
The World Wild Web: A New Paradigm of Responsiveness & Reliability
for Designing and Deploying web sites

Jenny Jones
Director of Product Services

Segue Software
Lexington, Massachusetts

jjones@segue.com

Abstract

Computer-related businesses, organizations, and
institutions have universally recognized the need for
visibility on the World Wide Web. But what used to
be a simple tool for educational institutions to share
information has turned into a new venue for
marketing, selling and gathering information. This
effort requires a design and deployment plan that is
fundamentally different from all other software
products or projects ever conceived because of the
extremely wide accessibility and expectations from
target audiences. This means that software
organizations face a paradigm shift in order to
adequately address the radically new needs
represented in the World Wild Web.

Most software organizations have their own release
process deeply rooted in a long-term cost model
where one basic assumption is made: as the releases
roll and the software "matures", the design and
testing cycle, will (paradoxically, it seems) grow
shorter and more extensive as time goes on. What
this means is that active design work is plugged into
an existing model and active testing incorporates
existing regressions and new testing. In both cases,
reuse of past work will allow the body of work to
grow, but each iteration of adding to that body of
work will grow shorter and shorter. This model is
based on one very important assumption: the
software interface is a part of the system that changes
very little. This model doesn't fit the web community
expectation of fast-paced site updates with a constant
flow of newer and "better" ways to get and give
information. These newer and better ways invariably
translate into a changing user interface -- the web
pages. Without a stable interface of unchanging
pages, traditional software development strategies
fall apart.

Why should you consider changing the engineering
style for your organization's web site?

We often assume -- particularly for new product
ideas -- that the target customer base will tolerate a
certain amount of poor performance or inconvenience
in using a new product if a few key features that no
one else has are available. This assumption isn't a
poor one by any means. At the onset, typical
markets/customer bases include a segment of so-
called innovators. This group is comprised of
seasoned professionals that will take on new
technology if it gets them information or
functionality they couldn't otherwise get without
some surmounting difficulty. Most software projects
hit this segment first, and work to improve usability
as a part of the software maturation process. But the
web site is not a typical software product, although
the workflow for creating and updating the site goes
through software engineering teams. A web site must
not only push its content and pull in visitors. Without
exception, the site must do so without fail and
without surprises.

In this way, a web site has additional parallels with
a traditional store. In the brick-and-mortar world,
window dressings and displays are constantly
changing. Specific merchandise moves out. Stores
have sales. On the internet, front pages constantly
change. Inside formats of pages change, while
content moves and evolves. Notices go up. And for
online retailers, sites have sales. With a store, you
can intuit the basic, underlying structure that doesn't
change. You can imagine how one might build a store
and make sure that it functions without needing to
check every window display or sale process. The
same sort of paradigm can apply to designing and
testing a web site: there will be an underlying
structure of activity and technology that will persist
throughout all the cycles of changes.

This is very different from what software teams are
accustomed to producing. Software teams are
accustomed to putting out rough interfaces that
accompany some powerful process under the hood
and make usability something for following releases.
On the web and with few exceptions, if you cannot
make it usable from the beginning, then you better not
put it on the web site. Simple is truly better because
complexity puts a high risk on failure. The more
complex the transactions are over your site, the more
risk there is of slow responses and downtime.

There are very big costs in terms of opportunities
and real time costs generated by site downtime, poor
functionality, and by generally not meeting visitor
expectations. eBay's highly publicized 22-hour crash
in June 1999 is reputed to have cost the company
more than $5 million in returned auction fees. ESPN,
which lost its fantasy baseball site for three days
beginning July 11, 1999, conceded that it will have to
compensate some of its 260,000 online players, who
pay $30 each to play in the league, at an approximate
total of $7.8 million. In both cases, more up front
design, performance testing and ongoing integrity
testing would have revealed the configuration and
design bottlenecks that caused these crashes. But
there are more subtle, more common, and more
important risks than something as large a scale as a
crash that brings a site down entirely: annoying the
finicky consumer (we all know how much it costs to
get a customer back).

- "If we have downtime or are slow, customers go
away, and some of them don't come back," said Steve
Gold, vice president of FreeEDGAR.

- "If we don't perform well, we risk something much
more important than dollars: our customers'
goodwill…It's very expensive and very fragile."
Dwight Gibbs, chief technologist at the Motley Fool
financial information site.

Zona Research reports that the average Web buyer
will wait about eight seconds for a page to download
before looking for alternative sites. As the internet
world grows and matures, that number can only decrease
for user expectations for response time will grow
shorter. In 1999, Zona sited an average download time
across a backbone connection as 9.93 seconds, longer
than the eight-second threshold for the impatient
consumer. That means it is critical that response times
for your site are probably longer than the average web
user will tolerate. But the high expectations don't stop
there.

