
International Conference On
Software Testing Analysis & Review

May 1-5, 2000
Orlando, FL, USA

P R E S E N T A T I O N

Wednesday, May 3, 2000
3:15PM

                                                                                                                                                            

GRAYBOX SW TESTING IN THE REAL WORLD IN
REAL-TIME

                                                                                                                                                                                                                                    

André Coulter
Lockheed Martin

W14

Presentation
Paper
Bio
Return to Main Menu



Lockheed Martin – Missiles and Fire
Control - Orlando

1

Graybox Testing

Graybox Software Testing in the Real
World in Real-Time

André Coulter



Lockheed Martin – Missiles and Fire
Control - Orlando

2

Graybox – Data Capture

• The Graybox methodology involves
software/hardware testing using a-priori Systems
behavioral modeling data to determine the
expected results of the system.

• Given a system with a known state and input data,
it should be possible to predict the next system
state and its output data.

• A system with 5 modes  (off, standby, norm-op,
test, calibrate) can be tested to verify proper state
transitions.



Lockheed Martin – Missiles and Fire
Control - Orlando

3

Graybox Testing – AutoTester

Automated
Module
Tester

Module
Under
Test

Test Harness

Test harness created from the MUT’s specification

Software Test Expert domain knowledge is captured



Lockheed Martin – Missiles and Fire
Control - Orlando

4

Graybox Testing - Modal

• The valid state transitions are:
– Off => Standby

– Standby => Norm-Op, Test, Calibrate, Off

– Norm-Op, Test, Calibrate => Standby

• The System in the Off mode can only transition to
the Standby mode.

• The System in any mode must first transition to
the standby mode before going to a new mode.



Lockheed Martin – Missiles and Fire
Control - Orlando

5

Graybox Testing – Module_Tester

Module_Tester

Module_Driver

Module_Under_Test

MTIF MTOFInputs/Expected Results

Inputs Outputs

Software under Test
executing under the
control of a Test
Executive

Actuals compared to
Expected results and 
scored

MTIF/MTOF
Module Test input/output files



Lockheed Martin – Missiles and Fire
Control - Orlando

6

Graybox – System Moding

• Discrete state data
– Off Mode (0)
– Standby Mode (1)
– Normal Op Mode (2)
– Test Mode (3)
– Calibrate Mode (4)

• System transitions to a
commanded mode and
remains in that mode until
a new mode command is
received 0

1

2

3

4

State



Lockheed Martin – Missiles and Fire
Control - Orlando

7

Graybox Testing - Modal

• A Graybox test consists of setting up an
input condition and verifying the system
correctly responded.

• During a modal test, the system will
normally remain in the commanded mode,
therefore time is not a factor in testing.



Lockheed Martin – Missiles and Fire
Control - Orlando

8

Graybox – Modal Test

• Modal Test
– Verify state = Off
– Transmit state = Standby
– Verify state = Standby
– Transmit state = Test
– Verify state = Test
– Transmit state = Off
– Verify state = Test



Lockheed Martin – Missiles and Fire
Control - Orlando

9

Graybox Testing – Non Real
Time Vs Real Time

• During Modal testing, time is not important.
• During Operational Data testing, time is

important.  Data is constantly changing over
time.

• Operational data captured during normal
system operation requires a definite sense of
time.  A radar system tracking targets must
calculate the a/c position in real time.



Lockheed Martin – Missiles and Fire
Control - Orlando

10

Graybox Testing – Non Real
Time

• The original concept of Graybox testing provided
a method to verify embedded software during the
Code and Unit Test phases of a project.

• The methodology utilized no concept of time
during testing since the software was executing in
a debugger.

• To expand the Graybox methodology into the
formal test arena a definite concept of time was
needed.



Lockheed Martin – Missiles and Fire
Control - Orlando

11

Graybox Testing – Time Domain

• Time Domain
– Non Real-Time (NT), Passage of time is not

important, event driven system.
– Near Real Time (NRT), Passage of time is

important but simulated by frame clock.  Used
when performing Real Time simulations.

– Real Time (RT),  Passage of time is important.
Time is real.  Execution of the actual system.

