
1

An Automated Testing Environment to support Operational Profiles of
Software Intensive Systems

Robert S. Oshana

Raytheon Systems Company
oshana@raytheon.com

(972)344-7083

Abstract:

Raytheon Systems Company is a defense electronics company that has been actively
engaged in a software process improvement effort at the organizational and program
levels for over a decade. The company uses the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) as a basis for their improvement efforts and has been
formally assessed at level 3 (defined).

The project is a real-time embedded software application using a heterogeneous computer
architecture consisting of the two fundamental computing environments;

• PowerPC single board computer (SBC) using Ada for embedded command and

control,
• Digital signal processors (DSP) using the C programming language for a primarily

signal processing algorithm based application. There are significant real-time
constraints within the signal processing application.

The program follows a tailored version of DoD-STD-2167A and MIL-STD-498
documentation standards. The project is built upon an Integrated Product Team (IPT)
structure. There is a fully defined software development process as well as system
engineering and hardware development processes.

Our testing approach is based on the concepts of software testing based on statistical
principles. The statistical testing approach to software treats the software like a statistical
experiment. A statistical subset of all possible software uses is first generated.
Performance on this subset is used to form conclusions about operational performance
based on the usage model developed. The expected operational use is represented in a
usage model of the software. Test cases are then randomly generated from the usage
model. These tests are executed in an operational environment. Failures are interpreted
according to mathematical and statistical models.

This paper will focus on the successes and issues associated with developing a statistical
testing environment for an industrial software project. The paper will also describe how
both statistical testing based on software models and traditional testing based on unit and
other functional tests can be combined into an effective approach to testing large software
intensive systems.

2

A STATISTICAL EXPERIMENT

One approach to software testing is to treat the testing process like a statistical
experiment. There are several components of a statistical experiment (Figure 1);

1. The population which is the set of items that we are attempting to make a statement

about.
2. The strata which are the useful subsets of the population.
3. The sample which is the subset of the population actually used in the experiment.
4. The inference which is the process of estimating the population statistics based on the

results from the sample.

Usage
population

stratum
1 2

3

samples from the
population

reliability
inference

usage sample

Figure 1. Sampling a population

Software use can be characterized as being stochastic. A stochastic process is a

random process or experiment that takes place in stages. The outcome of any preceding
experiment does not affect subsequent experiments. Stochastic processes can be used to
model system state as a function of time. Short term or long term behavior can be studied
using stochastic processes. The type of model we will use to model software behavior is
the Markov chain. A Markov chain encodes the input domain as a set of states which
represent usage history of the software from the users point of view. Arcs are used to
connect the states and represent the transitions caused by the various stimuli to the
system. These stimuli can be generated from hardware, human interface, other software,
and so on. Finally, transition probabilities are assigned to the arcs and represent how a
typical user is likely to apply stimuli to the system. A Markov chain of this type is a
discrete time, finite state machine. A model of this sort can be represented as a directed
graph (Figure 2) or a transition matrix (Figure 3).

state 1

state 2

state 3

state 4

A,p(A)

B,q(B)

C,p(C)

D,q(D)

B,p(B)

C,p(C)

D,q(D)

3

Figure 2. A Markov chain in directed graph format

state 1

state 2

state 3

state 41/7

1/36/7

1

1/3

1/3

3/4 1/4

 A Markov chain in digraph format

T =
0

0

0

0

1/7

0

1/3

3/4

0

1

1/3

0

6/7

0

1/3

1/4

state 1 state 2 state 3 state 4

state 1

state 2

state 3

state 4

all rows
sum to 1

 A Markov chain in transition matrix format

Figure 3 Transition matrix and digraph form of a Markov chain

The common properties of Markov chains are;

1. time homogeneous; this means the probabilities on the arcs do not change with time.
2. finite state; this means the model has only a finite number of states.
3. discrete parameter; the state transition probabilities are discrete and not continuous.

Markov chains offer several advantages to modeling software systems:

1. The state diagram form is a common and familiar tool for modeling.
2. There are graph theoretic modeling techniques available.
3. Mathematical analysis is available for these models.
4. The models generalize well and sequences through the model can be made to look

more like typical use of the software system.

