
Using Oracles in Test Automation

Douglas Hoffman, BACS, MSEE, MBA
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org
www.SoftwareQualityMethods.com

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has
been in the software engineering and quality assurance fields for 30 years and now is a
management consultant in strategic and tactical planning for software quality. He is a past
Chairman of the Santa Clara Valley Software Quality Association (SSQA), a Task Group of the
American Society for Quality (ASQ) and has just completed two years as Chairman of the
Silicon Valley Section of ASQ. He has been a presenter and participant at dozens of software
quality conferences and has been Program Chairman for several international conferences on
software quality. He is a member of the ACM and IEEE and is active in the ASQ as a Senior
Member, participating in the Software Division, the Silicon Valley Section, and the Software
Quality Task Group. He has earned a BA in Computer Science, an MS in Electrical Engineering,
an MBA, a Certificate from ASQ in Software Quality Engineering, and has been a registered
ISO 9000 Lead Auditor.

Douglas’ experience includes consulting, teaching, managing, and engineering across the
computer systems and software industries. He has twenty years experience in creating and
transforming software quality and development groups, and has worked as an independent
consultant for the last ten years . His work in corporate, quality assurance, development,
manufacturing, and support organizations provides a broad technical and managerial perspective
on the computer industry.

Key points to get from this paper:

• Automated tests should be planned and engineered
• Most automated tests need verification steps to be useful
• More powerful automated tests are made possible with oracles
• There are different types of oracles we can use
• There are several strategies for verification in automated tests

Copyright © 2001, Software Quality Methods, LLC.
All rights reserved.

Using Oracles in Test Automation
PNSQC 2001

Douglas Hoffman
Copyright © 2001, Software Quality Methods, LLC.

All rights reserved.

Summary

Software test automation is often a difficult and complex process. The most familiar aspects of
test automation are organizing and running of test cases and capturing and verifying test results.
When we design a test we identify what needs to be verified. A set of expected result values are
needed for each test in order to check the actual results. Generation of expected results is often
done using a mechanism called a test oracle. This paper describes the purpose and use of oracles
in automated software verification and validation. Several relevant characteristics of oracles are
included with the advantages, disadvantages, and implications for test automation.

Real world oracles vary widely in their characteristics. Although the mechanics of specific
oracles may be vastly different, a few classes can be identified which correspond with automated
test strategies. Oracles are categorized based upon the strategy for verification using the oracle.
Thus, a verification strategy using a lookup table to compare expected and actual results can use
the same type of oracle as one that uses an alternate algorithm implementation to compute them.

Background

Most software test automation begins with
conversion of existing (manual) tests. In
many instances the expected results are
either embedded in the test or captured in a
logging file for later verification. This
approach is straightforward and can be used
for a variety of tests. Tests automated in this
way run automatically, but they are less
likely to find errors than their manual
counterpart for several reasons. A test
automated this way will do the same thing
each time it runs, especially since the inputs
are provided by an automaton. The test will
also verify only and exactly the results that
we write into the test. Automated result comparison depends on having the results in a computer
readable form.

Douglas Hoffman Copyright © 2001, SQM, LLC. 1

Using Oracles in
Test Automation

Copyright © 2001, Software Quality Methods, LLC. No part of these graphic overhead
slides may be reproduced, or used in any form by any electronic or mechanical

duplication, or stored in a computer system, without written permission of the author.

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org
www.SoftwareQualityMethods.com

PNSQC ´01

For manual tests, a person provides the input and evaluates results, while automated tests use
programs to do the work. A person will not do exactly the same thing the same way even when
they try, while an automaton will tend to do exactly the same thing every time. Testers mis-key
and correct their typing and people are also subject to variations in timing, so some possibly
material characteristics can change simply because we aren’t automatons. A person running
manual tests can easily vary the test exercise and evaluate the responses of the software under
test (SUT). Manually rerunning tests introduces new variations and exercises, improving the
likelihood of finding new problems even with an old test.

A person running a manual test is also able to perceive unexpected behaviors for which an
automated verification doesn’t check. This is a powerful advantage for manual tests; a person
may notice a flicker on the screen, an overly long pause before a program continues, a change in
the pattern of clicks in a disk drive, or any of dozens of other clues that an automated test would
miss. The author has seen automated tests “pass” and then crash the system, a device, or the SUT
immediately afterwards. Although not every person might notice these things and any one person
might miss them sometimes, an automated test only verifies those things it was originally
programmed to check. If an automated test isn’t written to check timing, it can never report a
time delay.