Slow response is only half the battle. The cost of
having genuine site problems where user cannot get

access is even higher. Forrester Research puts the
average cost of site downtime at about $8,000 per hour.
"Pure" eBusiness sites like Amazon.com or eBay have a
much larger cost. For example, eBay's 22 hour crash
equated to around $23,000 per hour. Moreover, this
eight-second threshold speaks very clearly that the site
doesn't have to crash to turn away business. If the
customer simply has to wait (for whatever good reason
we as the web site producers might have) the customer
will look elsewhere. That's a kind of usage demand that
software engineering projects have never had to come
close to meeting. [1]

What does this mean for developing web
technology?

eBusiness has created a wild new world of
software deployment with new product specifications
driven by the customer and changing at a rate never
considered in any engineering project before.
Companies as large as Fidelity have front-end pages
that change as frequently as weekly. There are no
generalized testing methodology courses, no
industry-wide best practices, no technology nor
architecture standards for this new eBusiness world.
Customers expect flash, freebies, newness, and
speed. Web Developers expect maximum room for
creativity and quick turnaround for testing. Everyone
expects tremendous performance integrity with no
downtime and responses in the milliseconds. In
addition to a radically different development standard
and incredible end user demands, IT Departments
(ultimately, a hidden portion of your team whose
contribution is vital to the "success" of your site)
have a plethora of choices for machine
configurations. On any given day, IT can change
environment settings for databases, web servers,
clients, connections, and many other areas that affect
the system and functional performance of your web
site.

 The Planner's View of eBusiness: "…eBusiness
either represents the greatest opportunity for your
business or the greatest threat to its success." [2] This
characterization gives eBusiness systems first priority
on the schedules of all web-aware CIO's and IT
executives. This inside, top-level visibility adds to the
pressure to perform in a time frame never before
considered.

The Customer's View of eBusiness: Because of
an unprecedented availability of alternatives,
customers won't wait for your site to respond and
they won't wait for you to fix "bugs" in your online
process. This outside, front-line connection to your
revenue or information stream means that no bugs in

your primary processes will be tolerated whether you
like it or not.

The Developer's View of eBusiness: The software
engineering process has an old paradigm that isn't
geared towards a changing front-end nor towards a
usability-first, functionality-last development model.
Marketing Requirements Docs, Product Specs,
Design and Functional Specs are all most frequently
addressed through front-end primitives -- the basic
GUIs for an application. Standard development and
testing cycles revolve around a stable GUI. In this
methodology, basic hardware and software
configurations are assumed from the onset of the
development process. The end users are controlled
through the flow of activity at design time, rather
than viewed as the group that defines activity.

The old release model looked past an upcoming
release to the planned evolution of a system. The
primary objective of designing and testing was to
speed up deployment for each successive release of
an application or system. There is an implicit bottom-
up approach to producing software here: production
and test of a component, integration among related
components, creation of a hierarchy based on
minimal interaction between components, and finally
an end-to-end integration test of all components.
Sometimes at the very end of the release cycle, we
make a cursory attempt to check interoperability with
outside systems/software. This means that the
release model most software teams employ does not
put usability first, cannot accommodate a changing
interface, and does not incorporate flexibility for end
user systems or production systems.

The web turns this methodology inside out. On a
web site, all the major activities for a user are
displayed at all times. No window or access hierarchy
protects the system from any flows outside the scope
of anticipated, hence designed, activity. As a result of
this basic lack of well-defined and structured activity
flow and the sheer pace of expected updates, we must
create a new methodology: a simulation approach
that focuses on the reliability of an impending
release. In other words, design and testing efforts for
the web focus around prioritizing to maximize
reliability, then simulating online processes to verify
that reliability, rather than running the traditional
model where design is complete and testing is an
iterative process of catching more and more.

The goal of this approach is ensure that a site's
most critical processes function and perform to
expectation on a release-by-release basis.
Functionality that hasn't been thoroughly tested for
usability is not incorporated into a public release.

New functionality that anticipates a great increase in
traffic on the site is not added until the software team
verifies that the current configuration can handle the
additional load without downtime or great increase in
overall response times. This approach is top-down,
enumerating and prioritizing functions in relation to
impact on reliability. You turn those functions into
transactions (i.e. functions that can be performed at
any point in the use of a site) and create your design
and testing plan from performing these basic tasks
through the eyes and access privileges of the target
users. In conjunction with this activity-based,
transaction testing scheme, you also form a battery of
operability standards. These standards form a base of
tests aimed at catching obvious defects that, because
of their simplicity, would reflect negatively on the
business the site is representing.

