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This paper presents a technique to test APIs that combines aspects of two 
published software testing methods, namely Markov modeling and category 
partitioning.  Markov modeling provides a basis for model based testing.  
Markov modeling establishes the context for generating API calls and call 
sequences within a single test case.  For modeling purposes, each 
combination of parameter values for each function call is a unique “input.”  
Category partitioning helps select parameter values and effective 
combinations of multiple parameters for individual API calls. Small examples 
demonstrate these techniques and two case study summaries illustrate its 
effectiveness. One case under laboratory conditions established proof-of-
concept and the other applicability to a large commercial API.  Some aspects 
of these techniques are manually intensive and suggest a need for 
automation. 

Introduction 

An API (Application Programming Interface) is a collection of software functions and 
procedures, called API calls, that can be executed by other software applications. 
Application developers code that links to existing APIs to make use of their functionality. This 
link is seamless and end-users of the application are generally unaware of using a 
separately developed API. 

During testing, a test harness—an application that links the API and methodically exercises 
its functionality—is constructed to simulate the use of the API by end-user applications. The 
interesting problems for testers are: 
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1. Ensuring that the test harness varies parameters of the API calls in ways that verify 
functionality and expose failures. This includes assigning common parameter values as 
well as exploring boundary conditions. 

2. Generating interesting parameter value combinations for calls with two or more 
parameters. 

3. Determining the content under which an API call is made. This might include setting 
external environment conditions (files, peripheral devices, and so forth) and also internal 
stored data that affect the API. 

4. Sequencing API calls to vary the order in which the functionality is exercised and to 
make the API produce useful results from successive calls. 

This paper addresses the construction of this test harness by combining two published 
testing techniques that, as an ensemble, address the major problems posed by API testing. 
Specifically, we use the category-partition technique to directly address parameter selection 
and variation (item 1) and parameter combination (item 2), and Markov modeling to address 
the analysis and enumeration of software and environment states (item 3) and generating 
input sequences (item 4). 

In the next section, we review the essential points of each of these techniques. We refer to 
the original work of Ostrand and Balcer [1] and Whittaker [2] to keep this review concise. 
Next, we proceed by describing the hybrid technique and illustrating its application. Finally, 
we present results from two case studies to provide proof-of-concept. The first case study is 
a collection of platform-independent, public domain Ada routines, called AdaGraph, which 
consist of about 30 API calls that implement basic drawing and graphing functions. The 
second is a more modern, and much larger, C++ API on the Windows platform, Microsoft’s 
Collaborative Data Objects (CDO) API that has 120 calls to handle messaging for Windows 
applications.  

A Hybrid Technique for API Testing 

Refer to [1] and [2], respectively, for complete details about these techniques. 

Category partitioning 

The category-partition technique is a general-purpose functional testing method that goes 
through a series of decompositions based on characteristics of the input domain. For our 
purposes, there are three basic steps to category-partitioning: 1) create a set of categories 
that describe properties of inputs; 2) partition the categories into choices that enumerate 
specific values or value-ranges that inputs can assume; and 3) determine constraints among 
the choices that describe how the choices interact.  The following paragraphs describe each 
of these steps in detail. 

Suppose a routine takes as input a character string. Step 1 of the category-partition method 
requires thinking through attributes of this input that have an effect on the behavior of the 
routine. For example, pertinent categories might be the length of the string and the content 
of the string because both of these attributes will have to be varied in order to properly test 
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the routine. In general, categories are not detailed, instead they represent high-level 
attributes of the inputs. 