We need to approach automated testing differently from manual testing if we want to get equal
or better tests.

What Makes Automated Tests Different

In order to check the results, inputs to the SUT must be tracked and some means of generating a
prediction of the resultant behaviors provided for some or all of the same dimensions. In a
manual test, the tester usually controls or checks preconditions and inputs, and can quickly adjust
the system when they encounter unexpected results. An automated test must rely upon the test
design and system setup to control the important inputs. It must also include some mechanism
for knowing or getting the expected results (typically from an oracle). Regardless of the test
exercise, an automated test will be poor with poorly selected inputs or results, with poor results
oracles, or if there is limited visibility into the relevant values.

Automated verification assumes that we know what to check to know whether the software did
what it was supposed to do. It also assumes that we know the correct values for whatever we
check. We identify what the software was supposed to change (or not change) when we design
the test. Then we check it to confirm that it happened after we run the test. However, when the
SUT fails it can change almost anything. Our tests should look for these failures because it does
little good for a test to encounter an error and then ignore it. When manual testing, a person can
be effective without knowing in advance exactly what the test results are. The tester will learn
and adapt, checking different things at different times. If something doesn’t seem right, the tester
can dig into the details to figure out if the SUT behaved correctly. This is not true for automated
tests. A tester can manually verify one or several conditions and data values, and doesn’t have to
do the same thing each time a test is run. For automated tests, this is established in advance.

The question of what to check is a big one that’s often overlooked. We may have successfully
entered an order and properly updated inventory counts and financial books, but, did we check to

see if there was any effect on other orders? We successfully added a user and set their
permissions, but, did the permissions change for any other users? Software errors can cause an
infinite variety of changes in the system and we can check only a few. With automated tests we
define what to check in advance and limit the verification to exactly that.

One reason we avoid checking many possible results is the difficulty of knowing what the results
should be. This is the role of an oracle – to generate the expected result (or at least answer
whether the actual result seems plausible). An oracle is critically important if we are to create
automated tests that are equal or better than manual tests. We can generate millions of inputs in
an automated test and verify proper SUT behavior using an oracle. Automated tests may be able
to recover from unexpected responses if we have oracles that predict correct responses (and thus
can show us a path to get back on track). Usually we need multiple oracles for these more
sophisticated tests because we verify more than one thing.

Automated verification of results can also be quite difficult technically. How do you verify that
the sound track synchronized with the motion picture? How do you verify that the image printed
on the page is what you expected? Testers’ perceptions can easily and effectively analyze results
that we have a tremendous amount of difficulty getting a computer to verify. Some test
automation problems are not cost effective to solve today.

This is not to say that automated tests aren’t useful. Automated tests can be very powerful for
finding certain kinds of errors. Manually rerunning the same tests every time anything changes is
time consuming and boring for people, but machines are designed for doing this kind of task.
People are also easily trained about what to expect from a test and can cognitively miss seeing
errors after only a few repetitions. Machines do what we tell them to do, as many times as we
want. And for massive numbers of data points, test iterations, and combinations there may not be
any way to run tests except using automation. Some testing problems simply cannot be solved
manually, such as performance analysis and system load testing.

Software Test Models

A software test consists of three steps: setting
up the conditions in the system, providing
stimulation to the SUT, and observing the
results. This applies for manual and
automated tests (shown in Slide 2). The setup
creates the conditions necessary for some
errors to manifest (assuming the errors are
there). The test run exercise takes the SUT
through the suspect code. Then we can
confirm whether there are errors in the
software.

The test setup is often neglected, assuming
that a test will work from whatever state the
SUT, data, and system are in. Yet, it is obvious that software will do things differently based on

Douglas Hoffman Copyright © 2001, SQM, LLC. 2

Running A Software Test

• Test setup
– SUT program state

– Data values
– System environment

• Run test exercise

• Capture/compare actual

with expected results

the starting state of the SUT and system. Is the SUT running? Is the account we are accessing
already in the database, or do we need to add it? Is an error dialog currently on the screen? What
permissions does the current user have? Are all the necessary files on the system? What is the
current directory? Testers note and correct for all such conditions when manually testing. But
these are potentially major issues for automated tests.