Like a single typo in a resume, even a small
imperfection in reliability for your web site's most
visible areas can destroy the effectiveness of the
whole site. The most visible areas must be perfectly
reliable for the first customer who encounters them
and for every customer after that. Perfection from the
onset is necessary on the web. New pieces are not put
into the public domain until they are consistent and
reliable. That means that both clear articulation and
prioritization of the critical functions are necessary to
organize all design, test, and deployment efforts.

 How do you organize this effort if traditional
methods are not effective?

Traditional methods loose applicability because
they do not map to the parts of the web site that stay
the same. All of the front-end change that any given
web site undergoes over time epitomizes the
antithetical nature of the relationship between
producing reliable, quality web sites and the standard
software product development cycle. The
assumptions and conditions for using a standard
product development process cannot coexist with the
highly variable conditions for running web sites. This
makes applying traditional release methods at any
point in the production cycle either an incredible
nightmare or simply something that is not done. The
concepts of site maps and user profiles are the pieces
of the puzzle that do persist from "release" to
"release" of a web site. These two tools can be used
to form a new way for deploying a site.

The site map, the first organizing component, is a
multi-dimensional representation of the activity flows
the web site is supposed to facilitate and the
connections among those activities. You can manage
all phases of the web site release cycle -- design,
implementation, test, deployment, and ongoing

updates -- using this primary information
organization tool. The site map identifies all the
logical paths that the user can navigate through on the
web site. It describes all paths that you've created,
and can be used to define or refine the user profiles
(which we will discuss later) you create for the target
audiences that you expect or want to use the site. The
site map should go down to the page or CGI level of
the site so that testers have a map of how the
application works. The site map is something akin to
an architecture map or specification of a system,
except that site maps by nature will have logic
branches that change frequently, while overall
components or areas of interest will not. In the client-
server world, such a map usually isn't produced
because system changes happen at a much lower
frequency. Often then, transitional teams build an
implicit shared map together that's never fully or
formally outlined. The pace and nature of changes
on a web site make an explicit map essential for the
web world.

What are the Site Map components?

• Functional representation of the main
components of the site. This is a flow chart of all the
activities that a user can initiate on your site. An
accompanying document to this chart should include
specifications for CGI scripts or any executables that
take input and produce web-page content as output.
You will need those to build tests that have flexible
input/output parameters but represent the unchanging
structure of the web site.

• Machine information and mapping to main
components each machine will carry. Software and
hardware configurations have never been more
important to software projects as they are for web
sites. IT Departments have a plethora of choices in a
multitude of levels that can affect site performance
and functionality. Mapping this accurately and
keeping that map up to date are essential for
pinpointing problems in your system.

• Software/technology information of the
machines that manage, house, or interact with
functional parts of the web site. This is where you
clearly note and religiously update those notes that
detail your server software and hardware
configurations. It is essential to write down the
library and tool kit versions the development team is
using to build the web software as well as the library
and tool kit version that MIS is supporting.

• Representations for various users that will hit
the web site. Users will have different categories of
privileges that change the process that's exposed to

them. Mapping the different user views of the web
site is the only concrete way to track the effect and
risk of proposed changes without having to know the
construction of the entire site. The word "view" is not
used arbitrarily here. The user views have a direct
analogy to the view counterpart in the database
world. A view takes an entire structure and
highlights particular paths and connections for that
particular view.

This mapping method may seem complicated, but
in the end it represents the parts of the system that are
most likely to persist for many cycles of site updates.
It also creates a forum for targeting and prioritizing
the actual activities that the site is designed to cover.
All initial efforts to create the site map and educate
the R&D staff of its importance and use will be well
rewarded.

Like a mission statement, the site map guides and
aligns the entire team of people needed to launch and
maintain your web site. An accurate site map will
draw attention to design bottlenecks as well as
component or machine bottlenecks, if you keep the
machine specs updated. The site map also points out
gross design flaws very early in the initial or ongoing
release cycle -- for instance, when a critical process
like online purchasing is hidden from the front page.

In this sense, the web offers the first opportunity to
truly prioritize the functions of a software project.
Usually we have a large pile of considerations, with a
somewhat arbitrary process of prioritizing the list. In
this case, because the room for even marginally
missing customer expectations for speed and ease of
use is nonexistent, the prioritization becomes clearer.
Pick a handful of activities and implement them with
top notch usability standards. If you don't finish the
entire look and feel of the user experience for a
particular process, you need to drop it off your list of
processes to webify. The site map, as it name implies,
maps out the system. User profiles guide your design
and testing efforts through that system.