Step 2 adds more detail to the categories by further partitioning them into specific values or 
value-ranges that can be assigned to the input. For example, the length category could be 
assigned a value of 32 or a range of values, say, 1-16. We use the following guidelines in 
choosing values and value-ranges: 

n Create a choice for each value or value-range that forces a default setting to occur. For 
example, if the default is to ignore spaces in the string, then we’d want choices that 
specify that spaces be present in the input so that this behavior is tested. 

n Create a choice for each value that causes the output to change in some substantive 
way. Output could be a return value for a function call or visible displayed results. For 
example, if the length of the string is set to 0, it is illegal and an error message will be 
displayed. In this case, zero should be a choice for the length category so that this 
behavior get tested. 

n Create a choice for each value on or around distinguishable “boundaries.” Obviously, 0 
is again a choice for the length category and so is 1 since it is adjacent to the actual 
boundary. 

Step 3 consists of writing constraints that describe how choices for one category affect 
choices for another category. For example, a constraint that specifies that an input choice 
cannot have embedded spaces and cannot be of length 0 is required to keep us from 
considering impossible choice combinations. Conversely, if we want to force certain choice-
combinations to occur, then a constraint can also be written to achieve this. 

When category partitioning is complete, a single input, like the string example above, might 
be partitioned into any number of actual values that are necessary for testing. When 
performing category-partitioning on an API call with multiple parameters, this number can 
grow quite large, for example, in their original paper, Ostrand and Balcer [1] partitioned a 
simple find command with two parameters that resulted in 40 individual calls, each with a 
different parameter variation. 

Category Partitioning Example 

The “Beep” function of MS Windows provides us a simple illustrative example.  From the 
Visual Studio documentation we can obtain the specification for “Beep:” 

“The Beep function generates simple tones on the speaker. The function is 
synchronous; it does not return control to its caller until the sound finishes.  

 

BOOL Beep( 
  DWORD  dwFreq,       // sound frequency, in hertz 
  DWORD  dwDuration   // sound duration, in milliseconds 
);” 
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The parameter dwFreq specifies the frequency of the sound in hertz and must be in the 
range 37..32,767.   The parameter dwDuration specifies the sound duration in milliseconds. 

When successful the function returns a nonzero integer.  Otherwise it returns zero and 
establishes an additional error code accessable by GetLastError. 

For each of these parameters we can establish categories based on the specification: 

Categories(dwFreq) = {Too Low, Nominal, Too High} 

Category(dwFreq) ∈ Categories(dwFreq) 

Category(dwFreq) = Too Low iff DWORDMin <= dwFreq < 37  

Category(dwFreq) = Nominal iff 37 <= dwFreq <= 32767 

Category(dwFreq) = To High iff 32767 < dwFreq <= DWORDMax 

Where DWORDMin is the minimum value represented within the type DWORD and 
DWORDMax is the maximum value within this type. 

 

Again, from the specification, two categories are implied since the idea of negative time is 
still the stuff of science fiction. 

Categories(dwDuration) = {Ridiculous, Milliseconds} 

Where 

Category(dwDuration) ∈ Categories(dwDuration) 

Category(dwDuration) = Ridiculous iff dwDuration < 0 

Category(dwDuration) = Milliseconds iff 0 <= dwDuration <= DWORDMax 

 

What category partitioning says is that the way the system responds depends on only the 
category.  The system will respond in the same manner for dwFreq = 37 as it does for 
dwFreq = 32767 and all values in between (given that dwDuration does not change). 

These categories are based on the specification.  We will see that there are other 
categories, unspecified.  Someone must decide whether these additional categories are 
bugs or undocumented features. 

Assuming for the moment that we have captured the categories of Beep, and to ensure that 
the partition values of each category are correct, we need two input conditions for each 
category.  This is true for categories that are ranges, as is the case in this example.  Further, 
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when more than one variable can be presented, then the input conditions are the cross 
product of the category partition values as shown in Table 1. 
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• Table 1 Beep Category Partitioning 

Category  
(dwFreq) 

Partition 
 (dwFreq) 

Category 
 (dwDuration) 

Partition  
(dwDuration) 

