
TEST AUTOMATION
Perils, pitfalls, and promise

IMPROVE AGILE QUALITY

Take the three-pillar
approach to quality nirvana

Winter 2016		 www.TechWell.com

http://www.TechWell.com

2	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

The Best Place for
Software Testing Solutions

Orlando, FL
May 1–6, 2016
Renaissance Orlando
at Sea World®

“The most effective
training a QA

manager can have.”

Mike Chernick, QA Manager

“Wonderful first
time experience.”

Ken Malin, QA Test Analyst

Save up to $400 when you
register by March 4, 2016.

https://well.tc/STAREAST2016

C O N F E R E N C E
S C H E D U L E
Choose from a full week of learning,
networking, and more

SUNDAY Multi-day Training Classes Begin

MONDAY–TUESDAY In-Depth Half- and Full-Day
Tutorials

WEDNESDAY–THURSDAY Keynotes, Concurrent
Sessions, the Expo, Networking Events,
and More

FRIDAY Testing & Quality Leadership Summit,
Women Who Test, & the Workshop on
Regulated Software Testing (WREST)

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0
https://well.tc/STAREAST2016

Lessons
Learned in
(Selling)
Software
Testing

Keith Klain,
Doran Jones

Open
Source Test
Automation:

Riding the
Second Wave

David Dang,
Zenergy

Technologies

Lightning
Strikes the
Keynotes

Lee Copeland,
TechWell Corp.

Telling Our
Testing Stories

Isabel Evans,
Independent
Consultant

The Evolution
of a Software
Tester: From

Novice to
Practitioner
Dawn Haynes,

PerfTestPlus, Inc.

Selenium Test Automation:
From the Ground Up
Jeff “Cheezy” Morgan, LeanDog

Get Your Message Across:
Communication Skills for
Testers
Julie Gardiner, Hitachi Consulting

Critical Thinking for
Software Testers
Michael Bolton, DevelopSense

Testing the Internet of Things
Jon Hagar, Grand Software Testing

Plan, Architect, and
Implement Test Automation
within the Lifecycle
Mike Sowers, TechWell Corp.

Sucessful Test Automation:
A Manager’s View
Dorothy Graham, Software Test
Consultant

Software and test managers,

QA managers and analysts,

test practitioners and

engineers, IT directors,

CTOs, development

managers, developers,

and all managers and

professionals who are

interested in people,

processes and technologies

to test and evaluate software

intensive systems

WHO SHOULD ATTEND?MAY 4–5

THE EXPO
Visit Top Industry

Providers Offering the
Latest in Testing Solutions

TOOLS
SERVICES

TECHNIQUES
DEMOS

Keynotes by International Experts

JUST A FEW OF OUR

IN-DEPTH HALF-
AND FULL-DAY

TUTORIALS

http://www.TechWell.com
https://well.tc/3iit
https://well.tc/3iit

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 3

The Best Place for
Software Testing Solutions

Orlando, FL
May 1–6, 2016
Renaissance Orlando
at Sea World®

“The most effective
training a QA

manager can have.”

Mike Chernick, QA Manager

“Wonderful first
time experience.”

Ken Malin, QA Test Analyst

Save up to $400 when you
register by March 4, 2016.

https://well.tc/STAREAST2016

C O N F E R E N C E
S C H E D U L E
Choose from a full week of learning,
networking, and more

SUNDAY Multi-day Training Classes Begin

MONDAY–TUESDAY In-Depth Half- and Full-Day
Tutorials

WEDNESDAY–THURSDAY Keynotes, Concurrent
Sessions, the Expo, Networking Events,
and More

FRIDAY Testing & Quality Leadership Summit,
Women Who Test, & the Workshop on
Regulated Software Testing (WREST)

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0
https://well.tc/STAREAST2016

Lessons
Learned in
(Selling)
Software
Testing

Keith Klain,
Doran Jones

Open
Source Test
Automation:

Riding the
Second Wave

David Dang,
Zenergy

Technologies

Lightning
Strikes the
Keynotes

Lee Copeland,
TechWell Corp.

