time to market and higher quality products that UML based
MDD provides.

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
2 of 16

Table of Contents

UML based Model-Driven Development for C .. 1

Abstract ... 1
Table of Contents.. 2
Introduction... 3
Functional Development Within UML... 4
Reusing Legacy Code within a UML based MDD Environment ... 6
Validating the Design using the Model .. 7
Generating Code from the Model ... 8
Ensuring that the Model and the Code are always in Sync... 8
Conclusion .. 8
Q & A.. 9

Can UML based MDD help when developing code for 8 & 16 bit microcontrollers?........... 9
What about connecting to a Real-Time Operating System? ... 9
What if we do not use a Real-Time Operating System?.. 9
Can I generate documentation from the model?... 10
In UML, variables can be public or private, how can we achieve that in C? 10
What about initializing these variables?... 10
How can we write our reset function? .. 10
What about handling interactions (relations) between Files?.. 10
How can one File call another File’s function? ... 11
How could we add behavior to a File? ... 11
How can we generate code when a File has a statechart?... 12
What about events, how can they be handled? ... 13
What about Activity diagrams?... 14

Bring UML based MDD to life for the C Developer.. 15
Rhapsody in C/C++ .. 15
About I-Logix ... 15

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
3 of 16

Introduction
The UML is a standard designed and maintained by the Object Management Group
(OMG) that allows software developers and systems engineers to graphically represent
the requirements, specifications, structure and behavior of the systems they are
designing. MDD technology extends UML allowing the achievement of unparalleled
gains in productivity over traditional document driven approaches by enabling you to
specify your systems and software design graphically, execute, to simulate and validate
the system as you build it, and ultimately generate full production code from the model
for the target system resulting in shorted development periods and higher quality
designs. The Object Oriented (OO) and C++ embedded community have rapidly
adopted these technologies, now, by adding concepts natural for the C developer and
easily allowing for reuse of third party and legacy code, UML based MDD is ready to
bring the same benefits to the C community.

One of the main reasons that C developers have not adopted UML is because they are
used to function-based programming, and UML has always been designed for OO
programming. This challenge is being overcome through the introduction of natural C
concepts such as files, functions and variables into the modeling language. By allowing
developers to program functionally by placing the files as well as functions and variables
on diagrams in UML, C developers now have the ability to use the concepts they’re
used to while representing them in a UML diagram allowing C developers to design and
think the way they normally do. This provides the advantages of graphical modeling
without the need for changing to OO or C++. Furthermore, it also enables C developers
to adopt UML based MDD with a much shorter ramp up time than switching to an OO
approach or another target language.

It is not enough to only develop in a natural manner but the code produced from the
model must be structured and have the same look and feel as typical hand code would.
In addition there may be times when the code must be written or modified by hand in
order to facilitate debugging, ensure proper interaction with the hardware or to achieve
maximum performance. Thus, for C developers to extract the maximum benefit from
MDD, they must be able to program and edit at either the code or model level while
ensuring that the model and the code always remain in sync. By providing model/code
synchronization and producing structured code further lowers risk by allowing UML and
MDD to fit into your existing processes and environments. No need to change your
current coding standards, compiler, debugger or target hardware.

Another element of existing environments is legacy code. Legacy code can be used “as
is” or incorporated into the model to be further developed using MDD. When the desire
is to keep legacy code “as is” without any edits or modifications, code visualization can
link to and display the code in diagrams as a part of the model while leaving the code
untouched. If the desire is to use code as a starting point with modifications and
enhancements, simply reverse engineer the code into the model and edit at both the
model and code level to receive the full benefits of MDD. These same methods are

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
4 of 16

also used to effectively incorporate code from external libraries or another tool into your
model.

Note in the diagram referenced above that Connection and CallControl have been
modeled (created) directly within the MDD environment while bluetooth is legacy code
that has been visualized (included) in the model. Also, the variable connection and the
function addConnection have both been created within the file connection and the
functions Disconnect, ConnectConfirm and PlaceCallReq have been created within the
file CallControl.

Functional Development Within UML

Developers can program functionally with UML diagrams by using a UML element
called a file, which is simply a graphical representation of a source file. This file is
capable of containing all the elements that C developers are used to dealing with
including variables, functions, types, etc. The file is added to the diagram and is used to
partition the design into elements much in the same way a class is used to partition a
program in Object Oriented programming.