Although the test designer typically is conscious only of the values directly given to the SUT, the
SUT behavior is influenced by its data, program state, and the configuration of the system
environment it runs in. Test setup consists of monitoring or controlling things in all these
domains. The domains include the data and program state information, which are somewhat
manageable by the software test automation management system and within the automated tests.
The environment, however, gets very difficult to scope out and manage. The SUT may behave
differently based on the computer system environment; operating system version, size of
memory, speed of the processors, network
traffic, what other software is installed, etc.
Even more difficult to analyze or manage
is the physical environment – I’ve worked
on errors due to temperature, magnetic
fields, electrostatic discharge, poor quality
electric grounding, and other physical
environmental factors that caused software
errors. These errors may be unusual, but
they occur, so we need to keep them in
mind when automating tests. Slide 3
illustrates a model of actual inputs and
results in a software test.

The term “automated software test” has
many different meanings, depending upon
the speaker and context. For the purposes
of this paper, automated software testing
has the eight characteristics shown in Slide
4. The test consists of performing some
exercise of the SUT, observing some
results, comparing them with expected
result values, and reporting the outcome.

Douglas Hoffman Copyright © 2001, SQM, LLC. 3

Expanded Testing Model

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Douglas Hoffman Copyright © 2001, SQM, LLC. 4

Fully Automated Software Tests
• Able to run two or more specified test cases
• Able to run a subset of the automated test cases

• No intervention needed after launching tests
• Automatically set-up and/or record relevant

test environment

• Run test cases
• Capture relevant results
• Compare actual with expected results

• Report analysis of pass/fail

The running of an automated test exercise is often the easiest part of testing. Given that the SUT,
data, and system are in the proper initial state, the automated test can feed the test data into the
SUT1. (For the purposes of this paper, I’m going to assume that it is that simple2.) The exercise
puts the SUT through its paces and either encounters errors or not.

Some of the biggest difficulties in software
test automation are in knowing what results
are expected from the SUT. There are many
issues with the huge number of potentially
relevant results and how to record them. As
just described, we are dealing with multiple
input domains, and not surprisingly, the
same domains can be effected by the SUT.
(This is especially true when we consider
that there may be errors in the SUT, so the
actual result is outside of the expected
realm.) Often, it is extremely difficult to
predict what the SUT should do and what
outcomes are expected, even for the set of
expected results. Slide 5 illustrates a model incorporating an oracle to predict expected results
from actual inputs.

Several observations can be made from the model. Different types of oracles are needed for
different types of software and environments. The domain, range, and form of input and output
data varies substantially between programs. Most software has multiple forms of inputs and
results so several oracles may be needed for a single software program. For example, a
program’s direct results may include computed functions, screen navigations, and asynchronous
event handling. Several oracles may need to work together to model the interactions of common
input values. If we consider a word processor, pagination changes are based upon the data being
displayed and characteristics such as the page width, point size, page layout, and font. In
Windows, the current printer driver also affects the pagination even when nothing is printed. Just
changing the selected printer to one with a different driver can change the pagination of a Word
document. Although an oracle may be excellent at predicting certain results, only the SUT
running in the target environment will process all of the inputs and provide all of the results.

 Characteristics of Oracles

 When we think of software testing and the test results, it’s usually in a binary sense: the result is
right or wrong; the test passed or failed. We generally don’t allow for “maybe it’s OK” or
“possibly right” as outcomes. We consider the test outcomes to be deterministic; there is one
right answer [and we know what it is]. Slide 6 lists some examples of such deterministic
verification strategies. Each example provides some means for determining whether or not a test

1 “data” in this case includes input data, control information, and whatever else is needed for the test to stimulate the
SUT.
2 Much of the work in test automation to date has focused on the mechanics of feeding and manipulating data and
controls in the test exercise. The focus here is on oracles and verification of the test results.

Douglas Hoffman Copyright © 2001, SQM, LLC. 5

Testing With An Oracle
Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Test Oracle

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

result is correct. It is useful to note that
although the strategy allows us to pass or
fail a particular result, in many cases there
are ways that the SUT can give us a wrong
result, and yet the test can pass (e.g., an
undetected error in the previous version or
the competitor’s product).