Telling Our
Testing Stories

Isabel Evans,
Independent
Consultant

The Evolution
of a Software
Tester: From

Novice to
Practitioner
Dawn Haynes,

PerfTestPlus, Inc.

Selenium Test Automation:
From the Ground Up
Jeff “Cheezy” Morgan, LeanDog

Get Your Message Across:
Communication Skills for
Testers
Julie Gardiner, Hitachi Consulting

Critical Thinking for
Software Testers
Michael Bolton, DevelopSense

Testing the Internet of Things
Jon Hagar, Grand Software Testing

Plan, Architect, and
Implement Test Automation
within the Lifecycle
Mike Sowers, TechWell Corp.

Sucessful Test Automation:
A Manager’s View
Dorothy Graham, Software Test
Consultant

Software and test managers,

QA managers and analysts,

test practitioners and

engineers, IT directors,

CTOs, development

managers, developers,

and all managers and

professionals who are

interested in people,

processes and technologies

to test and evaluate software

intensive systems

WHO SHOULD ATTEND?MAY 4–5

THE EXPO
Visit Top Industry

Providers Offering the
Latest in Testing Solutions

TOOLS
SERVICES

TECHNIQUES
DEMOS

Keynotes by International Experts

JUST A FEW OF OUR

IN-DEPTH HALF-
AND FULL-DAY

TUTORIALS

http://www.TechWell.com
https://well.tc/3iit
https://well.tc/3iit

http://www.ranorex.com/tour.html?utm_source=SQE&utm_medium=magazine&utm_campaign=FullPageAd-BSM-01-2016

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 3

26

IMPROVE AGILE QUALITY—THREE PILLARS AT A TIME
A key component to being agile is the adoption of testing from the very inception
of the project. According to Bob Galen, to achieve a high degree of quality assur-
ance, there needs to be a careful balance among development and test automa-
tion, software testing, and cross-functional team practices.
by Bob Galen

20

20

CONTENTS

Volume 18, Issue 1 • WINTER 2016

features

36 THE LAST WORD
PLAYING GAMES TO IMPROVE SOFTWARE
You may not have heard about gamification, but instructional designers are now
using game principles to help with retention of learned material in many forms
of training. Ross Smith and Rajini Padmanaban believe that developers' UX and
app design can benefit from gamification.
by Ross Smith and Rajini Padmanaban

12

Better Software magazine brings you the
hands-on, knowledge-building information

you need to run smarter projects and deliver
better products that win in the marketplace

and positively affect the bottom line.
Subscribe today at BetterSoftware.com or

call 904.278.0524.

Mark Your Calendar

Editor's Note

Contributors

Interview with an Expert

TechWell Insights

Ad Index

in every issue
4

5

6

10

34

37

columns
7 TECHNICALLY SPEAKING

HOW TO ASSESS AND IMPROVE DEVOPS
DevOps can take substantial effort to successfully implement, according to
Bob Aiello and Leslie Sachs. By understanding existing development and
deployment practices, you'll be able to properly assess the best steps to
transition to an outstanding DevOps environment.
by Bob Aiello and Leslie Sachs

MOVING TEAMS TOWARD AUTOMATION: PERILS, PITFALLS,
AND PROMISE
There is no magic bullet to create an effective test automation environment. But,
Steve Gibson believes that creating a test automation vision, adopting metrics and
delivering value throughout a project lifecycle puts an organization on the right path.
by Steve Gibson

26

PEOPLE SHOULD THINK AND MACHINES SHOULD TEST
Testers often develop programmatic tests that mimic manual test conditions.
Harry Robinson and Doug Szabo use real programming examples to show how the
computer can provide better test coverage than the test author conceived.
by Harry Robinson and Doug Szabo

