
©2000 The Vanguard Group, Inc. All rights reserved.

Performance Testing E-Commerce Web Systems
Presentation Paper

Mike Hagen
The Vanguard Group

5/3/2000

©2000 The Vanguard Group, Inc. All rights reserved.

Slide1 – Presentation Title
Slide2 - Opening

Yesterday, your marketing department started an ad campaign that told everyone
to come to your Web site. Today, your Web server is down due to everyone doing what
they were told. Tomorrow, the Wall Street Journal has an article on the front page saying
how your site was down all day. Do not let this happen to your Web site.

By performance testing your Web systems before they are elevated to production,
you will know in advance what needs to be beefed up for the “big day”. At Vanguard,
our biggest day happened over the Y2K weekend when many of our clients logged in to
check on their life savings. This presentation will go through how we prepared for this
event and how you can do the same.

There are two ways to predict how your systems will hold up under a lot of load,

Performance Testing and Modeling. Modeling uses software to simulate entire systems
and allows you to do ‘what if’ scenarios without having the actual resources. Modeling is
an extremely valuable tool that can, and should, be used in conjunction with performance
testing. Performance testing runs actual applications on physical systems with
monitoring devices in place to report on how the system is performing. The tests should
be executed on ‘production like‘ systems that have controlled software. Setting up this
testing environment will be the first thing you have to do.

Slide3 – Setting Up a Performance Test Environment
Setting Up A Performance Test Environment

You cannot get accurate results without an accurate testing environment. It has to
match your production environment as closely as possible. This is a difficult and
expensive task. But if you have a 20 CPU E6500 web server running Apache in
production and you are testing with a SPARCserver5 running NAS, you are not going to
get the same results. Making sure the software matches up should be easier than
obtaining the hardware. So I will go into the hardware first.

Hardware

How do you justify spending a million dollars on a testing environment? You
gather up all of the articles from the last holiday season, when most of the E-commerce
sites failed to handle the onslaught of shoppers, and plop them on the procurement
manager’s desk. If you work for a company that thinks like most other companies, you
have to use dollar signs. If you just try to use common engineering sense, you will fail.

The ideal test environment would be an exact replica of the production
environment. Undoubtedly you will not be able to spend all of the money that you want
and you will have to find ways of stretching your budget. One way to save some cash is
to build a scaled down version of production. Meaning if you have 20 web servers in
production, buy 5 for testing purposes and extrapolate the results. The hardware has to
be the same, but you do not need to have as many. The best way to go about determining
how to scale your system is to look at how your load is balanced in production. For

©2000 The Vanguard Group, Inc. All rights reserved.

example, if traffic is round robined to different threads of hardware, then you could buy
one thread and scale up the results by the total number of threads.
 Once you have determined the scalable layout of your testing environment you
will need to make sure every component (networks, firewalls, servers, mainframes…)
matches the production equipment. The weakest link theory applies here. You could
have all of the server power in the world but your end to end response times could be
long due to an undersized firewall bottleneck. You will also have to make sure the
hardware is configured the same way. For instance, if your firewall in production has 40
rules, the test firewall has to have 40 rules. All of this little stuff really adds up when you
are talking about the extremely high level of traffic on today’s Web systems.

 Next you will need to put in the request for more hardware to be used as your
physical load generators. The physical generators are the boxes where the simulated Web
user traffic will be spawned. I will go into these simulations later. You will need enough
processing power and network bandwidth to support the amount of traffic that would
normally be coming from you ISPs. A regular PC probably cannot support this kind of
traffic. You will need a bank of PCs or maybe one good sized Unix box. Plus the
network connection from these load generators to the Web systems needs to be sized
properly. A 10 Mbit Ethernet connection is probably going to get maxed out. If you
have a T3 connection to your ISP in production you could get ~45 Mbits of traffic.
Therefore, your test network will have to support at least that and hopefully more in case
you want to do capacity planning tests for more ISP connections.

Software

Configuration management is so important in testing efforts. Hopefully you will
have a team dedicated to this. But if you do not, you will have to ensure that the versions
of software that you are testing are what will be going into production or are already in
production. Take the time to make a list of every piece of software in your system
(operating systems, communication software, web server versions, etc.). Make the same
list of the production systems and make sure everything that differs is either changed or
slated to change once you go to production.

This also holds true for system configuration files. Settings like logging levels
and server timeouts can really invalidate your test results if they are not configured like
they will be in production. Ideally, the config files used during test should be directly
copied into production with only a few changes to some global variables. If you can do
this, you are probably in good shape.

