

Practical Approach To Test Object-Oriented Classes

At Unit Level

By

 Manohara

 M.Tech [Software Engg.], SJCE,

 Mysore 570 009, India

 manohar_mirle@yahoo.com

 Abstract

This paper presents a new approach to test each unit of the application in order to make sure that they work as expected. It explains about conducting of black box testing on each class of the application. An approach of test the functionality of a object oriented classes is given here. The illustration is given in Java language to show how this approach works in testing each unit of the application.

1. Introduction

Recent years have seen dramatic growth in the area of automated software testing techniques to test the functionalities of the software products. Most of these works were aimed at testing the functionality at the product level.

Over-testing of software can never be done, but it is seldom tested enough. When testing does begin, system or integration testing is the norm, with formal testing and quality assurance efforts typically starting at the last minute--when the software is nearing release. Inevitably, pressure builds on testers to rush through the testing process. Needless to say, this does not encourage thoroughness. At the same time, the development team is urged to fix defects as quickly as possible. This, too, does not promote careful attention to detail. When this process does produce high-quality software--a rare occurrence--it is the result of superhuman efforts by conscientious individuals.

The main attribute of the quality is Correctness, that is, the activity of ensuring correct functionality of the software as required by the client. The client will get satisfied with the product if and only if it works as expected. Since the time left for the system level testing is very less, it is difficult to test the software thoroughly which leads to degrade of quality.

According to one of the Software Engineering principles, more the testing conducted at unit level, less the errors at the further levels. This holds good not only for White-Box testing at the unit level but also for Black-Box testing, which is the heart of testing process. Needless to say, conducting the functionality test at unit level will certainly eases the effort needed at further levels of testing, making the system-level-tester’s work easy.

2. Quality & Testing of a Software

2.1 Software Quality

To ensure that the final product is of high quality, some quality control activities must be performed throughout the development. One way to quantify such an admittedly abstract concept as software quality is to measure related concrete phenomena. An easy method is to count the number of software defects, better known as bugs.

The process of avoiding, finding, and fixing bugs in the software is quality assurance(QA). QA consists of more than just testing. It can be defined as "[a] planned and systematic pattern of activities designed to ensure that a system has the desired characteristics." Note that the definition says more about what the software does right than about bugs – what it doesn't do right. The phrase "desired characteristics" includes making sure that the software is well-designed – does what the customer needs it to do – as well as well-implemented.

2.2 Software Testing

 “Testing is the process of exercising or evaluating a system or system component by manual or automated means to verify that it satisfies specified requirements.”

 Software testing is an important stage of software development. It provides a method to establish confidence in the reliability of software. It is time consuming for 50% of the cost of software development.

By testing an application, we hope to uncover the defects that arise from these sources and many others. These defects include typographical errors, logic errors, errors introduced due to insufficient understanding of the problem domain, and errors introduced due to poor programming practice. The process of uncovering these defects is made more difficult due to the nature of the software defects themselves: they don't occur where we expect to find them. Indeed, the likelihood of a defect existing in a particular piece of code is inversely proportional to the probability that a program path will be executed through that code.

2.3 Necessity of Testing

 Central to any QA plan is the idea that the earlier we detect a problem, the easier it is to fix. For example, in Rapid Development, the following statistics are found:

· A requirements defect left undetected until construction or maintenance, costs 50 to 200 times as much to fix as it would have cost to fix at requirements time.

· A defect that isn't detected during requirements or design, costs from 10 to 100 times as much to fix during testing; the further from its origin that a defect is detected, the more it will cost to fix.

· Each hour spent on QA saves from 3 to 10 hours later in the development cycle.

2.4 Objectives Of Testing

The objective is to design tests that systematically uncover different classes of errors and so with a minimum amount of time and effort.

If testing is conducted successfully (according to the objective stated above), it will uncover errors in the software. As a secondary benefit, testing demonstrates that software functions appear to be working according to specification and that performance requirements appear to have been met. In addition, data collected as testing is conducted, provides a good indication of software reliability and some indication of software quality as a whole.

2.5 Different kinds Of Software Testing
 Nevertheless, testing the software being developed is a big part of most development groups' quality plans. There are several different kinds of software testing, from unit testing to beta testing. Each kind of testing has a different focus.

· Unit testing is a way of making sure that the code works the way the developer thinks it should. The developer who wrote the code performs unit testing.

 A unit is the smallest testable piece of software, which means that it can be compiled or assembled, linked, loaded, and put under the control of a test harness or driver. Unit testing is the testing conducted on a small unit of code to show that the it does not satisfy its functional specification and/or that its implemented tests reveal such faults, we say that there is a unit bug. It also involves finding syntax errors, boundary line errors…etc.

· Integration testing determines whether newly-developed code works correctly together with other code (which can be existing code or also newly-developed code). It exercises the interaction between old and new code. The developer of the new code usually performs integration testing.

· Validation Testing: At the culmination of integration testing, software
is completely assembled as a package; interfacing errors have been uncovered and corrected, and a final series of software tests-validation testing-may begin. Validation succeeds when software function in a manner that can be reasonably expected by the customer.