Too Small 

DWORDMin 
Ridiculous DWORDMin 

-1 

Milliseconds 0 
DWORDMax 

36 
Ridiculous DWORDMin 

-1 

Milliseconds 0 
DWORDMax 

Nominal 

37 
Ridiculous DWORDMin 

-1 

Milliseconds 0 
DWORDMax 

32767 
Ridiculous DWORDMin 

-1 

Milliseconds 0 
DWORDMax 

Too Large 

32768 
Ridiculous DWORDMin 

-1 

Milliseconds 0 
DWORDMax 

DWORDMax 
Ridiculous DWORDMin 

-1 

Milliseconds 
0 

DWORDMax 
 

We can specify the nature of the BOOL function as follows: 

code 
#include <windows.h> 
end 
 
Spec BOOL Worked Beep(DWORD dwFreq, DWORD dwDuration); 
 

From this we can develop code using a tool currently under development to generate a test 
wrapper to call this function from the command line.  

This reduces to the following test cases (and results) 

 



  

   

Executing: DWORDMin = -40000 
 
Executing: DWORDMax = 40000 
 
Executing: Beep DWORDMin 
DWORDMin 
Worked: FALSE  
 
Executing: Beep DWORDMin -1 
Worked: FALSE  
 
Executing: Beep DWORDMin 0 
Worked: FALSE  
 
Executing: Beep DWORDMin 
DWORDMax 
Worked: FALSE  
 
Executing: Beep 36 DWORDMin 
Worked: FALSE  
 
Executing: Beep 36 -1 
Worked: FALSE  
 
Executing: Beep 36 0 
Worked: FALSE  
 

Executing: Beep 36 DWORDMax 
Worked: FALSE  
 
Executing: Beep 37 DWORDMin 
Worked: TRUE  
 
Executing: Beep 37 -1 
Worked: TRUE  
 
Executing: Beep 37 0 
Worked: TRUE  
 
Executing: Beep 37 DWORDMax 
Worked: TRUE  
 
Executing: Beep 32767 DWORDMin 
Worked: TRUE  
 
Executing: Beep 32767 -1 
Worked: TRUE  
 
Executing: Beep 32767 0 
Worked: TRUE  
 
 
Executing: Beep 32767 DWORDMax 
Worked: TRUE  

 
Executing: Beep 32768 DWORDMin 
Worked: FALSE  
 
Executing: Beep 32768 -1 
Worked: FALSE  
 
Executing: Beep 32768 0 
Worked: FALSE  
 
Executing: Beep 32768 DWORDMax 
Worked: FALSE  
 
Executing: Beep DWORDMax 
DWORDMin 
Worked: FALSE  
 
Executing: Beep DWORDMax -1 
Worked: FALSE  
 
Executing: Beep DWORDMax 0 
Worked: FALSE  
 
Executing: Beep DWORDMax 
DWORDMax 
Worked: FALSE 

 

This is not, however, the full story.  The assumption of category partitioning is that all values 
within the partition produce the same result.  That is to say, the functional results of Beep 0 0 
should be the same as the results for Beep 36 0. since 0 and 36 are in the same category of 
dwFreq,Too Low. 

 

Executing: Beep 36 0 

Worked: FALSE  

 

Executing: Beep 0 0 

Worked: TRUE 

 

This is the discovery of a new partition of dwFreq expanding the definition to: 

 

Categories(dwFreq) = {Too Low, Zero, Nominal, Too High} 

Category(dwFreq) ∈ Categories(dwFreq) 

Category(dwFreq) = Too Low iff DWORDMin <= dwFreq < 37 AND dwFreq ≠ 0. 
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Category(dwFreq) = Zero iff dwFreq = 0  

Category(dwFreq) = Nominal iff 37 <= dwFreq <= 32767 

Category(dwFreq) = To High iff 32767 < dwFreq <= DWORDMax 

 

The result “Executing: Beep 32767 –1, Worked: TRUE” is unexpected.  The function returns 
true (and produces a tone ) for negative durations.  