Slide4 - Determining Web User Traffic
Generating Web User Traffic

Once your testing environment is all set, you will need to come up with a way to
generate the massive amount of user traffic that web systems realize. The old method of
mustering up everyone in the office for a big performance test will not cut it anymore.
You will need to use software to simulate the load. There are a number of tools on the
market that do this. Examples would be Mercury’s Load Runner and Radview’s
WebLoad. My experience is with WebLoad.

©2000 The Vanguard Group, Inc. All rights reserved.

 WebLoad uses JavaScript agendas to simulate users walking through your Web
site. WebLoad has an authoring tool that records the server requests that a browser
makes. Using this tool you can create many agendas that hit pages all over your site,
including secure pages. You do not necessarily need to create scripts for every page on
your site but you should cover the most frequently hit pages as well as pages that have
known performance problems. The scripts should be instrumented with page timers and
error checking. For instance, we put a timer around every Get or Post. You can display
these timers on the Webload Central Console as the test is running and export them to
Excel for more detailed reporting. Since the pages will not actually get rendered in a
browser for you to see, you will have to come up with a form of error checking that
ensures that the actual page content that you expected to be served is what was actually
served. The way we handle this is to parse through the HTML of every page that is
returned, looking for key HTML text. An example of this is checking for the <TITLE>
tag in the html. If the TITLE of the Account Balance page comes back with anything
other than Account Balance, an error is generated. This increases the amount of work that
the generators have to do, but it is necessary. Otherwise you might be getting blank
pages with no indication that anything is going wrong.
Slide5 – Java Script Example
After the scripts are created, the next step is to figure out how many users should be
simulated running through the various scripts.

Slide6 – Determining Web User Traffic (cont.)
 Determining the projected peak amount of users that will be hitting your
homepage during the busiest time of day is not simple. Hopefully you will have a
marketing team that has these projections. If not, you will need to get peak usage
information from your production system and project to some logical increase or
decrease. You use these projections when it comes time to generate the load on the
system. You will also want to choose a representative distribution algorithm (exponential,
constant, Poisson) to simulate how the load enters you system. It is probably not accurate
to have all of your users arrive at a constant rate every minute or so. What you will see is
a big spike across the board every 60 seconds.

With Webload, you create load templates that define which scripts are to be run
on which logical generators and at what load. A load template will be comprised of
multiple logical generators. One logical generator may run your “Homepage” at a load of
250 users. Another logical generator may have your “Registered User Login” script
running at a 400-user load. Depending on the scope of the test, you may have 50 scripts
rolled into 1 template. Then, when it comes time to run the test, all you will have to do is
start the template, not each individual script.

 When you have an accurate representation of a production system, the hardware
to generate the load, and the Web user activity scripted, you are ready to run the tests.

©2000 The Vanguard Group, Inc. All rights reserved.

Slide7 – Running and Monitoring Tests
Running and Monitoring The Tests

At this point you will have spent a great deal of time and money for this
wonderful thing called Performance Testing. Management will be looking for some
justification. So you better show some real results. Just kicking off the load generating
tool and watching the servers die is not going to make upper management buy more
hardware. They are going to want to know what piece of code is making what piece of
hardware choke and why. Why is the hard part. You will hear statements like, “You
mean to tell me that I have 12 engineers in this lab and no one can tell me WHY the
response times just jumped!” To get this information you need to have as much logging
and monitoring as possible, without causing your own performance problem. If 20
people are ‘grepping’ through access logs during a test, you are going to see the CPU
usage skyrocket. Likewise, if you set the level of logging too high, your servers will be
spending more resources reporting what they are doing versus just doing.

Let us look at the load generators first. Depending on the type of testing (stress,

load, endurance), you will have to choose a load template that represents the functionality
and level of use to be executed on your Web system. A load test of the entire baseline of
software is one of the more involved tests and will require a lot of different scripts to be
run at the same time. The load generators will be sending and receiving requests at very
high rates. They will also be reporting on the most important performance measurement
in Web systems, end user response times. WebLoad has a Central Console that controls
the running of the test.

Slide 8 - Webload screen shot

The console is used to start and stop the test, to monitor the test from a browser’s
perspective, and to collect all of the end user response time data. The load template
shows up in a separate window and displays the physical and logical load generators, and
all of the scripts that are running on the generators. The other windows display graphical
and spreadsheet representations of the test data and any error or informational messages.
This screen shot shows what happens when good code goes bad. Under load, this
application could not take the heat and it took another application running on the same
server out with it. Notice that other functionality is going along smoothly. These pages
happen to be served from a secure web server, where the other troubled pages are coming
from a public server. This demonstrates a perfect baseline load test scenario. Alone
and/or at low load, all of these pages may have worked fine, but together they broke each
other and brought down a Web server. It also demonstrates the need to test a variety of
your Web pages. If we had not scripted this one page, we would not have caught this
glaring problem and we would not have seen it until it hit production and we lost our
public Web server.

