Predicting Software Errors and Defects

Mark Criscione, Motorola

Jim Ferree, Motorola

Don Porter, Motorola

ABSTRACT

Phase Containment Effectiveness (PCE) measures the
ability of software development phases to detect faults.
A weakness of this measure is that it determines how
effective the phase WAS. This paper presents a fault
prediction model that uses the PCE and related process
measures to statistically predict the number of:
- Faults = mistakes introduced into design
documents or software code.
- Errors = faults detected within the current
phase.
- Defects = faults that escape the current
phase.
The model also predicts customer found defects.

To create the model, means (1) and standard deviations
(0) are derived from historical data for the following
process measures.

- Size = lines of code or pages of

documentation.

- Fault Densiry = Faults/Size.

- Phase Containment Effectiveness =
Errors/Faults.
Phase Screening Effectiveness (PSE) =
{ Defects detected / Defects escaping prior
phases).

For new software releases, these measures are used as
spreadsheet inputs. Model outpurs include predictions
and confidence limits for faults, errors and defects, by
phase and total.

Template spreadsheets are provided to project
managers. The output cells confain formulae that
embody expressions for output means and standard
deviations, which are products and quotients of input
variables. Because these formulae are quife complex,
we used Monte-Carlo simulations to verify spreadsheet
ACCUFACY.

Software development is guided by comparing actual to
predicted values using "stop light” tables. A "green
light" indicates that the actual value is in the 68%
confidence interval (4 * o), yellow is used for the 95%
confidence interval (1t £ 20). Values outside the latter
interval are painted red and considered to be "out of
control". Laver charts, with similar coloring, compare
actual to predicted values for each measure and phase.

As development proceeds, project managers can
replace previously estimated quantities with their
realized values. This provides the rtwin benefits of
reducing bias for future estimates, and narrowing
confidence limits by shrinking the related standard
deviations.

The innovations in our work include:
- Proactive use of metrics that had previously
been used retroactively.
- Careful use of probability theory to provide
accurate predictions.
- Monte Cario simulation techniques for
model validation.

KEY WORDS
Software Inspection, Defect Prevention, Fault
Prediction, Probability Model

Page 1 of 9

THE PROBLEM

The estimated cost to fix a software defect after release to
the customer is 100 times greater than if it is found in the
software development phase of origination. This cost may
range from $8,000 to $40,000, depending on the severity
and size of the defect.' In addition to these direct costs,
there is the cost of lost customers.

In an attempt to control defects, our organization has
calculated “Phase Containment Effectiveness” (PCE)
metrics for years. These metrics indicate how well people
in the several software life cycle phases capture the
mistakes that they introduce. Unfortunately, the procedure
suffered various drawbacks, including:
- Focus. The focus was on metrics that cannot
be accurately calculated until after the
software is released. This is too late in the
software life cycle to allow for proactive
actions.
- Lack of prediction. There was never an
attempt to inform project managers whether
they were capturing a reasonable amount of
errors. Lacking such predictions and
associated confidence intervals, it was
impossible for the managers to pro-actively
improve the quality of their phase's work.
- PCEs were produced individuaily for each
phase, without a model that covered the
entire life cycle.

THE SOLUTION

Our solution to these problems was to develop a
comprehensive model for predicting the number of errors
expected to be produced each phase, as well as the
number of errors that should be captured. The model uses
applied probability to provide confidence intervals, so that
the project manager knows, in real time, when his or her
group has produced, or captured, an unusually high or low
number of errors.

The tool is embodied in an Excel spreadsheet with input
parameters provided by historical data. Industry standard
values may be used if no historical data is available.
However, the managers can play out "what-if" scenarios
by changing these inputs to compensate for any process
changes. Variations on the spreadsheets allow the
managers to employ different modeling strategies,
depending on whether they are more confident in
predicted error introduction rates or error capture rates.

The tool also allows the user to input actual data as it
becomes available. By replacing estimates with actual
data, subsequent predictions become more accurate and
more precise. Graphical and tabular analyses are included.