 

Markov Modeling 

A Markov model for software testing is a couple (S, δ) where S is the set of all operational 
states of a software system and δ:S×I×[0…1]→S is the non-deterministic transition function, 
where I is the set of externally generated inputs of the software. Operational states describe 
internal or external objects that influence the behavior of the software under test. In general, 
we are interested in objects that affect the way the software reacts to external stimuli. We 
say that software is in state j when a collection of objects has certain values and in state k 
when they have different values. State j is characterized by the allowable external inputs and 
disabled (or, at least reacted to in a different manner) by the software. State k will have a 
different set of allowable inputs that mark it as distinct from j. 

The transition function δ describes how the application of external input causes state 
changes within the software. The probability distribution associated with each state 
represents the operational profile, i.e., the probability that the corresponding inputs will be 
applied during typical use, for that state. As long as the probabilities sum to one for each 
s∈S, the model is a finite state, discrete parameter Markov chain.  

Knowledge of the state space is important to testers for two reasons. First, it allows 
syntactically valid test cases—allowable sequences of inputs directly applicable to the 
software—to be machine generated without human intervention. Without knowledge of the 
state space, many such input sequences otherwise appear invalid, requiring testers to 
manually edit them so that they will execute. Second, knowing the states makes it easier to 
predict expected outputs. The output that software produces depends on the input applied 
and the current state of the software. Since testers track the software’s state as testing 
progresses, it is more straightforward to predict the expected output (which is needed to 
check for correct behavior, i.e., to develop an oracle). 

The operational modes of the software’s support the determination of the states and 
transition function, S and δ.  An operational mode is a variable that abstracts objects that 
govern the way a software system responds (with output as opposed to computation) to 
system input. For example the variable “phone status = ringing or not ringing” is an 
operational mode for a phone switch because it governs whether the output for the “take the 
phone off the hook” input is “connected to caller” or “dial tone,” respectively.  Assigning a 
specific value to each operational mode of the system identifies a state, s∈S. 
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Testers begin by enumerating the application’s inputs1 and then systematically investigating 
possible operational modes. An application generally has a number of operational modes 
that characterize its behavior. At any given point in the execution of the software, each 
operational mode will have a specific value from the set of possible values for that mode. As 
inputs are applied to the software, a change in the value of one or more operational modes 
can occur, signifying that the application has changed its internal state. We model these 
states of the software as the state set of a Markov chain. The transitions between states are 
labeled with external inputs that cause the corresponding state change and an occurrence 
probability that represents the proportion of time we want that particular input to be 
generated from that particular state during testing.  

Generating test cases from the Markov chain starts by establishing an initial state and then 
randomly "walking" through state transitions according to the transition probabilities. This 
Monte-Carlo style simulation effectively generates paths through the chain from a specified 
start state until some specified termination state occurs. Applying the sequence of inputs 
directly to the software and monitoring the output constitutes execution of the test case.  

The Markov modeling technique models the possible ways to sequence multiple API calls 
based on external environment considerations and internal, persistent data. The API call-
instances determine operational modes that are the basis for determining the states. API 
call-instances resulting from category-partitioning label the state transitions. 

Markov Modeling Example 

To illustrate Markov modeling we chose a simplistic subset of the C library file IO 
commands, fopen, fclose, fprintf, and fgets.  Though we should apply category partitioning to 
each of these functions to provide a thorough test, we consider only a simple subset of the 
parameter values for each of the commands: 

Open Read: Handle = fopen("testfile","r"); 
Open Write: Handle = fopen("testfile","w"); 
Close: FailCode = fclose(Handle); 
Write: Characters = fprintf(Handle,"%s\n","Test Record"); 
Read: FailCode = fgets(OutputString,500,Handle); 

 

We further limit the complexity of our example by only considering three operational modes:  

File Status 
Records in File 
Position 

 
Where 

Domain(File Status) = {Does not exist, Closed, Open for Read, Open for Write}, 
Domain(Records in File) = {0, 1, 2} 
Domain(Position) = {0,1,2} 

 
The number of records in our test file is arbitrarily limited to two and this will require that we not allow 
the “Write” input to occur after writing two records to the file.  The Position determine the number of the 

                                                        
1 Inputs are loosely defined here as “external events generated by users.” In the case of most UI software, inputs are keystrokes 
and mouse clicks. For an API, an input is a function call with a specified set of parameters. 
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record last read or written and therefore, when a file is opened the position is 0 until a read or write 
occurs.  When “Position” is equal to “Records in File,”  the actual file position is at the end of file. 
 