 There are several interesting characteristics
relating an oracle to the SUT. Slide 7
provides a list of some useful characteristics
based on the correspondence between the
oracle and the SUT. The results predicted
by an oracle can range from having almost
no relationship to exact duplication of the SUT behaviors. Completeness, for example, can range
from no predictions (which may not be very useful) to exact duplication in all results categories
(an expensive reimplementation of the SUT).

Completeness of information:

• Input Coverage
• Result Coverage
• Function Coverage
• Sufficiency
• Types of errors possible

Accuracy of information:
• How similar to SUT

• Arithmetic accuracy
• Statistically similar

• How independent from SUT
• Algorithms
• Sub-programs & libraries
• System platform
• Operating environment
• Close correspondence makes common mode faults more likely and reduces maintainability

• How extensive
• The more ways in which the oracle matches the SUT, i.e. the more complex the oracle, the

more errors
• Types of possible errors

• Misses actual wrong value
• Flags correct data as an error
• Some oracles may allow one or both types of errors

Douglas Hoffman Copyright © 2001, SQM, LLC. 6

Deterministic Strategies
• Parallel function

– previous version
– competitor
– standard function
– custom model

• Inverse function
– mathematical inverse
– operational inverse (e.g. split a merged table)

• Useful mathematical rules (e.g. sin2(x) + cos2(x) = 1)
• Saved result from a previous test. (Consistency test)
• Expected result encoded into data (SVD)

Douglas Hoffman Copyright © 2001, SQM, LLC. 7

Oracle Characteristics

• Completeness of information

• Accuracy of information

• Usability of the oracle or of its results

• Maintainability of the oracle

• Complexity

• Temporal relationships

• Costs

Usability of the oracle or of its results:
• Form of information

• Bits and bytes
• Electronic signals
• Hardcopy and display

• Location of information
• Data set size
• Fitness for intended use
• Availability of comparators
• Support in SUT environments

Maintainability of the oracle:
• COTS or custom

• Custom oracle can become more complex than the SUT
• More complex oracles make more errors

• Cost to keep correspondence through SUT changes
• Test exercises
• Test data
• Tools

• Ancillary support activities required

Complexity:
• Correspondence with SUT
• Coverage of SUT domains and functions
• Accuracy of generated results
• Maintenance cost to keep correspondence through SUT changes

• Test exercises
• Test data
• Tools

• Ancillary support activities required

Temporal relationships:
• How fast to generate results
• How fast to compare
• When is the oracle run
• When are results compared

Costs:
• Creation or acquisition costs
• Maintenance of oracle and comparitors
• Execution cost
• Cost of comparisons
• Additional analysis of errors
• Cost of misses
• Cost of false alarms

The more complete and accurate an oracle is, the more complex it has to be. Indeed, if the
oracle exactly predicts all results from the SUT it will be at least as complex. In some cases an
oracle is more complex than the SUT when the simulators, operating systems, etc., are all
considered. The better that an oracle provides expected results, the more complex it is and the
more likely that detected differences are due to errors in the oracle rather than the SUT.
Likewise, the more an oracle predicts about program state and environment conditions, the more
sensitive the oracle is to changes in the SUT and operating environment. This dependence makes
the oracle more complex and more difficult to maintain. It also means that errors may be missed
because of common mode errors where both the SUT and the oracle generate the same wrong
result due to sharing of a component with an error.

Oracle Strategies For Automated Test Verification

Four types of oracle strategies (and not using any oracle) are identified and outlined in Table
1. The strategies are labeled True, Consistency, Self Referential, and Heuristic. Each strategy is
expanded upon below.

No Oracle True Oracle Consistency Self Referential
(SVD)

Heuristic

Definition • Doesn’t check
correctness of
results

• Independent
generation of all
expected results

• Verifies current run
results with a previous
run (Regression Test)

• Embeds answer
within data in the
messages

• Verifies some
characteristics of
values

Advantages • Can run any
amount of data
(limited only by
the time the
SUT takes)

• All encountered
errors are detected

• Fastest method using
an oracle
• Verification is
straightforward
• - Can generate and
verify large amounts of
data

• Allows extensive
post-test analysis
• Verification is based
on message contents
• Can generate and
verify large amounts of
complex data

• Faster and
easier than True
Oracle
• Often much less
expensive to create
and use

Disadvantages • Only
spectacular
failures are
noticed.