These allow comparison of actual cutcomes to predicted.
The graphs provide green, yellow and red zones. The
green zone shows that actual outcomes are consistent with
predictions, yellow is a warning zone, and the red zone
tells the project manager that the actual errors are
inconsistent with predictions.

BENEFITS
The following are among the benefits achieved:

- The different phases of development are
now connected. If much fewer errors are
found in phase k than expected, the
managers in phase k+1 will be on the
lookout for those which escaped capture.

- The template provides a common PCE
approach that all groups in our organization
can employ. This enhances communication.

- The model generates estimates of faults that
testing groups can expect to find, with 35%
confidence intervals.

- We can predict the number of faults that our
customers can expect to find.

BASIC FAULT MODEL

There is a fundamental identity linking faults (mistakes
introduced into design documents or software code),
errors {faults detected within the current phase), and
defects (faults that escape the current phase}:
Faults = Errors + Defects

Depending on the specific need, a prediction model ¢an be
developed to predict errors, faults or defects. In the model
presented in this paper, both errors and defects are
predicted.

The fault prediction model is based on software lifecycle
phases. The phases we used are the following:

- Requirements - Describes in abstract terms
what the software is to accomplish.

- Design - Provides a detailed description of
software functionality, including pseudo-
code.

- Code - The actual writing of the software.

- Development Test - Tests individual features
in a software package.

- System Test - Tests the entire software
package.

- Post Release - Like a "Beta test”, tests the
software package in its first field release.

- Customer - This phase refers to the software
package after release to the field.

The model uses historical data collected from similar
software releases to predict fault creation and detection in
future releases. The historical inputs to the model are
Fault Density (FD), Phase Containment Effectiveness
{PCE) and Phase Screening Effectiveness (PSE). Another
input is the estimated size (S) of the future release.

Page 2 of 9

The fault density is calculated for each creation phase
(requirements, design, and code) which is the total number
of faults for the phase divided by the size of the phase.
The size is measured as the number of pages inspected for
both requirements and design, and lines of code created
for the code phase.

The phase containment effectiveness is also calculated for
each creation phase. The PCE is the number of errors
found during inspection divided by the total faults for
each phase. This gives an indication of the capability of
the process to capture faults.

The phase screening effectiveness measures the ability of
a phase to capture defects escaped from prior phases.
There is no phase prior to requirements and thus it has no
PSE. The design PSE equals the number of defects
captured during the design phase divided by the defects
escaped from the requirements phase. The code PSE
equals the defects captured during the coding phase
divided by the defects escaped from prior phases (design
defects plus any remaining requirements defects). The
PSE for development test is the number of defects
captured during development test divided by the number
of defects entering that phase. The same logic applies to
the system test phase and the post release phase. Since the
customer phase is last, no defects can escape. Therefore,
PSE is defined to equal 100%.

Data Confidentiality
The data presented is not actual Motorola data. The

authors chose to show data that best illustrates fault model
concepts while maintaining the confidentiality of
Motorola data.

Historical Data

Data was collected from three prior releases of software.
For each input parameter, the average is represented as a
pooled average. The release to release variation is
represented by the standard deviation. The historical
averages and standard deviations are used to predict a
future release named "A".

The estimates for the size of release A are shown in Table
1. The number of faults expected for each creation phase
is the product of the estimated size and the fault density as
shown in Table 1.

number of errors is the product of the number of faults
and the PCE. The remainder of the faults are defects.
Table 2 shows the errors and defects from the estimated
faults in Table 1.

Table 2: Estimated Errors and Defects

Phase Faults | PCE Errors | Defects
Requirements | 100 70% 70 30
Design 270 30% 216 54
Code 600 20% 540 60

We have now calculated the number of errors that we
expect to capture for each phase and the number of defects
that will escape, but we do not know in which phase the
defects will be captured. The Phase Screening
Effectiveness will answer this. The expected number of
defects captured in a phase equals the PSE times the
number of defects escaping from prior phases. In Tabie 3
we will use the 30 requirements defects from Table 2 to
illustrate where these defects will be captured. From the
design PSE of 10% we expect to capture 30 * 10% = 3
requirements defects during the design phase leaving 27
defects remaining. The code PSE of 20% applied to the
27 remaining defects will yield an estimated 5.4
requirements defects leaving 21.6 remaining. Continuing
toward the bottom of the table, the post release PSE of
60% will capture 5.5 requirements defects leaving 3.6 to
be detected by the customer.