– Soft Real Time (SRT), Hard Real Time (HRT)



Lockheed Martin – Missiles and Fire
Control - Orlando

12

Graybox Testing – Real Time

• Real Time
– Local Time

• Internal CPU clock time

• Local Frame Time ( 1 tic = 100ms )

• Object Level Time (OLT) starts at the object’s birth!

– Master System clock time
• ZULU time

• IRIG time.



Lockheed Martin – Missiles and Fire
Control - Orlando

13

Graybox Testing – Operational
Data

• Operational Data is collected and time stamped at
the object level.

• Object level time stamping involves dating an
object based on the amount of time the object has
been alive.

• Data extraction and verification can now be based
on the life time of the object vs actual wall clock
time.

• Object Level Time stamping allows tests to be
repeated in real time.



Lockheed Martin – Missiles and Fire
Control - Orlando

14

Graybox Testing – Object Level
Time

• Object Level Time in the Graybox sense is fuzzy
time.

• To verify an Object has the correct value at the
correct time, an object is first requested to return
its lifetime value, then the object request value,
followed by the lifetime value.

• The object is then tested to verify a value was
returned that is within the starting OLT and the
ending OLT.



Lockheed Martin – Missiles and Fire
Control - Orlando

15

Graybox Testing in Real Time

• Capturing data in real
time requires a
knowledge of time

• Each data point must
be time stamped.

• Each data point must
be compared to the
expected data point in
the time dominion.

Sine of X over Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sin(X
)



Lockheed Martin – Missiles and Fire
Control - Orlando

16

Graybox Testing in Real Time
• Systems A-priori Data in Table
• Captured Data

– Object Start_Lifetime = 3
– Object Value = 0.866
– Object Ending_Lifetime = 5

• Data is validated if Object Value
falls within Beginning and
Ending OLT times.

• All Three values are acceptable
• (0.7071, 0.866, 1.0) 170

160

150

140

130

120

110

0.7077

0.8666

1.05

0.8664

0.7073

0.52

01

FrmTm -OLT  -  Value



Lockheed Martin – Missiles and Fire
Control - Orlando

17

Graybox Testing - ToolKit

Identify a module to be tested

Identify filename of the module

Instrument module for coverage

Stub incomplete modules
Generate a test driver

Execute module in the tester

View results after execution

Generate a test case file

Generate a regression test file

Testing as easy as point and click



Graybox Software Testing in the Real World in Real-Time
André C. Coulter

Lockheed Martin Missiles and Fire Control - Orlando

Abstract
The Graybox Testing Methodology is a software testing method used to test embedded systems.
The methodology is platform and language independent.  The current implementation of the
Graybox methodology is heavily dependent on the use of a host platform debugger to execute
and validate the software under test.  Recent studies have confirmed that the Graybox method
can be applied in real-time using software executing on the target platform.  This now expands
the capabilities of the Graybox method to include not only path coverage verification but also
worst-case / best-case path timing.  The Graybox toolset can now be called upon to perform and
verify performance requirements.  It is now possible to verify/validate CSCI/CSU/Module/Path
timing, functional and structural requirements in a single test case with the same format used to
verify/validate functional requirements.  The Graybox methodology is a full life-cycle testing
methodology that enables software developers to test embedded systems in non real-time or in
real-time.  This paper will present the Graybox methodology and how this method has been
applied in a real-time environment to validate mission critical embedded software systems.

1.0 Introduction
The computer industry is changing at a
very rapid pace.  In just a few short years
we have seen an industry where access
to a computer was limited to a select few
individuals in white lab coats to one
where almost every employee in an
office complex has a computer on their
desktop.  This explosive trend has been
fueled by both hardware and software
advances.  Computers are becoming an
indispensable item for every product
being developed.

In the aerospace industry, computers and
their corresponding software control
every aspect of a product from its
concept and design, to its development,
manufacture, and test.  “Software as a
product item refers to any computer
program, whether it is an operating
system, a single subroutine, or a
microprogram”. [Spencer85]  In order to
keep pace with a rapidly changing
computer industry, software testing must
develop methods to verify and validate
software for all aspects of a product
lifecycle.  Software engineers must have
tools that will enable the rapid and

accurate testing of both functional and
performance requirements.

