

Simple ROI model for Testing Automation projects

The writer is an independent consultant for automation testing in the fields of
networking and J2EE applications. Guy_Arieli@hotmail.com. Tel: +972-54-7899446.

Abstract
In this article I will try to give a simple method to answer a question that usually rises when
working on testing automation project, “Will it be profitable”? A more accurate question will
be “When will I See the return on the investment”?

In general Return On Investment or ROI is a factor that is calculated in specifics points in time.
When the ROI become positive the project worth investing.

Most of the ROI models are very hard to implement. Here I will give a model that by answering
few simple questions will give you a good first appraisal.

I found this model to be a strong tool to priorities between automation projects (What should I
automate first?) and it can help you understand what are the factors influencing your project.

The model
The units I use to measure costs are working weeks. The calculation is done for every major
release of your product.

The ROI index is the Total Benefits minus the Total Costs divided by the Total Costs. So when
the Benefits is bigger then the Costs you will get a positive number, and everyone is happy. The
big question is “When?” i is the product version index.

i

ii
i TC

TCTB
ROI

−
=

Lets drill into the Total Costs (iTC) first.

iii TTDTBBFCTC ++=

The Total Costs for version iwill be the costs to develop the automation framework (FC) this
effort is invested once. To it we add the total cost to develop the building blocks of the tests
(iTBB), the interfaces to the system or product that is being tested. Plus the total costs to

develop the tests (iTTD).

Now lets look at the tests development:

iii TDTTDTMFTTD +×+= −1)1(

TMF is the Tests Maintenance Factor. If it took you 4 months to develop the tests to the first
version and you have to invest 1 month in order for them to run on the second version, then the
TMF will be 0.25.

So to calculate the total tests costs in version i , we take the total costs for the previous version
(1−i) multiply it by 1 plus TMF and add to it the efforts to develop new tests for the new
version (iTD)

We will do the same for tests building blocks:

iii BBTBBBMFTBB +×+= −1)1(

iTBB is the Tests Building Blocks Maintenance Factor.

iBB is the Building Blocks development efforts for version i . If for example they just add
some kind of Database feature in the product and you have to write an easy to use API or a
driver to enable access to the database, in order to test it. The development efforts will be added
to the Building Blocks development (iBB).

Now if we look at the 2 formulas (for iTTD and iTBB) the only parts that are difficult to

calculate are iTD and iBB . 1−iTBB and 1−iTBB are 0 for the first version and are known for all
the other versions.

So in order to make it easer to calculate iTD and iBB I use the following formulas:

TDMMNFTD
BBMMNFBB

iii

iii

××=

××=

Were:

iNF is the New Feature factor, the ratio between the efforts to test new feature and the total
efforts (include regressions), of the manual testing. If half of the testing efforts are being
invested in new features then iNF will 0.5.

iM is the manual efforts for version i.

TDM is the ratio between tests development efforts to manual efforts. If I have a tests plan
that take 1 week to execute and (assuming I have the tests building blocks) it will take me 2
weeks to write (and debug) the automatic tests the TDM is 2.

BBM is the ratio between building blocks effort (iBB) to manual efforts.

We finished with the costs let’s look at the benefits:

iiii MRFTBTB +×= −1

iRF is the Relevancy Factor, the ratio between the relevant efforts to the total efforts. If 10% of

the tests I wrote to version 1 are irrelevant to version 2 then iRF will be 0.9.

So the total benefits for version i equals to the benefits of version 1−i multiply the relevancy
factor plus the manual efforts for version i .
I hope you didn’t get lost in all the formulas. But in order to use this module on a project all
you have to enter are the following parameters:

Parameter Description

FC Framework cost

BMF Building blocks maintenance factor.

NF New factor, the ratio between the new feature
efforts and the total efforts (include
regressions), of the manual testing.

iRF Relevancy Factor, the ratio between the
relevant efforts to the total efforts.

BBM The ratio between building blocks effort (iBB)
to manual efforts

TMF Tests maintenance factor.

TDM The ratio between test development efforts to
manual efforts.

iM Manual efforts for version i. Includes all the
regressions and repetitions of tests.

Only 8 parameters and you have it all.

Example
Let’s see how it looks in excel sheet:
BMF 0
TMF 0
NF 0.3
BBM 0.5
TDM 1
Mi 50 weeks
TC 16 weeks
RF 0.95

Version Mi Nfi Bbi TBBi Tdi TTDi Tci Bi ROI
0 0 0 0 0 0 0 0 0
1 50 0.3 7.5 7.5 15 15 38.5 0 -1
2 50 0.3 7.5 15 15 30 61 50 -0.18033
3 50 0.3 7.5 22.5 15 45 83.5 97.5 0.167665
4 50 0.3 7.5 30 15 60 106 142.625 0.345519
5 50 0.3 7.5 37.5 15 75 128.5 185.4938 0.443531
6 50 0.3 7.5 45 15 90 151 226.2191 0.498139
7 50 0.3 7.5 52.5 15 105 173.5 264.9081 0.526848
8 50 0.3 7.5 60 15 120 196 301.6627 0.539095
9 50 0.3 7.5 67.5 15 135 218.5 336.5796 0.54041
10 50 0.3 7.5 75 15 150 241 369.7506 0.534235

ROI

0
50
100
150
200
250
300
350
400

1 2 3 4 5 6 7 8 9

versions

ef
fo
rt
s Cost

Benefits

Typical Projects
Following are list of project types with typical parameters values (for medium size projects):

 FC BMF TMF NF BBM TDM iRF iM

Typical
networking
project

16 0 0 0.3 0.3 0.5 0.95 40

Complex
Dynamic
HTML GUI

16 0.3 0.2 0.3 0.7 0.7

0.9 40

Functional
testing for J2EE

project using
business logic

layer (not GUI)

16 0.1 0.1 0.3 0.2 0.5 0.95 40

Limitations
• This model works best if you already have data of previous projects. It will enable you to

calibrate the parameters values.

• The benefits include only direct benefits, the time that was saved in the manual testing.
Huge profits in automation projects lies in the fact that the problem can be found in
proximity to the time the problem was created. It affects the cost of fixing the problem.
Methods, like extreme programming use this exact fact.

