If You Build It They Will Come…Not Necessarily!

David Fern

dfern@verizon.net

If you build it they will come, not necessarily and especially not if you do not build the product that the customer is expecting and at the quality level that they expect.

Everyone wants to have a successful and defect free software release. However, even if we verify every requirement our project could still be a failure because you aren’t making the correct product at the correct quality level for the customer. The main reason for not meeting customer expectations is requirements. Projects that exclusively test to requirements should not have a false sense of security by thinking that if they verify all of the requirements the project is guaranteed a success. Many times we are testing to invalid and incomplete requirements.

Why should we spend time looking at requirements defects?

As you can see in the chart below 64 % of defects enter the system in the Design and Analysis phase, which is before the first line of code has been written.

Source: http://www.stsc.hill.af.mil/crosstalk/1999/04/subramaniam.asp

The following chart gives us an idea of how the ratio of fixed costs to correct a defect increases the later you get into a project. This chart originally came from the book Software Engineering, A Practitioner's Approach by Roger S. Pressman and shows that correcting a defect in the Post-ship phase could cost you 100 times more to fix than if the defect was fixed before coding.

	
	Before coding
	Coding
	Test
	Post-ship
	Ratio

	Expected Cost to fix (Pressman)
	1 unit
	6.5 units
	15 units
	60-100 units
	1:6.5:15:60

Source: http://www.jrothman.com/Papers/Costtofixdefect.html

In a related article the author Karl E. Wiegers states:

“If I were limited to performing just one quality practice on a software project—and thank goodness I’m not—I would formally inspect every requirements document. Industry data suggests that approximately 50 percent of product defects originate in the requirements. Perhaps 80 percent of the rework effort on a development project can be traced to requirements defects. Anything you can do to prevent requirements errors from propagating downstream will save you time and money.”
Source:

http://www.stickyminds.com/sitewide.asp?sid=1&sqry=%2AZ%28SM%29%2AJ%28MIXED%29%2AR%28relevance%29%2AK%28simplesite%29%2AF%28inspecting+requirements%29%2A&sidx=0&sopp=10&ObjectId=2697&Function=DETAILBROWSE&ObjectType=COL

What this means to us is that industry wide most defects are already in the system from the start of requirements. The longer they stay in the process the more expensive they will be to remove so it is in everyone’s best interest to remove defects as soon as possible.

Many of us dream of having perfect requirements to work from. Those that test exclusively to requirements find the idea of developing without requirements absurd. I have worked in shops where projects had no formal requirements only a scope document and others that were requirements only testing and I cannot say that the requirements only testing produced a better quality product and defects got out.

The entire process depends on the professional testers skill in determining risk and understanding the customers need and wants. The requirements testing should be a starting because we know that the real defects are mostly uncovered through the skilled testers use of exploratory testing.

Causes of requirements defects

The software process can be thought of as series of hands-offs or control points. The sponsor develops an idea with the customers and passes it onto the requirements analysts who create requirements and then pass them on in turn to the engineers and testers.

The process is somewhat like the game we all played when we were little where we would tell the person next to us a message and then they would pass it on, when the last person got the message it would be nothing like when it started. The same thing happens as the user gives sponsor a message and the sponsor gives the analysts the message and the analyst gives the programmer a message and the programmer gives the tester a message of software. We can sometimes see how we have different interpretations of the requirements when we submit a defect and the developer returns the defect saying that it is the correct behavior as they interpreted the requirement. It then becomes up to us to pick which battles to fight.

Ways to combat requirements defects

As a tester we have two choices either completely scrutinize all requirement for correctness and completeness or accept whet we are given and rely on our skills to ferret out defects later on in the process.

I am advocating scrutinizing the requirements. We as testers need to review the processes that we have in place to evaluate the requirements that we are given and the method that we use when we have questions or concerns. We need to determine if past defects have been product or process defects. We may determine that we need to put more effort into Requirements Reviews, Design Reviews or Code Reviews.

It is our job to evaluate the requirements for validity, completeness as well as ability to address unknowns so that we do not plan and build our testing on an incorrect foundation of defective and missing requirements.

Sure, we can create tests that will detect defects but this is only part of our job. We should be helping to detect defects before they get into the system in the first place.

What I am proposing is a process that would track defects in our projects and assign them to the process that allow them to enter the project. If we find the root cause of the defect we can correct the process. We do not want to blame individuals but determine what process let the defect into the project.

I am of the opinion that once we start tracking where in the life cycle defects are entering we will see that requirements may be a reason. This tracking may justify getting testers involved earlier in the project life cycle.
Reviewing Requirements

It is difficult to analyze requirements but some main thinks to look for are:

· Validity

· Completeness

· Unknowns

Validity

Are the requirements valid, correct and will we be able to test them? We have already seen that up to 80% of defects are related to the requirements. We also know that if we can no test a requirement and determine what the results should be it is not doing us any good. You can not control what you can not measure.

Completeness

Are the requirements 100% complete? I am sure that the answer is no because it is virtually impossible to have a requirement for everything. Thinking along the same lines, if you test every requirement in theory you should have 100% statement or code coverage. This is highly unlikely, however, and many have set the goal of 85% code coverage determining that the last 15% are hard to get. There is usually extra, unreachable code left behind that is next to impossible to exercise.

Unknowns

We are always going to encounter unknowns in our testing some of which include Coding\Logic Errors, Integration Issues and Technology Issues.

Automated Requirements Measurement (ARM) Tool

Verifying requirements can be difficult and tedious but there is one tool that I have found which NASA created called The Automated Requirements Measurement (ARM) Tool, which can be downloaded free and is located at http://satc.gsfc.nasa.gov/tools/index.html.

The ARM parses the requirements documentation and looks for words and terms that may indicate that the requirement is potentially defective. Some type of wordings that the ARM looks for fall into the following categories:

Imperatives

Words or phrases such as shall and must that mean tha something must be

provided.

Continuances

Words or phrases such as below or as follows, which point directly to an

imperative or specification.

Directives

Words or phrases such as a “figure” or “ table” point to illustrations that make the

document more easily understood.

Options

Words or phrases such as can, may or optionally give the developer the ability to

use their judgement and there can be more than one answer.

Weak Phrases

Words or phrases such as adequate or as a minimum leave room for interpretation.

Tools such as the ARM can assist the tester in evaluating the requirements that he is

given for validity and completemess.

Conclusion

Software requirements are necessary at the start of every project so that the engineer knows what to build and the tester knows what to verify. We need to ensure that we build the correct piece of software and that it is at an acceptable level or fit for use. Acceptable level for use is somewhat subjective but depends on the intended use of the software package. As an example the amount of testing and development time devoted to the building of mission critical software such as medical applications will be much greater than the amount time devoted to a video game.
Our only defense to minimizing such failures is to either scrutinize the requirements at the start or depend on professional skilled testers that understand and know the customer, the business model as well as testing strategies.

If we build it they will come, but only if we build what they want and at a quality level that they expect.