2.0 Scope
Graybox Software testing in Real-Time
seeks to provide a method of testing
software that will be both easy to
implement and easy to understand using
Commercial Off The Shelf (COTS)
software and hardware.  The Graybox
methodology is defined as “Blackbox
testing + Whitebox testing + Regression
testing + Mutation testing”. [Coulter99]
The modified Graybox method will
address real-time performance testing.

The original Graybox methodology did
not address real-time or system level
testing.  The major concentration of the
methodology was to provide a system
that allowed test engineers to create
ample test suites that thoroughly tested a
software product.  The emphasis of this
paper will be to include real-time
performance verification and validation
in the methodology without altering the
intent of a Graybox test.   As “recently
as 1998, in one Fortune 100 company,
performance testing was conducted
while one test engineer sat with a



stopwatch, timing the functionality that
another test engineer was executing
manually”. [Elfriede99]

The Graybox method enabled the
engineer to state the inputs and the
expected results in terms of system
requirements.  The engineer can state the
system performance requirements along
with the functional and structural
requirements to form a complete and
thorough test of the deliverable system.
“NASA stated that on-board software
reliability must be such that, during the
entire shuttle program, not one vehicle is
lost or damaged beyond repair because
of software problems”.  [Jelinski72]  In
order to achieve this level of reliability
the software must be thoroughly tested at
both the functional and performance
levels.

Applying performance testing earlier in
the project testing lifecycle will give
confidence that the correct product will
be delivered and operates correctly at the
performance stated in the requirements.
Testing of performance characteristics
must be moved closer to the beginning
of the development cycle.  “If equal
emphasis was given up front to testing,
then I believe that good code would
follow, because the things that we
recognize as good in coding are the same
things that contribute to easy testing”.
[Beizer84]

3.0 Computer Systems
Computer systems can be placed in one
of many categories.  The categories are
normally based on the type of processing
required and the speed at which the user
expects a response.  Batch or non real-
time systems require a minimal amount
of human intervention and are heavily
dependent on the amount of time spent

determining the answer to a problem.
As the requirement for human
interaction increases or the amount of
time spent on solving a problem is
reduced, computer systems move into a
realm of real-time processing.  “Man
machine interactive analysis and
processing are preferred to batch
processing for more efficient analysis”.
[Hanaki81]

As the systems engineer moves into the
real-time realm, new and interesting
problems arise.  The computer system
must not only produce the correct
answer, but also must meet strict timing
constraints that do not exist in a batch-
oriented non real-time system.  “Real-
Time processing implies dedicated,
special-purpose computers often running
many processing elements in parallel”.
[Onoe81]

This multi-tasking, multi-computer
environment presents special challenges
when testing computer software that
must meet specific timing requirements
in this hybrid environment.   “A single
CPU cannot afford to deal with various
kinds of image data or various
processing phases in an interactive
multi-user environment”. [Isaka81]  The
original Graybox technique requires the
stopping and starting of the computer
system to verify internal code coverage
and functional requirements.  “It is
usually desirable that a real-time system
should operate without stopping”.
[Martin67]

4.0 Graybox Software Testing
The Graybox methodology is a ten step
process for testing embedded computer
software (refer to Table 1. Ten Step
Graybox Methodology).  The
methodology starts by identifying all the



input and output requirements to a
computer system.  This information is
captured in the software requirements
documentation.

Table 1.  Ten Step Graybox
Methodology
Step Description
1 Identify Inputs
2 Identify Outputs
3 Identify Major Paths
4 Identify Sub-function (SF) X
5 Develop Inputs for SF X
6 Develop Outputs for SF X
7 Execute Test Case for SF X
8 Verify Correct Result for SF X
9 Repeat Steps 4:8 for other SF
10 Repeat Steps 7&8 for Regression

The Graybox methodology utilizes
automated software testing tools to
facilitate the generation of test unique
software.  Module drivers and stubs are
created by the toolset to relieve the
software test engineer from having to
manually generate this code.  The toolset
also verifies code coverage by
instrumenting the test code.
“Instrumentation tools help with the
insertion of instrumentation code
without incurring the bugs that would
occur from manual instrumentation”.
[Beizer84]

By operating in a debugger or target
emulator, the Graybox toolset controlled
the operation of the test software.  The
Graybox methodology has moved out of
a debugger into the real world and into
real-time.  The methodology can be
applied in real-time by modifying the
basic premise that inputs can be sent to
the test software via normal system
messages and outputs are then verified
using the system output messages.