User Profiles, the second organizing component,
define how you will navigate your site, set the mark
for expected volume of use and ultimately define
your design and testing efforts. The components from
the site map should start out as the basic set of
activities you want the web site to perform at the
highest level, for example, research technical
information, purchase, browse offerings, update
customer records. Each user profile will then access
different combinations of components, pages, and
controls of the site. Different classes of users will
have very different loads on the system.

For example, surfers who hit your home page and a
few second-level links will have little impact on
performance despite high numbers. In contrast, a
relatively small number of customers logging into
your site and each conducting more involved
transactions that simply surfing (like purchasing or
updating records) can have a significant impact on
your web server. You need to make explicit lists of
users for sites and expected activities -- do not define
these lists page by page, rather start out with a user
definition and a general list of activities. Each profile
should correspond to a general activity set that your
site supports. Examples of common profiles are
these:

• Surfer: someone who loads the home page,
hits a few links, and leaves.

• Customer: someone who engages in
information gathering or whom your business wants
to capture information about.

• Buyer: someone who purchases from your site,
if you offer online sales.

All three of these groups will want different
functionality from the site, and all three profiles will
generate a different quality and quantity of traffic on
your site. Surfers, for example, will want to have all
information available to them a maximum of two
clicks away. Their activity will most likely not be
process-heavy, unlike a buyer or customer who might
interact with a database would, but their class will
probably generate the most traffic of static pages, if
you site is designed to pull visitors to it.

Customers, on the other hand, will want some
information exchange and will likely interact with a
backend database or with CGI systems that do some
processing. There will be fewer customers than
surfers. Buyers will be the smallest class of the three,
but will have the most resource-intensive activities
because any monetary transaction will have several
security layers, database logging and record retrieval.

In the old world where applications ran directly on
the operating systems, a designer or tester could
navigate the system from a GUI, basing tests on the
mapping of the window hierarchy. Because the web
browsers give you the ability to interrupt the flow of
any set of web pages through which one can navigate,
an implicit hierarchy no longer exists. Rather, the
navigation of a system is solely based on assumptions
made at design time about who is going to use the
site. Very little attention is paid to how the user might
get to a certain place. This lack of application access
control urgently underscores the need to first define,
than consistently review, prioritize and test the site
around what target users. The user profiles define

activities and access. The site map documents how
those users navigate the system to execute those
activities. Management prioritizes the activities on an
ongoing basis to ensure that business objectives are
met without risking visitor perception about the site's
reliability.

Your task must be to map out and verify that
persistent system, that structure which defines your
web site. That structure must work hand-in-glove with
the short list of critical tasks that must function
perfectly and consistently on your site all day, every
day. You can map the backbone and the critical
functions effectively, efficiently and easily by
creating and updating your site map and user profiles.

The important thing about the site maps and user
profiles is that they remain accurate. Software
projects need to have a grand design, a vision, and all
that good stuff. But the execution model for a web
site must be based on the reliability of what is being
used/released in the present or immediate future.

Conclusions

The paradigm shift is in the method of design and
execution, not in the basic motivation of a release
strategy. In other venues, the GUI is the organizing
principle for design and prototype, and hence is assumed
to be one of the most stable parts of a non-web piece of
software (often, yes, this is not a valid assumption, but it
is a common assumption, regardless). So automation,
and testing in general, revolved around stable portions of
the system. That still holds true in the web world, but
that what parts of the system are stable and get tested and
how those parts are tested differs. In the web world, site
maps and user profiles are the pieces of the puzzle that
persist from "release" to "release". They are the major
components of the big picture that your organization
creates when adding web site accessibility to the
business plan, and ultimately form the measures for
success of your web site.

Use site maps and user profiles to plan, guide, test,
and measure your web site effort. These two tools will
be instrumental in both your functional testing and
performance testing. Site maps and user profiles will be
the guides you use for deciding what you must test.

Acknowledgements

The author would like to thank the Segue Software
Gain eConfidence writing team for providing ideas
and guidance.

Bibliography

[1] "The Cost of Downtime" by Tim Wilson, Internet
weekly Online, Friday, July 30, 1999.

[2] Gain eConfidence, Segue Software, page 1.

Jenny Jones
Jenny Jones is currently the director of product services at Segue Software in
Lexington, Massachusetts, where she acts as an industry expert writing and
speaking about how software teams and business heads need to address the
web, as well as running a small web project around Segue's product knowledge
base. She moved into software engineering six years ago after completing her
Master's in Mathematics. She describes herself as "an education junkie" and
enrolled in classes at night almost as soon as she left the halls of academia. She
will receive her MBA from Boston College in 2001.

Her commentary and writing is included in magazines and books including the
upcoming eCommerce Testing by Addison Wesley and Automated Testing
Toolkit by John Wiley & Sons (both due out this summer), and in industry
journals including "eCommerce Business".

	Paper
	Bio