• Expensive to
implement
• Complex and often
time-consuming when
run

• Original run may
include undetected errors

• Must define answers
and generate messages
to contain them

• Can miss errors
• Can miss
systematic errors

Table 1: Five Oracle Strategies

It is possible to automate the running of a
test without checking results. I have
encountered organizations that knew and
planned such automated tests, and a few
that simply hadn’t thought to verify test
results from their automation. This
approach gets around the problems of false
error reports and the costs of maintaining
the oracle. It also has the advantage that
it’s easy, inexpensive, and tests run
quickly. The major disadvantage is that
only a few spectacular errors can be found
this way. The automation may give Douglas Hoffman Copyright © 2001, SQM, LLC. 9

‘No Oracle’ Strategy

• Easy to implement

• Tests run fast

• Only spectacular errors are noticed

• False sense of accomplishment

observers the impression that there is more value to the testing than there really is. There are
occasions when the goal is to provide some exercise in the SUT, and the test outcomes are not
important (e.g., the tests are needed just to provide a background load). However, effort and
activity are not the same as accomplishment. (Running a useless exercise 1,000,000 times each
night is still a useless exercise.)

A true oracle faithfully reproduces all
relevant results for a SUT using
independent platform, algorithms,
processes, compilers, code, etc. The same
values are fed to the SUT and the oracle for
verification. This type of oracle is well
suited for verification of an algorithm or
subroutine. For a given test case, all values
input to the SUT are verified to be correct
using the oracle’s separate algorithm. The
less the SUT has in common with the
oracle, the more confidence in the
correctness of the results (since common
hardware, compilers, operating systems,
algorithms, etc., may inject errors that effect both the SUT and oracle the same way). Automated
test cases employing true oracles are usually limited by available machine time and system
resources, not the oracle itself.

A true oracle may be slow or expensive to use, so tests may use a small sample to limit the
amount of test data. One way this is done is for random selection of inputs within ranges where
the oracle works. Different inputs can be generated each time the test is run by using a pseudo-
random numbers (repeatable sequences of random numbers) to select the input values. Another
small sample approach is done by creating a table of inputs with corresponding results from the
oracle. Input values chosen from the table are fed to the SUT and the results verified from the
table.

Note that true oracles do not have to be complete to be useful. In fact, a completely replicated
system will not provide identical responses over all of the input and result domains described in
Slide 5. An oracle that works for a subset of input values or covers only one characteristic result
can be very effective. A test may cover only a small range of input values or we may check only
that the correct sequence of screens appears without need for a complete oracle. Being a true
oracle, however, means that for the subset of input values or the sequence of screens we test, the
oracle correctly provides the expected results.

The consistency approach uses the results from one test run as the oracle for subsequent tests.
Thus, we learn whether the results are the same as before, with differences likely the result of
errors. This is probably the most used strategy for automated regression tests, as it is particularly
useful for evaluating the effects of changes from one revision to another. Although it doesn’t tell
us whether the results are actually correct, it does expose differences or changes. The oracle can
be a simulator, equivalent product, software from an alternate platform, or an early version of the

Douglas Hoffman Copyright © 2001, SQM, LLC. 10

True Oracle

• Independent implementation

• Coverage over domains
– Input ranges
– Result ranges

• “Correct” results

• Usually expensive

• Never “Complete”

SUT. Because we don’t need to know if the
results are correct, we can use pseudo-
random numbers to generate huge volumes
of results to be compared. At the same time,
the values being compared can include
intermediate results, call trees, raw internal
data values, or any other data extracted
from the SUT. Comparing results between
the SUT and the oracle tells us of any
changes, which indicates something was
fixed or broken. Although historic faults
may remain when this technique is used,
new faults and side-effects are often
exposed and fixes are confirmed.

 A self-referential strategy builds the expected results (answers) into the data as part of the test
mechanism. For example, when testing data communications, we might include the expected
communications protocol information in the
message we send, so a receiver could
confirm that the envelope data matches. In a
test for a data base engine, a data field could
describe the data base linkages expected
between fields or records. The random
number “seed” could be included in the
randomly generated data set so that the
random number series can be rerun. In this
strategy, the tests are designed so that they
create records with specific characteristics,
and those characteristics are included within
the records themselves. We then use
pseudo-random numbers to generate
arbitrary populations of test data. An independent analysis can be run to identify problems or
inconsistencies.