The code generated from the model appears very similar to the structural coding styles
C programmers are familiar with. Rhapsody just represents .c and .h files that have the
same name and couples them together as one element on a diagram called a file. If you
do not use the .c and .h file coupling in your code, then we can represent just a .c or .h

External

Figure 1: A structure diagram that contains three files, the variables defined in each file and the
functions they contain. In other words it is a graphical view of the C code.

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
5 of 16

file individually on the diagram. This means that developers do not need to learn how to
do OO design, but can just bring the concepts that they have always used into the next
level of abstraction, the model. In essence using the concepts of files, variables and
functions in the model enables C developers to graphically describe their program and
generate WYSIWYG code from the graphics. In addition the C developer can now
simulate the design at the graphical level on the host PC before going to the target to
ensure the behavior and functionality are correct.

Let’s take the example of a Timer File; this File could have the responsibility to keep
track of time. It could have variables such as minutes and seconds, and perhaps
functions such as reset and tick. The reset function could initialize the variables to zero,
and the tick function could increment the time by one second. In the UML we can
create a simple Structure Diagram such as the following that shows a single File called
Timer that has variables minutes and seconds of type integer, as well as public
functions tick() and reset().

+mins : int
+secs : int

-tick():void
-Reset():void

Timer
<File>

The C code for this file would look just like you would expect a typical C program to look
like:

extern int mins;
extern int secs;

/*## operation Reset() */
void Reset();

/*## operation tick() */
void tick();

This code looks the same as what a C programmer might write, except it was generated
from adding these elements into the diagram above.

Figure 2: Structure Diagram

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
6 of 16

Functions in one file can of course, communicate with functions contained in another file
and they can also contain behavior defined by either a Statechart or an Activity
Diagram. In addition, files and objects can both be used in the same model and files
can be converted to objects. This enables developers who wish to migrate to an OO
approach to do it at their own pace and doesn’t force an all or nothing switch.

Reusing Legacy Code within a UML based MDD
Environment

Most projects today have legacy code and we’ll show how, with a powerful MDD tool, to
easily reuse that code and receive the full benefits of MDD. One way to reuse your
legacy code is to allow your MDD tool to represent your legacy code as diagrams
through a unique process called code visualization. These diagrams are only
representations of the code and all edits to these dynamically generated models take
place on the code level only. The ability to generate these visualized diagrams allows
legacy code to seamlessly integrate with a model-driven development environment
while protecting the code’s integrity. This method of using known good code without
modifying it reduces the risk of having a bug and avoids wasted development and test
time because no new code needs to be created or unit tested. The process simply
creates a wrapper that acts as an interface or a façade to the legacy code, it can then
be shown on diagrams and the legacy code can be linked in as a library. Here is an
example of a model that has been visualized utilizing legacy Bluetooth code.

Figure 3: Generated code knows about external code automatically in Rhapsody.

TranslatesTranslatesTranslatesTranslates

A
m
le
g
m
d
b
te
it
s
w
M

If
to
y
re
d
m

V
In
T
b
in
I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
7 of 16

nother way to reuse legacy IP is to simply reverse engineer the code right in to a
odel. Once part of the model, it is easy to modify, enhance, and further define the
gacy system, and to gain all the benefits MDD including full production code
eneration, simulation to ensure errors are found and corrected early in the process and
odel-code associativity to enable changes to be made to the model or to the code
irectly while insuring the model and the code stay synchronized. The legacy IP
ecomes part of the modeled application and will be generated, updated refined, and
sted within the MDD environment. This can be done all at once or piece-wise in an

erative reverse engineering of the system. Incremental testing of the new pieces of the
ystem through model execution fosters a better understanding of how the legacy will fit
ithin the modeled application and how your system performs as you incorporate it into
DD.

 you have some legacy code that you wish to keep as is and some that you would like
 modify within your MDD environment. This is easily achieved, simply select the code

ou wish to keep as is to be visualized and select the code you wish to modify to be
verse engineered. You can also start off by visualizing the code as is and then if you

ecide you need to make changes you can then reverse engineer the code into the
odel.

alidating the Design using the Model
 a typical design, it is never clear that the model is correct until it has been executed.
echnology is available today to allow graphical back animation or simulation, which
asically means that code can be generated automatically from the model and
strumented so that, when executed, the model is animated. This means that the very

Figure 4: Visualization of all code artifacts in Rhapsody

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
8 of 16

same diagrams used to describe the model can be used to validate the model. For
example, the developer is able to see the value of the variables, see what each relation
is set to, see what state each file is in, trace the functions calls between files on a
sequence diagram, even step through an activity diagram. This animation can be done
at any time during a project and allows the programmer to spend more time being highly
productive doing design (the intellectual property) than spending time doing the tedious
bookkeeping portions of coding. By being able to test and debug you design at both the
model and code levels problems are detected early on and corrected when they are
cheaper and easier to fix.