Table 3: Estimated Requirement Defects by Phase Captured

Phase Defects PSE Req. Defects
Entering Defects Remain-
the Captured | ing
Phase

Requirements | - - - 30

Design 30.0 10% 3.0 27.0

Code 27.0 20% 5.4 21.6

Dev. Test 21.6 30% 6.5 15.1

System Test 15.1 40% 6.0 9.1

Post Release | 9.1 60% 5.5 3.6

Customer 3.6 100% | 3.6 -

By applying the same logic to 54 design defects and 60
code defects from Table 2 and summing the defects
captured in each phase we can estimate the defects
captured by each phase as shown in Table 4.

Table 4: Estimated Defects Captured by Phase

Phase Req. | Design | Code Total
Table 1: Estimated Faults Requirements | - - - -
Phase Size Fault Density | Faults Design 3.0 - - 3.0
Requirements | 250 0.400 100 Code 54 10.8 - 16.2
Design 900 0.300 270 Dev. Test 6.5 12.9 18 37.4
Code 40000 0.015 600 System Test 6.0 12.1 16.8 349
Post Release | 5.5 10.9 5.1 315
The phase containment effectiveness determines what Customer 3.6 7.3 i0.1 21.0
percentage of these faults will be captured as errors. The Total 30.0 54.0 60.0 144.0

Page 3 of 9

FAULT MODEL WITH SIGMA LIMITS

From the Table 4 we calculated the expected number of
defects captured for each phase. But how confident are we
in this number?

To gain confidence in our expected values we calculated
the standard deviations (o) of the historical data. With
this information we created limits of one and two standard
deviations above and below the expected values.

Table 5 shows the expected value (most likely), the
standard deviation, and the upper and lower limits for
fault density. From this data we are approximately 68%
confident that we are within the upper and lower one
sigma limits, and 95% confident that the fault density will
fall between the upper and lower two sigma limits. Those
interested in the formulae for these predictions and
confidence fimits may refer to Appendix A.

Table 5: Estimated Fault Density with Sigma Limits

Applying this concept to PSE gives us confidence
intervals for defects. Table & shows the estimated defects
captured by phase with upper and lower limits.

Table 8: Estimated Defects Captured by Phase
with Sigma Limits

Phase Sigma | Two One Most One Two
Sigma Sigma Likely | Sigma | Sigma
Lower | Lower Upper | Upper
Limit Limit Limit Limit

Design 32 0.0 0.0 3.0 6.2 9.5

Code 17.7 0.0 0.0 16.2 33.9 517

Dev 23.2 0.0 14.2 374 60.7 839
Test

System 30.1 0.0 4.8 349 65.1 952
Test

Post 25.9 0.0 3.3 314 | 374 83.3

Release

Custom | 20.9 0.0 0.1 21.0 41.9 62.7

£r

ANALYSIS

A stop light table shown in Table 9 compares actual
results to predictions. EZ8 indicates that the phase is
within the one sigma limits (68% confidence interval) and
Celew] extends to the two sigma limits (95% confidence

Phase Sigma Two One Most One Two
Sigma | Sigma | Likely | Sigma | Sigma
Lower | Lower Upper | Upper
Limit Limit Limit Limit
Req. 0.1 0.200 0.300 0.400 0.500 0.600
Design | 0.075 0.150 0.225 0.300 0.375 0.450
Code 0.002 0.011 0.013 0.015 0.017 0.019

By applying the same logic we used earlier to calculate
the number of faults in Table 1, we calculate upper and
lower limits for the expected number of faults as shown in
Table 6.

Table 6: Estimated Faults with Sigma Limits

interval). Values outside the latter interval are and
considered to be "out of control”.