A heuristic is a general “rule of thumb” we can use to quickly assess whether the result is likely
to be correct or incorrect. It is not guaranteed to find all errors and it may flag correct results as
errors. This strategy verifies results using simpler algorithms or consistency checks based on a
heuristic. For example, a heuristic strategy for a USA zip code might check that the values have
five or nine digits. A heuristic for a sin() function could use the mathematical identity that sin2

(x) + cos2(x) = 1 to verify it (assuming that the implementation of sin() and cos() are not based
on that relationship). Although the heuristic approach may accept results that are incorrect or
reject results that are correct, the oracle is easy to implement (especially when compared to a true
oracle), runs much faster, and can be used to quickly find many classes of errors.

A heuristic may be based on incidental relationships associated with the data. For example, if
transaction numbers are generated sequentially when the transactions begin, then sorting by date

Douglas Hoffman Copyright © 2001, SQM, LLC. 12

Self-Referential Strategy

• Embed results in the data

• Cyclic algorithms

• Shared keys with algorithms

Douglas Hoffman Copyright © 2001, SQM, LLC. 11

Consistency Strategy

• A / B compare

• Check for changes

• Regression checks
– Validated
– Unvalidated

• Alternate versions or platforms

• Foreign implementations

and sorting by transaction number should
yield the same results. Similarly, a current
employee’s start date should be between
their birth date and today. An employee’s
dependent children should be younger than
the employee (but recognize that there are
circumstances when the dependent may be
older).

One special type of heuristic strategy uses a
statistical approach based on relationships
in the population statistics between inputs
and results. For example, if we use uniform
random numbers to generate random,
symmetric, geometric figures at random locations on a page, then we might compute the mean
location (X and Y coordinate) for each dot on the page. For a large number of generated figures
we would expect the mean location to be the middle of the page. Likewise, we might expect the
standard deviation and skew for the dots to be similar to the standard deviation and skew for the
random numbers. This heuristic could allow us to create some automated tests that generate large
numbers of random figures and still give us some assurance that the results are reasonable.

Choosing A Strategy

Understand what you are testing well enough to identify the important precondition factors that
need to be monitored or manipulated for
automated testing. Also identify the
important results that need to be verified to
know whether the SUT passed or failed any
test. Based on the important input and result
factors, decide on what oracles are needed
to be able to run useful tests.

The oracle strategies will be based on
availability of existing oracles, the ease of
creation of new oracles, and recognition of
applicable heuristics. A combination of
strategies can be very effective at providing
a basis for powerful automated tests.

As with all testing tasks, it is important to understand the trade-offs between the various risks
and the costs involved in testing. It is very easy to get lost in the wonderful capabilities of
automated tests and lose sight of the important goal of releasing high quality software.

Douglas Hoffman Copyright © 2001, SQM, LLC. 14

Choosing Which Strategy

• Decide how the oracle fits in

• Identify the oracle strategy or combinations

• Prioritize testing risks

Douglas Hoffman Copyright © 2001, SQM, LLC. 13

Choosing / Using a Heuristic
• Rules of thumb

– similar results that don’t always work
– low expected number of false errors, misses

• Levels of abstraction
– General characteristics
– Statistical properties

• Simplify
– use subsets
– break down into ranges
– step back (20,000 or 100,000 feet)

• Other relationships not explicit in SUT
– date/transaction number
– one home address
– employee start date

Conclusion

There are techniques to make very powerful
automated tests. Test result oracles can
generate predicted results or verify the
correctness of actual results for automated
tests. There are different types of oracles
and strategies for automated verification of
results. When used well, oracles can result
in better, more powerful automated tests.
These automated tests can be engineered
from models of the SUT, its inputs and
results, and test results oracles.

References

Hoffman, Douglas; “A Taxonomy of Test Oracles” Quality Week 1998.

Hoffman, Douglas; “Heuristic Test Oracles“ Software Testing and Quality Engineering
Magazine, Volume 1, Issue 2, March/April 1999.

Hoffman, Douglas; “Test Automation Architectures: Planning for Test Automation” Quality
Week 1999.

Hoffman, Douglas; “Mutating Automated Tests” STAR East, 2000.

Nyman, Noel; “Self Verifying Data - Validating Test Results Without An Oracle” STAR East,
1999.

Douglas Hoffman Copyright © 2001, SQM, LLC. 15

Summary

• Automated tests can be powerful

• Test oracles are critical factors in

making good automated tests

• There are different types of test
oracles available

• There are many ways to employ
test oracles