· System testing determines whether the software as a whole works together. System testing is aimed at revealing bugs that cannot be attributed to components as such, to the inconsistencies between components, or to the planned interactions of components and other objects. System testing concerns issues and behaviors that can only be exposed by testing the entire integrated system or a major part of it. System testing includes testing for performance, security, accountability, configuration sensitivity, start-up, and recovery.

· Beta testing is similar to system testing except that users external to the development process, usually external to the entire company, handle it informally. The idea behind beta testing is to get a certain level of real-world use.

2.6 More about Unit Testing

Unit testing falls somewhere in the middle of the extremes. It occurs after code has been developed, so even at its most effective, unit testing won't necessarily detect requirements defects. However, if done well, unit testing does detect bugs almost as soon as they were developed, before they'd be detected by integration, system, or beta testing.

Types of Unit Testing

 There are two major groupings of tests: black box and white box. Black box testing is so named because the tests are run as if the code being tested is hidden in a black box and you can't see how it works internally. A black box test feeds data to the code being tested and observes the data as it comes back out. The challenge in black box testing is in choosing and developing test data that's likely to both:

· Find bugs in the code being tested

· Validate that good data produces expected results

 White box testing, sometimes called glass box testing, is performed with knowledge of how the code works. That makes it possible to:

· Develop tests that focus on a particular piece of code – useful when

 It is complicated and you suspect it contains hard-to-find bugs whereas black box testing relies on calling the code's "public" interface

· Monitor tests under debugging tools using techniques like single- stepping, variable inspection, and leak detection to determine

 exactly when and where a bug occurs

· Manipulate code and data to test all the functionality of a given

 piece of code.

3. Conventional Approaches to Unit testing

The conventional approaches have considered only one way of testing object-oriented units or classes. The methods which have got well defined inputs and output were tested for their functionality. That is, the output of the method was considered as the functionality of the method. The sample code given below illustrates this approach:

Class TrinagleType

{

 String findTrinagleType(int sideA, int sideB, int sideC)

{

 String sType = “”;

if (sideA == sideB)

{

 if (sideB == SideC)

 sType = "Equilateral Triangle";

 else

 sType = "Isosceles Triangle";

}

 else if ((sideA == SideC) || (sideB == C))

 sType = "Isosceles Triangle";

 else

 sType = "Scalar Triangle";

return sType;

}

public static void main(String args[])

{

TriangleType tType = new TriangleType();

tType.findTriangleType(2,3,2);

}

 }

In the above example the method findTrinagleType has got well defined inputs and output. It is receiving 3 integers as parameters and returning the type of triangle in the form of a string. Here, the functionality of the method is tested by providing some specific input like ‘2,2,3’ and by getting the return value from the method.

4. Limitations of conventional approaches
The conventional approaches holds good only for the methods that have well set of input and output. But they do not holds good in the following cases.

· Console Output of a Method

If the method is printing some information on the console as output of it, then the console output should be taken in to consideration in order to test the functionality of the method.

The example given below illustrates this case:

void TriangleTypes()

{

String sType = null;

if (sideA == sideB)

{

 if (sideB == SideC)

 sType = "Equilateral Triangle";

 else

 sType = "Isosceles Triangle";

}

 else if ((sideA == sideC) || (sideB == C))

sType = "Isosceles Triangle";

 else

sType = "Scalar Triangle";

System.out.println(“Triangle Type is :”+sType);

}

· Contents of Data members as output of the method

 Commonly, the data members of the class are used to hold the values throughout the object(instance of class). That is, the contents of the data members of a class are manipulated in the methods of the class.

A method, which has not got well set of inputs and outputs might store its output as contents of data members. Then the contents of the data members have to be tested to make sure that the method works as required.

The example given below illustrates this :

class TestOfDataMembers

{

Hash hash;

String key;

String value;

int n;

void getInput(int partB)

{

 key = “a” + partB;

 value = “b” + partB;

}

void pairs()

{

for(int i=0; i< n; i++)

{

getInput(i);

hash.put(key,value);

}

}

}

 In the above example, the functionality of the method is hashing of inputs. The method is not returning any value. Then the content of the hash data member should be tested to make sure that the method is working fine.

· Object of another class

If a method is returning an object of another class and/or the object is manipulated by the method, then the state of the object has to be tested to make sure that the method has done the job correctly.

· Constructors Testing

The conventional approaches have not specified anything about testing constructors which are also members of the class. In common, the constructors are used to assign values to the data members of the class and sometimes other code involving data members will also be written. In improving the quality of the software, constructors should also be tested for the functionality.

5. New approach to test Object-Oriented Classes
Testing a class for its functionality means testing its member. The members of the class are Data Members, Constructors and methods. It can also be put in this way : Testing the state and behavior of the class at some instant of time. So the testing of a class can be classified as follows :

· Method’s Output Testing

· Data Members Content Testing

· Constructor’s Testing

· Runtime errors handling

5.1.1 Method’s Output Testing :
While testing a method many alternatives of output from the method have to be considered. The method may be displaying some information on the console, writing on to the file or it may be returning a data or set of data.