Slide9 – Running and Monitoring Tests (cont.)

During testing it is extremely crucial to have some type of monitoring on all of
the servers responsible for creating the web pages. If there are UNIX servers you can run

©2000 The Vanguard Group, Inc. All rights reserved.

command line performance monitors like vmstat or /usr/ucb/ps. Another option that we
use at Vanguard with our UNIX servers is a monitoring tool called TeamQuest.
TeamQuest provides invaluable insight into server CPU, memory, and I/O. It uses fairly
passive monitoring engines on your UNIX boxes and reports back to a central
workstation that can graphically display resource usage at the process level. If you are in
the middle of a test and all of a sudden you get a big spike in CPU on your application
server, you can drill into the spike and get a listing of every process running at that point.
It will also give you who are running the processes. For instance, with a big spike in
CPU you may drill down to find that user id mhagen issued a ‘grep’ on a 20Gbyte logfile.
After revoking his access to the box, you can then continue with your testing. If you are
monitoring free memory and you see it declining over time, you probably have a memory
leak in your code and need to drill down into the individual processes to see what is the
culprit.

 If you have a Mainframe in the loop, there are a number of ways to get transaction
information. Omegamon seems to be a fairly universal tool. It allows you to drill down
to individual transactions and find CPU usage, amount of I/O, and response times.
Mainframes store lots of historical data. You just need to figure out how to get to it.

Slide10 – TeamQuest snapshot

Slide11 – Running and Monitoring Tests (cont.)
 If you are an NT shop, the only tool that I have used is the generic Performance
Monitor. It gives lots of overall resource information and allows you to log the data.
But, if you need stats on individual processes, you will have to use the NT Task Manager.
However, I am not aware of a way to log what Task Manager sees. I am sure there are
many NT performance tools out there; I just do not have experience with them.

 Network monitoring will let you know if your routers, firewalls or switches are
causing bottlenecks. Many network sniffers are available and can be turned on and off
quite easily. Do not let your telecom group tell you that there is plenty of bandwidth.
Web sites generate an enormous amount of data. During peak moments, the network
cannot be re-transmitting or dropping packets. Things will snowball quickly.

 The last form of monitoring that I will mention is application log monitoring. If
your code is not already instrumented with calls to an application log, put in the request
now to have it done. If a CGI script has to make a database request, it is extremely
helpful if you have a log of the round time for the request. If this kind of info is there,
you can just tail the logs during the test to see how things are going. There is a
programming standard called ARM (Application Response Measurement) that details the
APIs for applications to log what they are doing or waiting for. This is wonderful. Tools
like Tivoli’s TAPM, use the ARM API and gives incredible insight into what your
applications are doing. The instrumentation is usually designed with the ability to turn it
off with a global application variable. That way, all of the excess logging does not occur
when you do not need it and additional resources are then made available. Weather you

©2000 The Vanguard Group, Inc. All rights reserved.

use homegrown application logging or a standard method, these logs will give you the
data needed to answer the “Why is this not working?” questions.

Slide12 – What To Look For
What To Look For
 Your first indication that something is wrong is the end user response times start
to climb. Knowing which pages are failing will help you narrow down where the
problem is. If it is your homepage, your public Web server is probably the place to look.
If it is your product description page, go to the servers responsible for requesting and
serving that kind of information. This is when all of the real time monitoring comes in
handy. Check the CPU usage on the boxes. If something goes wrong somewhere, it
usually takes the CPUs with it. Then determine if all of the hardware is functioning.
Various utilities allow you to quickly run device inspections. If the hardware checks out,
go to the software.

Software core files or abends are the most pronounced way of letting you know
that something went wrong. Core files usually get written to known directories and
mainframe abends are usually pretty pronounced and easy to track down. If nothing is
flagrantly showing a problem, you may need to turn up the logging to capture more
diagnostics or perhaps run debugging versions of the code to capture memory leaks and
other not so apparent problems. I would love to be able to tell you how to troubleshoot
every problem, but it is not that easy. However, the more you test and the more you
monitor, the more you will learn about your system and why it might be acting funny.