In real-time, data must be captured,
logged, time-tagged and then compared
to a-priori data generated by a simulation
that has knowledge of timed data.  “The
timed entry call is one place where an
upper bound is placed on the time
duration for some action to occur”.
[Volz88]  Specifying the time at which
an event must occur and verifying that
the output is correct with respect to time
verifies the performance requirement.

The software test system must have
some concept of time.  There are several
timing systems that are available in a
real-time system.  The test engineer
could use the CPU clock as a timing
source.  The frame counter is another
source for timing data.  The last
alternative is an off-CPU chip system
such as an IRIG timer.  Once a timing
system is adapted, the data must be time
tagged and compared to the expected
results in the time domain.

An alternative to any absolute timing
generated by an on-board or off-board
system would be an Object Level
Timing (OLT) system.  OLT involves
generating a relative time from start of
an object’s existence.  Using an OLT
reference allows repeatability in the
testing of real-time systems.  OLT is “a
methodology for the statement of timing
requirements”. [Coolahan88]

5.0 System Simulations
Automated Test case generation has
always been the desire of software test
engineers.  “There is no simple way to
automatically generate test cases”.
[Beizer83]  The best and most efficient
method of software test case generation
can be realized by inserting specialized
test data capture code into an existing
system simulation.



In the aerospace industry, specialized
computer simulations are generated to
develop algorithms and software
requirements.  Existing simulations can
be interactive or batch systems, but the
timing information is based on a frame
counter that is used to simulate time.
Generating test case data from the
simulation enables the test engineer
access to precise output data timed to a
specific event.  The “speed and accuracy
of performing various tasks” can be
verified by analyzing the time tagged
output data. [Spencer85]

Any product developed must meet two
sets of expectations.  The first
expectation is that of the developing
company.  If a company has internal
standards that must be met, these
expectations will be tested by the test
organization long before the customer
ever sees the delivered product.  The
other set of expectations belongs to the
customer.  “The successful product must
be satisfactory both to the user/customer
and to the producing company”.
[Spencer85]

Performance requirements must be
stated in quantitative terms.  The output
of a message must be generated before
some elapsed time interval based on a
measurable/observable event.  The
measurable event can be the receipt of
an input message or the transition to a
particular state.  Performance
requirements stated in terms of events
and interval timing can be verified by
observing the OLT of a specific message
object.  “Performance measures and
requirements are quantitative – that is,
numbers.  A performance specification
consists of a set of specified numbers.
The systems actual performance is

measured and compared to the
specification”. [Beizer84]

Care must be exercised in the generation
of test case data.  In a real-time system it
may not be possible to verify the entire
contents of a program as is the case
when executing in a debugger.  The test
engineer must selectively determine the
best candidates for data capture to
achieve the best performance and
requirements coverage.  “We should
discipline ourselves not to collect data
aimlessly; rather, we should collect data
by planned experiments”. [Grenander72]

The Graybox methodology involves
software proof of correctness.  Once test
case data is obtained and the system is
exercised using the simulation generated
test case data, the output is verified
against the expected results.  Care must
be exercised in the dependence on the
simulated results.  A computer system
verified with a simulation with corrupted
algorithms will only verify that the
algorithms in the simulation have been
faithfully implemented in the real-time
system.  “It is only too easy to take the
impressive output of a simulation as fact,
when the input does not justify this.  The
possible error of input must be translated
into terms of possible error of results”.
[Martin67]

6.0 Graybox Testing in Real-Time
Applying the Graybox methodology in
real-time is simply adding a time
component to the expected output data
value.  A normal Graybox test for a
system that generates sines based on
angular displacements would consist of
the input angle in degrees and the
expected output sine value.  The test “y
= Sin(x) for x = 30” would be 0.5.  This
test has no time component associated



with the answer.  Therefore whenever
the response is generated it would be
compared to the expected result of 0.5.
This could be 1 millisecond or 10
seconds from the start of the test.  In a
real-time system this test would be
unacceptable.