Table 9: Stop Light Table for Actual Data

Actual
Actual Fault Actual Actual Actual Actual
Errors Defects

Phase Sigma Two One Mast One Two
Sigma | Sigma | Likely | Sigma | Sigma
Lower | Lower Upper | Upper
Limit Limit Limit Limit

Req. 26.9 46.1 73.1 100.0 | 1269 | 153.9

Design | 72.7 124.6 | 197.3 | 270.0 | 342.7 | 4154

Code 100.0 | 400.0 | 500.0 | 600.0 | 700.0 [800.0

The same concept of upper and lower limits is applied to
PCE to give us confidence intervals for captured errors.
Table 7 shows the estimated errors by creation phase with
upper and lower limits.

Table 7: Estimated Errors with Sigma Limits

Phase Sigma | Two One Most One Two
Sigma Sigma Likely Sigma Sigma
Lower | Lower Upper | Upper
Limit Limit Limit Limit

Req. 24.1 21.8 45.9 70.0 94.1 118.2

Design | 64.1 37.8 1519 | 216.0 | 280.1 | 3442

Code 94.9 | 350.3 | 445.1 | 540.0 | 6349 | 729.7

The actual size for the requirements and design phases is
red because it is above the two sigma limit. This
translates into increased number of actual faults for
requirements and design.

Figure 1 shows the total faults by phase detected as a layer
chart. The middle shaded area denotes the upper and
lower one sigma limits and the outer shaded area indicates
the two sigma limits. The actual faults detected line is in
the upper two sigma area due to the larger than expected
actual size noted above.

Page 4 of 9

Figure 1: Total Faults by Phase Detected

Tatal Faulis by Phase Deloctied

=
REQ DESKGN BUOE DEVTEST SYSTEMTEST POST HELEASE CUSTOMER

[=¥hin 2 Sy Lamite EZXTwamin 1 Sigma Limils —8— Aciual Tatal Faul Datecled

To improve the estimate we provided an option in the
spreadsheet to substitute actual size for the estimated size
and reduce the standard deviations to 25% of their initial
values. Figure 2 shows the effect of adjusting for actual
requirements and design size. Notice the actual faults are
now within the one sigma limits. Also, there is a slight
increase of expected faults in later phases due to the size
increase.

Figure 2: Total Faults by Phase Detected
Using Actual Requirements and Design Size

Tolal Faults by Phase Detsctad

REQ DESIIN CODE DEV TEST SYSTEMTEST POST RELEASE CUSTOMER

[Cwitnin 2 Sigma Limite. EZZWihin 1 Sigrma Limiis —B—Achval T olal Fauris Delecied]

We also provided an option in the spreadsheet to
substitute actual errors for the completed phases and
reduce the standard deviations to 25% of their initial
values. This correction is applied when few additional
inspections are expected. The standard deviations do not
disappear because experience has shown that additional
errors may be detected (and even introduced) when older
errors are corrected. Historical data supports the 25%
value. We typically adjust for actual errors when the
number of actual errors is near or above the estimated
number of faults (implying few or negative defects). The
new estimate for errors is the actual errors detected and
the new estimate for faults is the actual errors divided by
the PCE.

Figure 3 shows the effects of adjusting for actual errors
found in requirements and design. It also shows actual
faults for later phases. Notice how the confidence limits
shrink for the requirements and design phases.

Figure 3:; Total Faults by Phase Detected
Using Actual Requirements and Design Errors

Total Faults by Phawe Detacted

REQ DESIGN CODE CEVTEST SYSTEMTEST POST RELEAS

[CWithin 2 Sigma Limits EXIIWrhin | Sigma Limits == Actusl Tolsé Faults Dotoripd

Table 8 shows an initial prediction of 21 customer defects.
After adjusting for actual size and error data, the expected
customer defects rose to 27. Also, the upper 95%
confidence limit increased from 63 to 81. The actual 18
customer defects detected were within the 68%
confidence intervals.

RESULTS
One way to measure the accuracy of the fault prediction
model is to compare actual customer defects to predicted
customer defects. Table 9 shows the number of standard
deviations that the actual customer defects are from the
predicted customer defects. The calculation used is:
Number of Std. Dev. = (Actual - Predicted) / Sigma
The releases are shown in columns and rows represent
results with no adjustments, adjusting for size only, and
adjusting for size and actual errors. Notice that on
average, the accuracy improves as size is adjusted and
slightly more when size and errors are adjusted.