Generating Code from the Model

C code can be generated directly from the model; all the code that we have seen so far
for the Timer File can be generated automatically. In fact for most models, between 65
and 90% of the code can be generated automatically. The remaining 10 to 35% is code
that the programmer writes such as the bodies for the tick and reset functions. Code
can be generated automatically for the dependencies, the association, files, functions,
variables, Statecharts and Activity Diagrams, etc. The programmer just needs to specify
the functions and actions on the statecharts.

Ensuring that the Model and the Code are always in
Sync

Typically, programmers spend time creating a model and then generate the code. Later
the code is modified to get it to work and nobody ever has the time or energy to update
the model. As time goes on, the models get more and more out of sync with the code
and become less and less useful. Again, technology is now available to ensure that any
modifications to the code can be “round tripped” back into the model, ensuring that the
code and the model are in sync at all times. This is so important during the maintenance
phase as well as when features need to be added to a new version.

Conclusion

The introduction of natural C concepts such as files, functions and variables into the
Unified Modeling Language now enable the C developer to receive all the benefits of
Model-Driven Development while thinking and working the way they are used to.
Through the process of visualization, it is now possible to incorporate legacy code into
the development environment without changing a single line, enabling C developers to
reuse there legacy code (IP), either as is or as a starting point. Outputting production
quality structured code directly from the model further lowers risk by allowing UML and

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
9 of 16

MDD to fit into your existing processes further reducing the risk of adopting these
technologies and providing an immense saving of development time. Many companies
have already been doing development with UML based MDD and finding that they are
reducing the development cycle by at least 30%.

Q & A

Can UML based MDD help when developing code for 8 & 16 bit microcontrollers?
The low cost, power consumption and wide array of on-board peripherals insure that 8
& 16 bit microcontrollers are here to stay. When developing code for these devices
additional challenges are presented and with the right tool you can still benefit from
UML based MDD. The ability to generate code that is structured and looks the way a
typical C developer would write it combined with the ability to write or modify the code
directly and have it automatically updated in the model enable the developer to create
efficient code that can easily interact with the hardware and also include any special
compiler directives.

What about connecting to a Real-Time Operating System?
Of course, we often want to be able to make a File (or a group of Files) run on a
separate thread. We also want to be able to use Mutexes, Event flags, Semaphores,
Message queues etc. We’d also like to be able to make our design independent of any
specific RTOS, by using some kind of abstract operating system. This would allow us to
use, say the Windows OS, so that we can rapidly validate our model on the PC. Once
validated on the host, we could rapidly retarget for another RTOS to run on the target.
An efficient way of handling this is to use a real-time framework. This framework (OXF)
could be constructed so that it is easy to adapt it to another RTOS such as VxWorks,
Integrity, pSOS, OSE, Nucleus, as well as a custom or proprietary OS.

What if we do not use a Real-Time Operating System?
This is often the case for embedded C developers. An Interrupt Driven Framework
(IDF) can be your answer. This will provide a very low overhead solution and as long as

CPU

Exter
nal

Code
RTOS

OXF Framework

Rhapsody
Generated Code

Figure 5: The OXF is used to map the generated code to many commercial RTOS’

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
10 of 16

it was developed using a model within your tool then you should be able to easily decide
if you would like to use static or dynamic memory allocation, remove any unused
services, support host based execution and port it to any target environment that you
chose.

Can I generate documentation from the model?
Of course, since the model contains everything, a report can be easily and automatically
generated according to various standard templates, in word, HTML, framemaker, or
your tool of choice.

In UML, variables can be public or private, how can we achieve that in C?
The variables that we have shown so far are also all global. A local variable can only be
used within a File, so in C it makes sense to not declare this variable in the specification
(.h) file. Rather, declare it in the implementation (.c) file and no longer have it declared
as an extern.