There are many other operational modes.  For instance, we could consider concurrent operation of 
more than one file.  There are other operational mode values.  For instance, a file can exist, be closed, 
but be locked by another application.  We will keep our model “simple.”   
 
The number of theoretical states is the cross product of the operational modes and, in theory, 
4 * 3 * 3 = 27 states.  In our example, however, certain combination of operational modes cannot exist. 
For instance, if the file does not exist, there can never be records in it or the file position can never 
exceed the number of records. 
 
We identify the state labels with a triple corresponding to the values of the operational mode where: 
 

D = Does not exist,  
C = Closed,  
R = Open for Read and  
W = Open for Write. 

 
The 13 allowed states for our model are (“-“ denotes “don’t care”): 

 
 
State transitions are the cross product of the states and the inputs.  Table 2 is the state transition table 
for the stdio subsystem. Even for this simple state model, the diagram that illustrates the state model 
is too complex for representation here.  This table makes certain assumptions about how this system 
of functions should operate.  For instance, the table assumes that an attempt to open a file that is 
already open will not affect the state.  Similarly, if a file is open for reading (or writing) and attempt to 
write (or read) will be rejected and therefore not cause a change of state.  Alas, as we shall, see, this 
does not model the reality of these functions. 
 

• Table 2 - Desired State Transitions, stdio Subsystem 

Input/State D0- C0- C1- C2- W00 W11 W22 R00 R10 R11 R20 R21 R22 
Open Read (1) R00 R10 R20 R00 R00 R00 R00 R10 R10 R20 R20 R20 
Open Write W00 W00 W00 W00 W00 W00 W00 W00 W00 W00 W00 W00 W00 

Close D0- C0- C1- C2- C0- C1- C2- C0- C1- C1- C2- C2- C2- 
Write D0- C0- C1- C2- W11 W22 (2) R00 R10 R11 R20 R21 R22 
Read D0- C0- C1- C2- W00 W11 W22 R00 R11 R11 R21 R22 R22 

 

  
D--- File does not exist; There are no records and no position. 
C0-- File exists but has no records. 
C1-- File exists with one record. 
C2-- File exists with two records. 
W00 Open for writing with no records in the file.  Positioned at end of file. 
W11 Open for writing and one record in the file.  Positioned at end of file. 
W22 Open for writing and two records in the file.  Positioned at end of file. 
R00 Open for reading with no records in the file. Positioned at end of file. 
R10 Open for reading with one record but positioned at the beginning of the file. 
R11 Open for reading with one record in the file but positioned at the end of file. 
R20 Open for reading with two records in the file but positioned at the beginning of 

the file. 
R21 Open for reading with two records and the first record has been read. 
R22 Open for reading with two records and positioned at the end of file. 
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Notes:  
(1) Creates a NULL file handle 
(2) An output is not allowed in this state because it would create more than two records. 

 
 
The actual case is somewhat different.  In reality, the assumption that the stdio subsystem rejects calls 
in conflict with the current state is false.  For example, when we open a file for writing that is already 
open for writing and has two records, it will be destroyed.  Table 3 represents the state transition table 
as actually measured.  By examining each possible transition and monitoring the correctness of the 
state achieved by that transition we discover very interesting properties of the actual system.  Some of 
those properties should be considered “bugs.”  (The behavior of this system is not actually specified; 
e.g., there is no specification for the behavior of the system when a file is opened for read and a file 
write occurs.) 