Table 9: Number of Standard Deviations that Actual
Customer Defects are from Predicted Customer Defects

Model Rel.A | Rel. B | Rel. C | Rel. D | Avg.
Adjustments

None 230 | 047 | 046 | 099 1.06
Size 068 | 075 | 0.76 1.07 | 082

Size, Errors 0.19 (.00 0.93 1.04 0.54

Groups using the fault mode! also observed a greater
understanding of their data and awareness of faults
remaining to be detected.

SIMULATION

Page 5 of 9

The mathematical formulae for the fault prediction models
are somewhat difficult. This is especially true when
entering them as cell formulae in a spreadsheet, so it is
very easy to make mistakes. Simulations have the distinct
advantage of not requiring complicated calculations. So
we ran Monte Carlo simulations to check our work.

In the simulations, normal probability distributions were
specified for each input parameter. Even though the input
parameters possess other distributions, sample sizes are
large enough to justify normal approximations. For each
simulation iteration, values were randomly selected from
these input distributions and used to calculate output
values (sizes, fault densities, phase containment
effectiveness and phase screening effectiveness). After
500 iterations were run, means and standard deviations of
the output variables were compared to the outputs in the
spreadsheet. This proved to be a valuable exercise,
because it pointed to a few errors that substantially
inflated the prediction intervals.

In the future, we plan to increase the realism of the model.
As we move in that direction, Monte Carlo simulation will
become an increasingly valuable tool for checking
spreadsheet accuracy.

CONCLUSION

We introduced a fault model that predicts the number of
errors and defects throughout the development cycle.
Project managers can use this information to
quantitatively determine if the development process is in
control (green condition), may be going out of control
(vellow condition) or is clearly out of control (red
condition}. This model is able to adjust estimates based
on the most current data available. It was applied to
predict Release A errors and defects. At time of
publication, 18 customer problems were observed which
is within the 68% confidence limits.

FUTURE DIRECTIONS

There are several opportunities for enhancing the model.
One of these is to improve the initial estimates of input
parameters. We would like to develop a model that can
use information from the earliest stages of concept
exploration and from other sources to predict likely input
parameters for each release.

Page 6 of 9

APPENDIX A:
MATHEMATICAL MODELS for FAULT
PREDICTION

Statistical Background

The fault prediction model uses some basic results from
probability theory concerning sums, differences,
products and quotients of random variables. These
results are described here.

Specifically, we used results that derive the mean and
standard deviation of functions of a set of random
variables. The mean of a random variable is the value it
is expected to assume on average. For populations with
a finite number (N} of values, the population mean is
given by the expression:

o= Sx,

As the mean is a measure of average location, the
population variance is a measure of dispersion about
that location. For a finite population, the variance is
given by:

2 1 & 2

Ox = WZ(X)

Notice that, like the mean, the variance is really an
average. It is the average squared distance that
individual members of the X population fall from the
mean. While this if very useful mathematically, it
suffers the drawback of being expressed in squared
units (like dollars squared), and therefore may not be
easily understood. To get around this problem, the
square root, called the standard deviation, is often
used in reports.

Z

Ox = vOx

It is convenient {despite a small mathematical nicety) to
think of a standard deviation as the average distance
that values of the random variable fall from the mean.
Thus it serves as an excellent measure of dispersion.
The smaller the standard deviation, the more crowded
about the mean the values of X will be. Thus a smaller
standard deviation implies a more stable process.