A real-time test would be stated as “y(t)
= sin(x,t)”.  The added time element “t”
assures the expected value will be
compared in the OLT domain.  Using
Figure 1. Sin of X, the major Object is
X.  A component of object X is the
x.sine.  The OLT values of x.sine are
read from the curve.  The OLTs are
obtained from the X-axis.  Therefore at
the creation of the X object, the value of
x.sine should be 0 at X’s OLT (x.olt) of
1.  At the x.olt of 10 the value of x.sine
should be –0.5.

During the execution of the simulation,
one “step was to examine the raw data
with the intention of determining trends.
An additional step for examining raw
data was to display them using a plot
package”. [Feeley72]  These steps will
help the engineer visualize the data
being collected and can be used as a
method of reducing the amount of data
being extracted in real-time.  “Software
instrumentation while giving precise and
copious information, cannot be inserted
into a program wholesale lest the system
spend all its time processing artifact and
instrumentation rather than doing honest
work”. [Beizer84]

During a real-time test, the system is
examined for the values of x.olt, x.sine,
x.olt.  This time-stamp/value/time-stamp
group is logged and then post-processed
immediately after the test to verify that
the time-stamped value lies on the curve
between the beginning and ending time

stamps.  “The processes of logging,
counting, timing and sampling can be
done by software: by inserting code”.
[Beizer84]

sin(x)

-2

-1

0

1

2

1 4 7 10 13 16

sin(x)

Figure 1. Sin of X strip chart

In real-time the Graybox methodology
consists of the five steps presented in
Table 2. Five Step Graybox Real-Time
Methodology.

Table 2.  Five Step Graybox Real-
Time Methodology
Step Description
1 Identify all System Performance

Requirements
2 Instrument System Simulation for

Object Level Time data
3 Execute System Simulation to

Obtain Test Case data
4 Monitor Behavior of Real-Time

Program
5 Verify Correct Values based on

Time-Stamps

To perform a real-time Graybox test all
test data must be prepared before hand
from the system simulation and fed to
the real-time program as input system
messages.  “The online load generator
takes transactions from the scenario file
and attempts to issue them to the tested
system at the time marked for that
transaction”. [Beizer84]  Because the
precise time for object creation cannot
be duplicated for each run, the OLT will



guarantee that the object data is
consistent from run to run.

7.0 Conclusion
Depending on the nature of the
application, a real-time system falls in
one of two major groups.  “There are
two types of real-time systems, namely,
soft real-time and hard real-time
systems”. [Cheng88]

Soft real-time is defined as a real-time
system where it is desirable that system
processes occur rapidly, but few if any
real time constraints are placed on the
system.  A requirement might state that
the system respond within a reasonable
time limit.  This could be interpreted by
one system engineer as one second and
by another system engineer as one
millisecond.

A hard real-time system places response
times and process time constraints on a
majority of the system processes
especially at the system interfaces.
“Hard real-time systems are
characterized by the presence of tasks
that have timing constraints”.  [Zhao88]

To verify real-time software, a system
level simulation is required.  The
simulation is used to generate the test
case data that is fed to the real-time
software.  The output messages are
extracted, time-tagged, logged and then
compared to the expected results in the
time domain.  When the expected results
are successfully compared in the time
domain, the real-time performance
characteristics can be verified.
“Similarly this technique will be useful
for verification and validation of
programs”. [Enomoto81]

By adding the element of time a non
real-time Graybox test can be converted
into a real-time test capable of verifying
and validating real-time embedded
applications.

Author Biography

Andre' Coulter is the Tools and
Technology Leader at Lockheed Martin
Missiles and Fire Control - Orlando.
Mr. Coulter has over 22 years of
software development experience and
has spent over 12 years investigating and
developing automated testing tools in
support of Lockheed Martin embedded
systems applications in Ada, Java, Perl,
Fortran, C, and assembly language.
Mr. Coulter is a graduate of Bowie State
University, Bowie, Md. in 1978 with a
BS in Bus Admin.  He also taught
computer programming at Drake State
College in Huntsville Ala.
Email andre.c.coulter@lmco.com

Bibliography
[Beizer83] Boris Beizer, Software
Testing Techniques, 1983 Van Nostrand
Reinhold Company Inc., New York, pg
67