Table 3 - Actual State Transitions, stdio Subsystem 

Input/State D0- C0- C1- C2- W00 W11 W22 R00 R10 R11 R20 R21 R22 
Open Read (1) R00 R10 R20 (5) (5) (5) R00 R10 R11 R21 R22 R22 
Open Write W00 W00 W00 W00 W00 W11 W22 (6) (6) (6) (6) (6) (6) 

Close D0- C0- C1- C2- C0- C1- C2- C0- C1- C1- C2- C2- C2- 
Write D0- C0- C1- C2- W11 W22 (2) R00 R10 R11 R20 (4) R22 
Read D0- C0- C1- C2- W00 (3) (3) R00 R11 R11 R21 R22 R22 

 

Notes: 

(1) Creates a NULL file handle 
(2) An output is not allowed in this state because it would create more than two records. 
(3) An undefined record is written to the output file. 
(4) The input file pointer is advanced by the write command.  Subsequent read is incorrect. 
(5) State transitions to some that appears to be R00 
(6) State transitions to some that appears to be W00 

 

Thus we have seen that by analyzing just the inputs of a system we can locate category 
portioning bugs and by analysizing state, we can identify state transition bugs.  We extend 
these capabilities but combining these two techniques. 

The Hybrid Technique 

We define a hybrid technique that uses both category-partitioning and Markov modeling to 
test an API.  Category-partitioning is applied first to each individual API call to analyze and 
partition the parameters of the call into interesting choices and value-combinations.  A single 
API call with a few parameters will be transformed into a potentially large number of specific 
instances of the call where each instance has a different set of parameter choices and 
values. This set of API call instances determines the state set of the Markov model. We 
perform category-partitioning separately on each parameter of each call within an API.  The 
selected parameter value sets for each call are values selected from the cross products of 
the category partitions of each parameter set.  Ideal values are category range limiting 
values. 
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The Hybrid Example 

We can apply category partitioning to each of the parameters of each of the calls to extend 
the Markov modeling technique to the hybrid technique.  For the purposes of example only, 
we shall apply category partitioning only for the file name parameter of the fopen for write 
command.  So far we have only considered only “testfile” for the name.  The file name 
parameter is a string and therefore can have multiple categories over the string properties 
length, alphabet, syntax and semantics.  For instance, what can happen with a file name of 
zero length?  Of length 10,000?  File name specifies a path name which has certain syntax 
and semantic requirements.  What happens when that is violated?  Consider  

Handle = fopen (“..\..\..\..\..\..\..\..\..\..\..\testfile”,”w”); 

(One would predict that requesting the creation of a file “beneath the root” would be invalid; 
in fact, however, this opens a file in the root directory.) 

We can consider the category of valid names over the printable ASCII alphabet that are a 
single character long.  We can group these into “valid” and “invalid” names.  We expect that 
the behavior of the system for valid names is consistent with the model already defined, but 
by adding the new category of file names, we would expect different behavior.  The question 
is, which names are valid and which names are not?  Some experimentation may be 
required when the specification of validity is not available. 

For our simple model, we have chosen calls that pass strings.  The discourse above about 
the properties of names applies in general to strings and we can consider strings to have at 
least two categories, valid and invalid.  When we specify multiple parameters, we must allow 
for the cross product of the input categories of all parameters.  The fopen input used in the 
model so far considered only valid strings for filename and mode and so for our hybrid 
model, in addition to the input specified we must also consider input of the following 
categories: 

fopen valid invalid 

fopen invalid valid 

fopen invalid invalid 

Table 4 expands the transition table to include the category partitioning of the parameters for 
each call.  When we discover additional categories, we must expand the transition table to 
include the new input categories.  Similarly, these new input categories might create new 
states, and for each new state, transitions must be determined for each input. 
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Table 4 - Competed Hybrid stdio State Transition Table 