Displaying the output on the console is followed by many developers while testing the code written. Then the console outputs have to be considered as the functionality of the method if it is not returning anything.

In some cases the applications will use flat files as their input and output. In such cases methods will be used to write some data on to the file, may be without returning any data. Such type of output have to be handled in order to test the functionality of the method.

Many times, the method will return data or set of data as arrays, lists,..,etc to the calling program. Then it will be considered as the functionality of the method and tested.

Here are the simple examples to illustrate the above type of test.

void computeTotal(int totalNo)

{

 int total=0;

for(int i=0, i< totalNo, i++)

{

total = total + I;

}

System.out.println(“Total sum=”+total);

 }

Input to the method : 5

Expected Output :Total sum=15

If the output displayed by the method is ‘Total sum=15’ then the method has passed the test otherwise it is not working according to the requirement.

The following example illustrates a testing of a method which returns some data.

Int[] returnArray(int a, int b, int c)

{

int arr[] = new int[3];

 arr[0] = a+a;

 arr[1] = b+b;

arr[2]= c-c;

 return arr;

}

 Input to the method : 2,3,4

 Expected Output : 4 6 0

The above method is returning integer array containing some value. The set of data returned by the method will be compared with the expected output given by the user and result of the test will be displayed depending on the match or mismatch of the actual output and expected output.

5.1.2 Data Members’ content Testing

Sometimes it may be necessary to test the contents of the variables or data members of the class rather than testing the output of the method. Because the method may not be returning any value. The method may be storing some value in data members of the class. In such cases another alternative of testing the functionality of the method is to test the contents of the data members of the class.

The object of another class may be a data member of the class to be tested. In such a case, the state of the object (data member) can be tested.

 Here are few examples to illustrate this.

class Sample

{

int i;

 float f;

 long lon[] = new long[3];

 Hashtable hash = new Hashtable();

 Triangle tri;

void sum(int a, int b, float c)

{

i = a + b;

f = a + b + c;

 }

void hashing(long a, Hashtable ht)

{

 lon = a;

 hash = ht;

 hash.put(“Normal”, ”AbNormal”);

}

void callingClass(Triangle t1)

{

 tri = new Triangle();

tri.compute();

}

 }

 The contents of the data members will be tested after execution of the

 method.

 For the method sum, if the input is 10,20,3.25 then the output can be expected as i = 30, f=33.25

For the method hashing, the input can be given as: 21 3 4 5, A a B b C c and output should be lon = 21 3 4 5,hash=A a B b C c Normal

AbNormal

For the method callingClass :

 where the class Triangle looks as follows :

class Triangle

{

 int sideA;

 int sideB;

 int sideC;

 void compute()

 {

 sideA = sideA + sideB;

 sideB = sideB + sideC;

 sideC = sideC + sideA;

 }

}

input can be: sideA=12 sideB=13 sideC=25 . These values will be stored as the state of the object t1. The output for the previous case will be in the form of the state of the object ‘tri’ as tri.sideA=25, tri.sideB=38, tri.sideC=37 .

5.1.3 Constructors Testing :

The constructors of the class can be tested for correctness. Since

constructors don’t return any value, they can be tested only for contents of data members which are manipulated within it. The contents of the data members can be tested only after execution of the constructor. The code written within the constructors may be small but every piece of code has to be tested in order to maintain quality of the software.

Here are few simple examples, which illustrate this.

class insurance

{

 int minimum ;

 float interest ;

 insurance()

 {

minimum = 100;

 }

 insurance(float inter);

 {

 interest = inter;

 }

}

the test case provided by the user will be as follows :

For the constructor insurance()

 Input :

 The Output can be expected as : minimum = 100

For the constructor insurance(float inter)

 Input : 3.25

 The Output can be expected as: interest = 3.25

6. Implementation

The implementation of this paper has been done to test the functionality of each unit of the Java and EJB applications. This implementation is resulted in a tool which tests Java units with the required stubs (the units which do not exist) generated to complete the task successfully.

7. Conclusion

 Testing in one of the major activity in maintaining the quality of the software. It is not enough to test a application at the presentation level to make sure the quality of the software. Each unit of the application has to be tested for its functionality. This paper presented a new approach to test each unit for its functionality. To test the functionality of a unit thoroughly, it is not enough to test only the output of a method but also the message printed on the console by the method, the contents of the data members after execution of that method and the constructors of the class or unit should be tested in improving the quality of the software.

References

 1. Black-Box Testing

Techniques for Functional Testing of Software and Systems.

--Boris Beizer

John Wiley & sons, Inc.
 2. The Art of Software Testing

-- Glenford J.Myers

 A Wiley-Interscience publications

 3. Software Testing Techniques

Second Edition

-- Boris Beizer

 Van Nostrand Reinhold

 4. Software Engineering

Third Edition

-- Pressman

 5. Automated Software Testing

-- Elfriede Dustin , Jeff Rashka , John Paul

 Addison-Wesley