There are several steps for developing Markov models for software systems;

1. Develop the usage profiles
2. Define the usage probabilities
3. Conduct the statistical test
4. Analyze the results and update the models as necessary

DEVELOPING THE USAGE PROFILES

Software systems can have multiple users or classes of users. Each of these
classes of users can potentially use the system differently. The first step in developing

4

usage models is to determine what requires testing. This is referred to as stratifying the
input domain. There are two types of stratification; user level stratification and usage
level stratification. User stratification refers to who or what can stimulate the system.
Usage stratification refers to what the system can do under test. In other words, user
level forces you to think about all the various types of users and how they can use the
system (which may be different) and usage level refers to all the functionality that the
system is capable of providing.

Different modes of operation are also considered when developing a stratification

plan. A finite state machine of software usage is developed based on the operational
states of the software system. The test developer must understand what the software is
intended to do and how it is to be used. No knowledge about how the software is
designed or constructed is required to do this. Each usage condition should have a model
that represents conditions under which the software is used. In general, the expected
usage is modeled but other usage conditions may also be of interest. Usage should be
characterized in whatever terms are important in the testing context. For example, if it is
very important to test for special purposes such as a hazardous condition or malicious
use, a model should be constructed representing this scenario.

DEFINE THE USAGE PROBABILITIES

Once the user and usage models have been developed the arc probabilities are
assigned. These probability estimates are based on;

1. user data collected from existing systems
2. talking to or observing the user or users
3. prototyping and/or trial analysis
4. domain experts

 There are three approaches to defining the usage probabilities;

1. Uninformed approach. In the uninformed approach uniform probabilities are

assigned across the exit arcs for each state. This approach maximizes the “entropy”
which is a measure of statistical uncertainty. The higher the entropy, the less
representative the test sequences are to the model itself. This approach is useful when
no other information is available.

2. Informed approach. The informed approach is used when some actual user

sequences are available (from prototypes, prior versions, etc.). These estimates are
driven primarily from field data. This is the best approach to use if data is available.

3. Intended approach. The next best approach after the informed approach is the

intended approach. In this approach, test sequences are obtained by hypothesizing
runs of the software by the various user and usage types. Data to support this
approach comes from user data and domain experts.

5

CONDUCT THE STATISTICAL TEST
Once the usage models have been created and the probabilities have been

assigned, the next step is to conduct the experiment. Tests are conducted using a form of
Monte Carlo simulation. In this approach, random numbers are generated and used to
traverse the model of the software. Using this type of simulation, statistical integrity is
preserved. A random path through the software, driven by the usage model, arc
probabilities, and the random numbers generated create a statistical experiment on the
software. There are tools available to generate test scripts using these techniques. These
tools also generate a wealth of statistical data and visual aids to help the testing
organization establish reliability estimates and other stopping criteria.

Tests are executed until the required acceptance goals or stopping criteria are
established (Figure 4). The testing organization needs to determine what is acceptable
and unacceptable for each test executed. Acceptable means the software is ready for use.
Unacceptable requires the software to be re-worked. Testing of this sort on software
must be a controlled experiment. In order to use the statistical data available when
running such an experiment, the same version of software must be used in each of the test
cases. A new version of software marks the beginning of a new experiment. The
outcomes of the trials must also be consistent. When analyzing the results of each test,
pass/fail criteria must be used consistently by the testers and evaluators. Automated
pass/fail evaluation (sometimes called oracles) will help make the pass/fail criteria more
consistent. The testing organization must also be explicit to ensure experimental
integrity.

theoretic discrimination

0

0.005

0.01

0.015

0.02

0.025

0.03

1 3 5 7 9 11 13 15

sequence

D Series1

Figure 4. Theoretic discrimination used to determine stopping criteria

There are situations where pure statistical testing cannot be done. Other forms of

non-statistical testing may be included because they are required by the customer,
required by the contract for the product, or required by law. There are ways, using
statistical testing tools, to generate tests scripts that produce the fastest coverage of a
given usage model in order to achieve a level of coverage type testing. One effective
technique is to perform both non-statistical tests (such as coverage tests) as well as
statistical tests in the testing program. If the non-statistical tests are performed prior to
the statistical tests, the statistics generated by the statistical testing process will still be
valid. Performing non-statistical tests after statistical tests may invalidate the reliability
estimates of the software.

6

 Our program has developed an automated testing environment (Figure 5) that uses
statistically generated test scripts based on user and usage profiles [1] as well as other
operational profiles [2] to drive the testing effort.