Input/State D0- C0- C1- C2- W00 W11 W22 R00 R10 R11 R20 R21 R22 
Open Valid Read (1) R00 R10 R20 (5) (5) (5) R00 R10 R11 R21 R22 R22 

Open Invalid Read (1) C0- C1- C2- (7) (7) (7) (7) (7) (7) (7) (7) (7) 
Open Valid Write W00 W00 W00 W00 W00 W11 W22 (6) (6) (6) (6) (6) (6) 

Open Invalid Write D0- C0- C1- C2- (7) (7) (7) (7) (7) (7) (7) (7) (7) 
Open Invalid Invalid D0- C0- C1- C2- (7) (7) (7) (7) (7) (7) (7) (7) (7) 

Close D0- C0- C1- C2- C0- C1- C2- C0- C1- C1- C2- C2- C2- 
Write Valid D0- C0- C1- C2- W11 W22 (2) R00 R10 R11 R20 (4) R22 

Write Invalid D0- C0- C1- C2- (7) (7) (7) (7) (7) (7) (7) (7) (7) 
Read D0- C0- C1- C2- W00 (3) (3) R00 R11 R11 R21 R22 R22 

 

Notes: 

(7) The next state has not been determined nor estimated. 
 

Actual testing practice should test differing valid and invalid strings.  Where possible, testing 
should include exhaustive patterns; but when this is not possible random selection from the 
possible choices is better than repeating values that have previously been tested.  Where 
discrete boundaries are defined, such as the length of a string, the lengths precisely at and 
precisely immediately above (or below)  those discrete boundaries should be tested. 

Differing values of “valid” strings causing different system behavior from the same state 
belong to different partitions and should be modeled separately. 

Results from a Laboratory Experiment 

Students at FIT successfully applied this technique to AdaGraph.  The AdaGraph API is a 
set of public domain Ada routines providing basic drawing capabilities for Ada applications. 

Twenty-one API routines were included in the test.  The test team chose six states for 
AdaGraph with 13 possible transitions.  The average number of parameters per API call was 
2.54.  Category partitioning identified 215 different inputs. 

random selection of the arcs of the state model generated the test cases for this project.  
The test case generation completion criterion was the coverage of all transitions (and all 
states).   

Results from an Industrial Experiment 
The Collaborative Data Objects (CDO) API is organized as a collection of twenty software 
objects, implemented in C++, that handle messaging tasks for Microsoft Windows 
applications. There is a variety of applications of CDO, including electronic mail. 

The initial model contained 34 states with 65 distinct inputs and a total of 1061 transitions. 

The student test team developed five additional models: 
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• Table 5 - CDO Models, Parameters 

States Transactions Inputs 

103 1337 33 

44 658 34 

52 2218 82 

17 367 36 

36 739 49 
  

Test Results 

Each product we tested had already been tested by their respective vendors and released. 
Therefore, we did not anticipate that we would find a huge number of failures. We performed 
the laboratory experiment without the benefit of access to the AdaGraph developers (thus, 
the problems we encountered cannot be verified as actual product failures), however, we 
received full cooperation from Microsoft developers for CDO.  Faculty and students at 
Florida Tech conducted both projects. 

A single student modeled and tested AdaGraph, with minimal assistance and as a first-time 
testing effort and over a four-month period as a part-time assignment.  A team of six part-
time students modeled and tested CDO, also as a first time testing effort, over a 9-month 
period.  

The AdaGraph project discovered two potential failures during the execution of the test.   

Destroy_Graph_Window: 

When an attempting to create a new window after calling Destroy_Graph_Window to delete 
a window, the new window is not, in fact, created.  The program terminates without an error 
message. 

Goto_XY: 

Goto_XY accepts coordinate parameters specifying a point outside of the selected window 
without indicating an error.  

The first simple model of CDO uncovered 3 serious defects reported to and corrected by 
Microsoft.  Microsoft received a confidential report from FIT on the defects uncovered by the 
additional models.  
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