What about initializing these variables?
A file can have an initialization functions or simply set the code equal to 0. By setting it
in the tool you can get code like:
int mins = 0;
int secs = 0;

How can we write our reset function?
Just do it normally in the body.
mins = 0;
secs = 0;

What about handling interactions (relations) between Files?
A lot can be achieved by using one File but normally systems are composed of a
number of Files that interact together. For two Files to communicate they need to be
connected via some sort of relation. For example if we wanted our Timer File to call the
show operation of a Display Files, then we would add a Dependency between the Timer

CPU

Exter
nal

Code IDF Framework

Rhapsody
Generated Code

Figure 6: The IDF allows the generated code to run directly on your hardware.

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
11 of 16

and the Display File. This will generate the include for Display inside the Header or C
file on Timer, depending on how you set properties. It allows you to view your Includes
graphically. The preferred way is to use associations not dependency, because this
closely mimics UML modeling, and also provides an easy migration path between Files
and Objects (if anyone wanted to move to an object oriented approach in the future).

How can one File call another File’s function?
We have seen that the relation has been coded as a simple include to the other File, so
in our example, theTimer could call the show operation of the Display File directly.

How could we add behavior to a File?
In the UML, behavior of a File can be described by using a statechart (enhanced state
diagram) or Activity Diagram (enhanced Flow Chart). For example, we could add a
statechart to our Timer File to call the private tick function every 1000 milliseconds. The
statechart would look like the one on the right: We could also add an “action on entry” to
call the show function on the Display file. That way every second we will increment the
time and display it.

Figure 7: The arrow enables Display to be included in Timer

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
12 of 16

OnOn

tm(1000)/
tick();
show(mins,secs);

How can we generate code when a File has a statechart?
This is getting more complicated and it is at this point that we really need to think about
building some kind of real-time framework. We need to be able to have some
mechanism for handling statecharts and some mechanism for handling timeouts.

enum Timer_Enum{ Timer_RiCNonState=0, Timer_Active=1, Timer_On=2,
Timer_Off=3 };

struct Timer_t {
 RiCReactive ric_reactive;

 /*** Framework entries ***/

 int rootState_subState;
 int rootState_active;
 int Active_subState;
};

This is automatically generated by Rhapsody.

This real-time framework could contain some reactive element that could be added to
our Timer File to basically wait for events or timeouts to occur. Whenever an event or a
timeout occurs, it could then call an operation to dispatch the event/timeout. For our
example, the code could look like the following:

static void Timer_rootState_dispatchEvent(void * const void_me, short id) {
 switch (Timer.rootState) {
 case Timer_On:
 {

Figure 8: A simple statechart

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
13 of 16

 if(id == Timeout_id)
 {
 Timer.rootState = Timer_On;
 RiCTask_schedTm(Timer.ric_reactive.1000)
 {

 break;
 };
 break;
 }
 }

What about events, how can they be handled?
An event is generally asynchronous, but sometimes when we need the execution to be
more deterministic, events can be synchronous. To see how events are handled, let’s
modify the Timer statechart to allow the Timer to be started, stopped and reset
asynchronously via events. The resulting statechart will look as follows:

The Timer File will now initialize in the Off state and then wait for either the event
evStartStop or evReset. On receiving the event evStartStop, the file will change from
the Off state to the On state. In the on state, the tick operation will be executed every
second. In this state if the event evStartStop is received then the file returns to the off
state. In either state, if the event evReset occurs, then the reset function will be
executed and the file will result in the off state.

Figure 9: A statechart that can be used to represent the behavior of a file.

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
14 of 16

Again, a framework needs to be created for handling events. To send an event, a macro
could be created so that an event can be sent to a File. To send the event evStartStop
to our Timer File, the following code could be deployed for another File such as a Button
that has a relation to the Timer File.

CGEN(&Timer,evStartStop());

What about Activity diagrams?
Simple Activity diagrams or flowcharts can be attached to operations for describing the
behavior of a function, so that complex functions can be captured graphically; code can
be generated from these diagrams as well. Here is an example of such a diagram.

Code can be generated automatically, but the code for each individual activity must, of
course, still be written by hand.

Figure 10: An activity diagram that can be used to represent the behavior of a file.