[Beizer84] Boris Beizer, Software
System Testing and Quality Assurance,
1984 Van Nostrand Reinhold Company
Inc., New York, pgs (238, 258, 263, 309,
312)

[Cheng88] Sheng-Chang Cheng, John A.
Stankovic (ed), “Scheduling Algorithms
for Hard Real-Time Systems – A Brief
History”, Hard Real-Time Systems,
1988 Computer Society Press of the
IEEE, Washington, D.C., pg 151

 [Coolahan88] James E. Coolahan, John
A. Stankovic (ed), “Timing
Requirements for Time-Driven Systems
Using Augmented Petri Nets”, Hard



Real-Time Systems, 1988 Computer
Society Press of the IEEE, Washington,
D.C., pg 78

 [Coulter99] André Coulter, “Graybox
Software Testing Methodology –
Embedded Software Testing
Technique”, 18th Digital Avionics
Systems Conference Proceedings, 1999
IEEE, pg (10.A.5-2)

[Elfriede99] Dustin Elfriede, Automated
Software Testing, 1999 Addison Wesley
Longman, pg 39

[Enomoto81] H. Enomoto, Morio Onoe
(ed), “Image Data Modeling and
Language for Parallel Processing”, Real-
Time/Parallel Computing Image
Analysis, 1981 Plenum Press, New York
pg 101

[Feeley72] John W. Feely, Walter
Freiberger (ed), “A Computer
Performance Monitor and Markov
Analysis for Multiprocessor System
Evaluation”, Statistical Computer
Performance Evaluation, 1972 Academic
Press Inc., London, pg 177

[Grenander72] U. Grenander, Walter
Freiberger (ed), “Quantitative Methods
for Evaluating Computer System
Performance: A Review and Proposals”,
Statistical Computer Performance
Evaluation, 1972 Academic Press Inc.,
London, pg 15

 [Hanaki81] S. Hanaki, Morio Onoe
(ed), “An Interactive Image Processing
and Analysis System”, Real-
Time/Parallel Computing Image
Analysis, 1981 Plenum Press, New
York, pg 219

[Isaka81] J. Isakai, Morio Onoe (ed), “A
Compound Computer System for Image
Data Processing”, Real-Time/Parallel
Computing Image Analysis, 1981
Plenum Press, New York, pg 257

 [Jelinski72] Z. Jelinski, Walter
Freiberger (ed), “Software Reliability
Research”, Statistical Computer
Performance Evaluation, 1972 Academic
Press Inc, London, pg 467

[Martin67] James Martin, Design of
Real-Time Computer Systems, 1967
Prentis-Hall Inc, New Jersey, pgs
(257,373)

 [Onoe81] Morio Onoe (ed), Real-
Time/Parallel Computing Image
Analysis, 1981 Plenum Press, New York
pg vii

[Spencer85] Richard H. Spencer,
Computer Usability Testing and
Evaluation, 1985 Prentis-Hall Inc, New
Jersey, pgs (13,50,98)

[Volz88] Richard Volz, John A.
Stankovic (ed), “Timing Issues in the
Distributed Execution of Ada
Programs”, Hard Real-Time Systems,
1988 Computer Society Press of the
IEEE, Washington, D.C., pg 130

[Zhao88] Wei Zhao, John A. Stankovic
(ed), “Preemptive Scheduling Under
Time and Resource Constraints”, Hard
Real-Time Systems, 1988 Computer
Society Press of the IEEE, Washington,
D.C., pg 225



André Coulter

Andre Coulter is the Tools and Technology Leader at Lockheed Martin Missiles and Fire
Control - Orlando.  Mr. Coulter has over 22 years of software development experience and
has spent over 12 years investigating and developing automated testing tools in support of
Lockheed Martin embedded systems applications in Ada, Java, Perl, Fortran, C, and
assembly language.

Mr. Coulter is a graduate of Bowie State University, Bowie, Md. in 1978 with a BS in
Business Administration.  He also taught computer programming at Drake State College in
Huntsville Ala.  Email andre.c.coulter@lmco.com


	Title Page
	Presentation 
	Paper
	Bio
	Return to Main Menu