Test Environment

Software Test Station

Statistical
test script
generation

Test
Sequences

Automated
test
generation
interface

Test Results
Verification

Expected
Results

Output Data/
Results

Oracle

Usage
Models

Crafted
Test

Cases

Script
 SW Test Support

Software

Software
Under Test

Control

Data

Control and
Sequencing of
Script

Test
Data/

Results

Modeling
tool

Output Data/
Responses

Output Data/
Responses

Test team

Figure 5. Testing environment automating the execution of statistically generated
test scripts

 The software components used in the test environment consisted of the following
main components (Figure 6);

• Operator test software; also referred to as the “user function”. There was a different

user function for each of the usage models developed for the software. These
programs were written in “C” and generated the message sequences that drove the
software under test for each of the test scripts generated from the usage model,

• Labview interface; This software was composed of a number of different Labview
“virtual instruments” used to provide an interface to the operator executing the tests,

• Station specific Special Test Equipment (STE) software; this software provides the
low level functionality required by each of the different software test stations,

• Common STE software; this software was the Application Programming Interface
(API) to the rest of the software. It provided capabilities to watch for certain events
occurring in the software under test, log those results, and provide information to the
user function software and Labview virtual instruments.

Operator test code
(User Function)

Operator interface

Labview
(virtual instruments)

Station
specific STE
S/W

Common
STE S/W Debugger

Solaris Operating System

Sun Workstation

Hardware
(or H/W
Emulation)

VxWorks OS

Single Board Computer

Sun to VME I/F
Ethernet

Figure 6. Software components for the testing environment

Once the test has been executed and the input and output events logged in an output file,
the data is parsed into several different oracle files (Figure 7). Each of these oracle files

7

was used for a different pass/fail criteria. “Generic” oracles were used to slice the data in
such a way as to determine if the proper high level sequencing of the test was performed
correctly. Other oracles were used to slice the data to determine other pass/fail criteria
such as;

• Does the data reflect the expected outputs as determined by the system engineering

model(s)?,
• Does the raw output data match the expected outputs defined in the algorithm

document?,
• Does the output message sequence match what was expected in the Software

Requirements Document?

Software
under test

Control/
log S/W

Test
results
file

* input
messages

* expected
output
messages

Oracle 1

Oracle 3

Oracle 2

System
engineering
model

SRS

Algorithm
Document

Did the message occur?

Is the data right?

User
functions
Figure 7. Testing Environment Oracle

TESTING AT THE PROGRAM LEVEL
 Software testing at the program level was performed using various levels of
statistical testing supplemented with unit and functional testing where required as well as
operational profiles testing techniques. Unit and function testing was generally
performed for the algorithmic portions of the software. This software involved the more
mathematically based functions, with strict real time constraints. Various implementation
and optimization strategies were performed to effectively map the algorithms to the
processor for optimal real-time performance. We developed an effective model for
certification of algorithmically intensive software that included a formal code inspection
and correctness verification phase, an optional level of unit and function testing (based on
the nature of the algorithms) which included both static and run time analysis, an
operational profile phase using real data collected from various user environments, and a
final statistical testing phase using usage models developed for different user and usage
stratifications (Figure 8).

8

static
analysis

fully specified
and compiled
code

* code inspection
* correctness
 verification
* tools (lint)

unit
test ?

unit test

* code coverage
* oracle compare

run time
code
analysis

yes

no operational
profiles

statistical
testing with
usage models

* leak detectors
* instrumentation

* field
 data

function
theoretic
sequence
enumeration

testing
oracletest grammar

and usage
model creation

function
mapping
rules

Figure 8. Testing model

LIMITATIONS TO MODELING

There are limitations to modeling software systems that must be understood in
order to properly analyze the statistics generated when using statistical techniques such as
the ones discussed in this paper. The quote “All models are wrong, but some are useful”
has some truth to it. The main point to remember when modeling any type of system
using any technique is that all modeling approaches lack, to some extent, the naturalness
for representative power. The Markov approach has limitations in handling some of the
common issues such as counting and concurrency. But there are ways of getting around
some of these issues but it may result in state explosion (larger models). Also, the more
abstract the model is, the less confident one should be in the predicted reliability
generated by the tools. If one is careful not to blindly accept the statistics without proper
analysis, then the statistical techniques discussed in this paper can be very useful in any
testing organization and help lead to higher quality software products.

References

1. Musa, John D. “Operational Profiles in Software Reliability Engineering”, IEEE Software, March

1993

2. Walton, G.H., J.H.Poore, and C.J.Trammel. “Statistical Testing of Software Based on a Usage

Model”, Software Practice and Experience, January 1993.