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
15 of 16

This paper was made possible by contributions from the following people:

Marty Bakal I-Logix Senior Application Engineer
Rick Boldt I-Logix Director of Product Marketing
Scott Niemann I-Logix Rhapsody Product Marketing Manager
Mark Richardson I-Logix Senior Application Engineer
Todd Szahun I-Logix Marketing Communications Specialist

Bring UML based MDD to life for the C Developer
Now that you have read about how the C developer can benefit from UML based MDD,
why not see it in action. Please stop by our website and view an on-demand webinar,
or download Rhapsody for a 30 day trail.

Rhapsody in C/C++
I-Logix Rhapsody is an award-winning, UML-compliant, systems design, application
development, and collaboration platform. Rhapsody is used by design and development
teams to deliver real-time embedded applications in C, C++, Java, and Ada. Rhapsody
uniquely combines a graphical UML programming paradigm with advanced systems
design and analysis capabilities and seamlessly links with the target implementation
language, resulting in a complete model-driven development environment, from
requirements capture through analysis, design, implementation, and test. Operating on
either an engineering workstation or PC, Rhapsody has the ability to "execute" graphical
models and debug behavior at the design level, both at the host as well as the target,
produce test vectors and generate production-quality code within a single development
environment. Using Rhapsody, developers can maintain applications at the code level
through graphical models. If changes are made to the model, the application code
changes as well to correspond to the modifications; if the code is altered, the models
are dynamically updated. The dynamic, bi-directional link between the code and the
design documentation ensures that Rhapsody is ideally suited for all members of the
design team. Rhapsody also incorporates automatic test generation and web-based
model debugging to enable design for testability. Leveraging these innovative
techniques via an intuitive user interface, Rhapsody dramatically boosts productivity and
dramatically improves team collaboration, quality, and re-use leading to significantly
compressed development cycles.

About I-Logix
Founded in 1987, I-Logix is the leading provider of Collaborative Model-Driven
Development (MDD) solutions for systems design through software development
focused on real-time embedded applications. These solutions allow engineers,
operating in either small or very large teams, to graphically model the requirements,
behavior, and functionality of embedded systems. The design is iteratively analyzed,

http://www.ilogix.com/about/events/webinars/demand_webinars.cfm
http://www.ilogix.com/includes/forms/developertrial_form.cfm

I-Logix Inc. 3 Riverside Drive Andover, MA 01810 Tel 978.682.2100 Fax 978.682.5995 www.ilogix.com
16 of 16

validated, and tested throughout the development process while automatically
generated production quality code can be output in a variety of languages. I-Logix
facilitates team collaboration through unique project and task management capabilities
integrated into its UML based MDD solutions, enabling design review and inter-team
participation from concept-to-code, regardless of where team members are located.
I-Logix is headquartered in Andover, Massachusetts and has sales and support centers
throughout North America, Europe and the Far East. For more information, please visit
our website www.ilogix.com.

©2004 I-Logix Inc. All rights reserved. Information provided here is subject to change without notice.
Rhapsody, Statemate, and iNotion are registered trademarks of I-Logix Inc. I-Logix and the I-Logix logo
are trademarks of I-Logix Inc. OMG marks and logos are trademarks or registered trademarks, service
marks and/or certification marks of Object Management Group, Inc. registered in the United States. Other
products mentioned may be trademarks or registered trademarks of their respective companies.

http://www.ilogix.com/

	UML based Model-Driven Development for C
	Abstract
	Table of Contents
	Introduction
	Functional Development Within UML
	Reusing Legacy Code within a UML based MDD Environment
	Validating the Design using the Model
	Generating Code from the Model
	Ensuring that the Model and the Code are always in Sync
	Conclusion
	Q & A
	Can UML based MDD help when developing code for 8 & 16 bit microcontrollers?
	What about connecting to a Real-Time Operating System?
	What if we do not use a Real-Time Operating System?
	Can I generate documentation from the model?
	In UML, variables can be public or private, how can we achieve that in C?
	What about initializing these variables?
	How can we write our reset function?
	What about handling interactions (relations) between Files?
	How can one File call another File’s function?
	How could we add behavior to a File?
	How can we generate code when a File has a statechart?
	What about events, how can they be handled?
	What about Activity diagrams?

	Bring UML based MDD to life for the C Developer
	Rhapsody in C/C++
	About I-Logix

