

6
Making It Easy for Customers to Do Business with You

Customers.com(Handbook
1

An effective guide for implementing Software Configuration Management

By Magesh M.

For additional information or assistance please contact Magesh at (+91)422-320-606. www.thinkbn.com • 697A, Trichy Road, Coimbatore, TN 641045.
Table of Contents

4Controlling and Managing Workspaces

Workspace Management
4
Private versioning
5
Solutions
5
Conclusion
6
References
7

Controlling and Managing Workspaces

Software Configuration Management

Introduction

‘Managed and controlled’ is the magic term that is always given as a solution to a organization in its search for effective project development and management. This term directly attributes to effective Software Configuration Management, which unfortunately remains still a distant dream for a small organization. Documentation after documentation would have been done and lots and lots of efforts would have been invested by such organizations to define a solid process in bringing about effective SCM.

A good configuration management system should fulfill four basic needs of the project team, namely, 1.Workspace Management, 2.Change Management, 3.Build Management and 4.Release Control. This article aims at identifying solution to few of the problems identified in workspace management

Workspace Management

The Ideal condition

An ideal condition to have in a workspace management will be to have a completely insulated work environment and the changes isolated, so that the developers can implement these changes without fears of having their workspace contaminated.

Workspace contamination and why it happens

Workspace contamination happens when unstable code from others’ work-area mingles with the workspace of a developer.

Workspace contamination happens mostly as a result of a poor and inefficient merging or check-in policies of the organization. Daily check-ins to the version control will be an important ingredient of the codeline policy of the projects in most of the organizations. The idea is to maintain the revisions of the files to very granular levels so that identification of the cause of problems during an integration or bug fixing can be easily done. Also the facility to revert back to the most previous stable code in case of any problems can be provided. But this not only contaminates the workspace but also brings in complexities in status accounting. It becomes tedious and almost impossible to maintain the status and revisions of the files in these conditions and even if maintained, very difficult to utilize the information. Contamination of workspace happens because of the unstable code (code that does not compile) being introduced to the project repository. Unstable code gets introduced into the project repository as a result of a daily check-in policy.

Private versioning

The configuration management pattern ‘private versioning’ demands that:

“Developers should be provided with a mechanism for check pointing changes at a granularity that they are comfortable with. This can be provided for by a local revision control area, Only stable code sets are checked into the Project Repository”

Solutions

Branching?

Branching comes as an obvious and almost an ideal solution under these circumstances. By maintaining branches different codelines can be maintained, which provide a local revision control. By merging the code after the code gets stable solves the requirement of having only ‘stable code sets’ in the project repository

However branching is a parallel development concept and is best effective when viewed from a project-wide or system-wide perspective. Also, a very disciplined process is a must in implementing branching, else, merging after branching can become a nightmare if not properly understood and followed. When it comes to the argument of maintaining granularity and isolation to the file level, branching seems to be more complicating. Moreover, the need for a distributed development of the project remains rare in small organizations and hence, going for branching, which is best suited under such environments, would not be advisable.

The solution

The solution to this problem is a bit tricky. Almost all the organizations will be having a backup policy, which asks every individual to take regular backups of their data to ensure disaster recovery. Also another policy exists that defines the backing up of the backed up data of the individuals by the system administration department. These policies are very important and ought to be implemented. These policies can be made best use of to solve our problem.

Backup scripts are written that runs at the end of every day that takes a backup of the developers’ workspace. The script should insert the time stamp (the date) in the name of the backup zipped file. A separate text file should be maintained that maintains the revisions of the changed files. It should be the responsibility of the developer to update this text file of the changes he made to the files and this text file should be a part of the daily backup. Another script can be written to delete the backed up data at regular intervals. The execution of this script should precede the routine backup taken by the system administrator. These can be defined, documented and implemented as a procedure

The codeline policy can define the checkin-checkout criteria to be once the code complies or once the code complies and builds (if daily or a weekly build is implemented).

Advantages

Implementation of this procedure along with the above said codeline policy provides us with the advantages of a daily checkin without compromising for the stableness of the project repository.

Conclusion

This solution holds good not only for a small organization. Even in bigger organizations this can be done to every codeline. This introduces more stable branches and eventually a stable project development environment

This procedure needs integration with other best practices like regular and frequent checkins-merges and regular and frequent builds for effective and efficient Software Configuration Management.

.

References

I. “Team development Overview” by Alex Lobba

II. Configuration Management Patterns by Steve Berczuk

III. “High level best practices in Software Configuration Management” by Laura Wingerd and Chris toper Seiwald, Perforce Software, Inc

IV. The business benefits of software best practices – case studies

V. Introduction of Software Configuration Management in very small organizations - ICONMAN

VI. Introduction to Configuration Management – Gaining a competitive Edge-Datamat

Reproduction in whole or in part is prohibited. For reprints, call 617.742.5200.
Patricia Seybold Group’s Customers.com Handbook
Patricia Seybold Group’s Customers.com Handbook
Reproduction in whole or in part is prohibited. For reprints, call 617.742.5200.