The mean and standard deviation of a random variable
can be combined to form prediction intervals. If a
random variable X possesses a reasonably symmetric,
bell-shaped (normal} distribution, then regions defined
by the mean and standard deviation will contain known
percentages of all values. Such a probability
distribution, with mean .5 and standard deviation .1, is
depicted in figure 1. The region within one standard
deviation of the mean contains approximately 2/3 of the
values, a 2 standard deviation interval contains

approximately 95% of the values, and the interval
within three standard deviations contains almost all.
That is:

- Prob(u, -G, X<y, +0,)=.08

- Prob(u, - 26, <X =<, +20,) =95

- Prob(y, - 36, < X =<, +30,) =997

Figure 1; A Normal Distribution

“,

1

1
- | |
]

an oz o3 o4 o5 o6 a.? oo as

The first two intervals define zomes in the fault
prediction model. If the observed number of errors falls
in the first prediction interval, everything is proceeding
as predicted. If it falls in the second interval, but outside
the first, it is considered a "warning'. When errors fall
outside the second zone, the project manager should
investigate to see why either more or less than the
predicted number of errors are being found. If more, is
it because of a bad product or an intensive search for
errors? If less, is it because the product is of superior
quality, or is it not being properly inspected?

Statistical Model of Fault Prediction

The modeling begins with the means and standard
deviations of several estimated quantities:

- Size (8), whether in pages of documentation
or lines of code, is estimated at the
beginning of the development cycle. Of
course, these estimates are subject to error,
The mean and standard deviation of size
estimates are denoted i, and G

- Fault density (FD), gives the rate that faults
are introduced into a software product. Fault
densities are recorded as faults per page of
documentation or faults per line of code. The
mean and standard deviation are denoted L,
and 0., Alternate models use error densities
instead. An "ED" subscript is used in this
case. An "F" subscript denotes number of
faults, a derived quantity.

- The phase containment effectiveness (PCE)
measures the ability to capture a fault before
it escapes to the next phase of software

Page 7 of 9

development. For example, it may measure
the ability of software designers to fix their
mistakes before the beginning of the next
phase, coding. The mean and standard
deviations of PCEs are denoted W, and G, .
- When a fault is detected in the phase of
origination, it is called an “error”. If it
escapes to subsequent phases, it is called a
"defect”. The Phase Screening Effectiveness
(PSE) measures the ability of a given phase
to capture the defects of prior phases. We
denote the mean and standard deviations as

MPSE aﬂd 0-PSE'

All of these input parameters obey known probability
distributions, which are helpful in model building, We
have found that there is a lot of variation in these values
from release to release. So we used the standard
deviations of realized values over past releases as the
sigma inputs. For example, if we had five historical
PCEs, then the PCE inputs were calculated by:

- M, = Total errors/total faults

- 6,, = Standard deviation of the five

individual PCEs.

The mean PCE is thus a pooled estimate of historical
data, and the standard deviation is the between-release
standard deviation. Statistically, this standard deviation
works quite well because the component of variation
attributable to releases tends to overwhelm the
component due to uncertainty within a release.

Predicting Faults
At the beginning of development, nothing is known for

sure about the size of the product, the rate at which
faults are introduced, or the rates at which they are
captured. However, we do have some historical
evidence. So we begin with a size estimate and standard
deviation, and likewise with estimates and standard
deviations of fault densities and PCEs. For the
Requirements phase, we predict the number of faults
iniroduced by multiplying the estimated size by the
estimated fault density (FD), as in equation 1A,

(1A) F=S % FD

When the project manager inputs the means and
standard deviations of size and fault density, the
spreadsheet automatically calculates the mean and
standard deviation of the predicted number of faults,
given by equations 1B and 1C, respectively.

(1B)

ey | & : L

FAa ¥

The mean of a product of two random variables is better
approximated as the product of the means plus their
covariance. 50 expression 1B assumes that the size and

fault density variables are statistically independent,
since the covariance is then zero. This is one of the
simplifying assumptions made for the spreadsheet
model (which may be dropped for more realism, but
only at the expense of additional complexity).

Predicting Errors and Defects

Expression 1B gives the expected number of faults, but
does not determine how many of these faults will be
captured in phase (thus becoming errors), and how
many will float downstream as defects. To determine
the number of errors, we input the mean and standard
deviation of the PCE to derive total errors (E) for the
phase. The calculations are given in equation 2A-2C.
These equations are also shown in expanded form by
substituting the calculation for faults:

C2A)YE=PCE*F=PCE *S = FD

(B) =, =i, *H Y,

(20) 6=l OL H Ol I =

Vo A Gt He, * o o+ O L,

Similar expressions for total defects escaped {DE) are
shown in equations 3A-3C.