Typical Trouble Areas

Slide13 – Testing Pitfalls
Testing Pitfalls

Load Generators

 Every performance engineering group that I have dealt with underestimated
either the processing power or network connectivity of their load generators. You need
to look at the performance of these machines the same way you look at the Web systems
they are loading. Nothing is worse than telling a developer that their code is bad and then
finding out that it was your load generators causing the pages to come back slowly. That
developer will question your findings from that point on.

Network Firewalls

 It is the first thing that the user traffic hits. If it cannot handle the load, you are
not going to be able to find any other problems down the line. Internal company
firewalls usually have a lot more rules and a lot less CPU power than a production Web
system firewall. The more rules that each connection has to pass the more CPU it will
require. Use the same rules and the same hardware as production.

Slide14 – Testing Pitfalls (cont.)

©2000 The Vanguard Group, Inc. All rights reserved.

Software Control
Know everything that is in your environment. If you just start linking in

applications without knowing what has changed, you are setting yourself up for hours of
unnecessary troubleshooting. Like politicians appending congressional pay raises to
Farm Aid bills, developers will try to slip in all sorts of changes to the advertised
upgrades. You will here statements like, “We just added a couple of images, they
shouldn’t have effected your test.”

Test Data

Test data includes information like user account preferences, product information,
and passwords. If this data changes without you knowing, your test scripts could fail. If
possible, limit the access to this data to a bare minimum. Sharing a username and
password database with another group WILL result in them accessing and modifying user
information to the extent that it messes up your tests. It is inevitable. So lock this info
down.

Slide15 – Testing Pitfalls (cont.)
Missed Pages

You may think that you have an adequate sample of the pages on your Web site.
You run performance tests, everything was fine and they elevate the changes to
production. Three hours later your site crashes because 3 people hit an obscure ‘Help’
page that happens to use 100% of a CPU on a 3 CPU machine. There are 2 ways to
prevent this; Script for every page on your site or have a way for folks in your company
to report on when they happen to stumble on a page that seems to be taking a long time to
come back. The latter is kind of crude, but effective.

Unmonitored Resources

Everything is suspect. If you do not monitor it you could spend months chasing a
problem that could have been caught by simply logging into a box and tailing a log file.
Monitor everything!

Slide16 – Design Issues
Design Issues

Systems Designed To Handle Today’s Traffic

I read a great article by John Gantz in the February, 2000 issue of
ComputerWorld magazine on capacity planning. His best quote was, "Your capacity
planning should be based on your capacity to order systems, storage or memory and to
get them installed. You'll be ordering on demand. " He went on to say that you should,
“Choose an architecture that can scale to at least 20 times what you really think you'll
need in six months.” This issue is what is killing most Web sites out there. Who knew
that 50 million people would be checking stock prices 20 times a day?

Database Requests

Request for data can severely slow down the building of a Web page. We have
found that making 1 big request versus many little requests reduces the overall request

©2000 The Vanguard Group, Inc. All rights reserved.

time. This is due to the overhead associated with making a connection to database server.
Data caching and replication are methods to remedy this issue and should be used
whenever possible.

Slide17 – Design Issues (cont.)
Page Size & Number Of Objects

Once a Web page leaves your web server and hits the Internet, there is little you
can do to get it across the continent faster. A 175 Kbytes page is going to take more then
10 seconds to get across the country over a 28.8 connection no matter how fast you build
it. The obvious solution is to reduce the size of the page. But another solution is to
reduce the number of objects on the page. Objects include GIFs, frames, and base html
code. Each object requires a separate TCP/IP connection from the browser. If there are 3
frames, 6 different images and the base page, 10 connections will have to be opened.
Today’s browsers only support up to 4 simultaneous connections. Therefore you will see
the first 4 objects load, then the next 4, then the last 2. You can reduce the number of
objects by combining the GIFs into image maps and getting rid of frames all together.

Lack of Performance Requirements

Designers and developers need to know what their limits are. Simply telling them
that a page has to download in 10 seconds is not going to mean anything to them. You
need to come up with specific time and resource budgets for building a page. There
should be requirements for page content, database accesses, page assembly and resource
usage. Resource usage is needed to control scalability. You cannot allow an application
to use 1 Gig of memory to produce a single page.

Slide18 – Design Issues (cont.)
Get the Latest Technology

Web system software from 5 years ago probably won’t hang in today’s
environment. The latest application servers allow you to keep persistent connections to
databases and share resources across multiple servers. The newest version of the
mainframe operating system OS/390, now has a new TCP/IP stack to support Web type
traffic faster. Distributed content servers now let you put your Web pages out closer to
the users, therefore reducing the page download times. With the Y2K freeze now lifted,
new software is going to be coming out all over the place. Keep your eyes open.

Slide19 – Questions