(3A)DE =(1-PCE)*F=(l-PCE) « S + FD
(3B) MD=(I—MPCI:‘)*#F:(I_HI‘CE)*HS*HH)

(GO 6o=yU U,) *CL+ Gt U, =
VA=) = U G+ (U=, * G o, O ¥ L 1,

Predicting Captured Defects
The first phase in the software development cycle is

requirements, so it has no Phase Screening
Effectiveness. The next phase is design, which has
expressions to explain its own faults, errors and defects.
But design, and subsequent phases, ailso have PSE
values. The predicted number of defects captured (DC)
is the product of the estimated number of defects
escaped (DE) from previous phases and the PSE. This is
given by expression 4A. Because these expressions
span consecutive software development phases,
superscripts are used to denote the phase of origin. Thus
R = Requirements, D = Design, C = Code, and so forth,

(4A) DC” = PSE” * DE", where
DC” = Defects Captured in Design, and
DE" = Defects Escaped from Requirements

The mean and standard deviation of faults captured are
given in equations 4B and 4C. Symbols inside
parentheses indicate phase.

@By v
(4C) . J z'.\'l-ifmak

- i catr R e Lk R PR

Page 8 of 9

Expressions like 4B and 4C get pretty scary for later
phases. For example, the predicted number of defects
captured in the coding phase is obtained by multiplying
its PSE times the predicted number of defects entering
that phase. The latter includes not only the defects
created in design, but the defects created in
requirements that were not captured in design. For the
coding phase, then, the prediction equation for defects
captured is given in equation 5A, the mean and standard
deviation are given in equations 5B - 5C.

(5A) DC" =PSE® # {(1 - PSE") * DE* + DE")
=PSE® % {DE" + DE"}
where DE" represents requirements phase
defects that were not captured in the design
phase.

(5B) . =, *{ i, + o}
(SC) O-:x = Juj*sgrc‘; * [UZE{R'- + O-i)f:-'nw] + O'j’st'ccn *[ﬂ:‘;i + !u':!»]l

In 5C, certain subscripts are followed by parentheses
that identify the phase to which the quantity belongs.
For example, PS(C} identifies the PSE for the coding
phase. The mean and variance of DE" are given in 5D
and 5E:

13 n [
(5D))u'm ={1- lu'm;) * y’m:‘
(5E) O'j;f:mw = (l_ﬂmﬁ)l * O-i)f»‘(k; + U:ﬂs.r;rm *#;)E(R]

The spreadsheet model breaks these calculations into
smaller pieces, providing additional information on the
predicted number of defects that are not detected in
subsequent phases.

Several testing phases follow coding. No new defects
are introduced during test, so the only quantities to
calculate are phase screening effectiveness. Expressions
like SA-5E determine the number of defects captured in
these phases, along with their respective standard
deviations. These expressions are also quite
complicated, since they contain elements for defects
that have escaped all previous phases.

REFERENCES

[1] "Software Engineering Economics”, Barry W. Boehm,
Prentice Hall, October 1981.

[2] "Mathematical Statistics and Data Analysis”, John A.
Rice, Wadsworth & Brooks/Cole, 1988

Page 9 of 9

Mark Criscione

Mark Criscione began working in the technical industry as an integrated circuit
designer of computer keyboards and terminals for AT&T Teletype Corporation in
1984 after graduating from the University of lllinois at Chicago with a Bachelor’s
Degree in electrical engineering.

He later shifted his focus to software system testing and received a Master’'s
Degree in electrical engineering and computer science from the University of
lllinois at Chicago in 1990. His interest in metrics was initiated as he worked in
the software reliability area predicting the number of system test faults expected.
He joined Motorola in 1993 and developed his expertise in software metrics. He
became a Six Sigma Black Belt which is an achievement in applying statistical
methods, leadership, networking, and continuous improvement toward total
customer satisfaction. Mark's current responsibility is the definition of corporate
and project level metrics.

	Paper
	Bio