30

COVER STORY
SEVEN GUIDELINES FOR A GREAT WEB API
Web APIs have opened up a brave new world for app collaboration. James
Higginbotham presents a series of guidelines that every programmer should con-
sider in the design and implementation of a great API developer experience.
by James Higginbotham

12

http://www.TechWell.com
http://www.stickyminds.com/resources/magazine-articles
http://www.ranorex.com/tour.html?utm_source=SQE&utm_medium=magazine&utm_campaign=FullPageAd-BSM-01-2016

4	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

software tester
certification

MARK YOUR CALENDAR

Mobile Dev + Test
http://mobiledevtest.techwell.com
April 17–22, 2016
San Diego, CA
Westin San Diego

IoT Dev + Test
https://iotdevtest.techwell.com
April 17–22, 2016
San Diego, CA
Westin San Diego

STAREAST
http://stareast.techwell.com
May 1–6, 2016
Orlando, FL
Renaissance Orlando at Sea World

Agile Dev West
http://adcwest.techwell.com
June 5–10, 2016
Las Vegas, NV
Caesars Palace

Better Software West
https://bscwest.techwell.com
June 5–10, 2016
Las Vegas, NV
Caesars Palace

DevOps West
http://devopswest.techwell.com
June 5–10, 2016
Las Vegas, NV
Caesars Palace

conferences

training weeks
Testing Training Week
http://www.sqetraining.com/trainingweek

February 8–12, 2016
Atlanta, GA
Testing Training Week

March 7–11, 2016
Boston, MA
Testing Training Week

April 4–8, 2016
San Diego, CA
Testing Training Week

http://www.sqetraining.com/certification

January 26–28, 2016
Houston, TX

February 1–5, 2016
Philadelphia, PA
Advanced Tester Certification

February 23–25, 2016
Little Rock, AR

March 1–3, 2016
Charlotte, NC

March 14–16, 2016
Albuquerque, NM
Denver, CO

March 15–17, 2016
San Francisco, CA

March 29–31, 2016
Vancouver, CA, Canada
Tampa, FL

April 12–14, 2016
Nashville, TN

April 26–28, 2016
Washington, DC

http://www.TechWell.com
http://mobiledevtest.techwell.com
https://iotdevtest.techwell.com
http://stareast.techwell.com
http://adcwest.techwell.com
https://bscwest.techwell.com
http://devopswest.techwell.com
http://www.sqetraining.com/trainingweek
http://www.sqetraining.com/certification
http://www.sqetraining.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 5

The New Techwell
With the first 2016 issue of Better Software magazine, there are
more changes going on than just the calendar year.

You may know Better Software’s parent company as Software
Quality Engineering, or SQE, but we recently rebranded the
company as TechWell Corporation. The new name reflects our
growing focus on the entire software development lifecycle.

Our TechWell.com website has been completely redesigned to highlight our conferences, training, and
online communities: AgileConnection, StickyMinds, and CMCrossroads.

To find Better Software, click MORE on the TechWell.com homepage. While you’re on the new TechWell
site, check out TechWell Insights for timely, tech-focused stories published every weekday.

This issue of Better Software is loaded with some awesome feature articles, starting with James
Higginbotham’s blueprint for writing a great web API. And before taking the plunge into test automation,
you’ll want to read Steve Gibson’s “three Ps:” perils, pitfalls, and promise.

There’s no doubt that software development teams have embraced agile. I’ve heard Bob Galen speak
about how to treat quality as a feature on every project. His insightful article about the three pillars of
agile quality provides real-world advice for how to balance quality initiatives with your team.

Harry Robinson and Doug Szabo include sample code snippets for tests that can be scripted according to
their four rules for test automation. Every software developer and QA engineer will want to absorb their
approach.

We truly value your feedback. Let us and our authors know what you think of the articles by leaving
your comments. I sincerely hope you enjoy reading this issue as much as I enjoyed working with these
wonderful authors.

And don’t forget to spread the word—SQE is now TechWell Corporation, and Better Software magazine
has the same great content as ever!

Ken Whitaker
kwhitaker@TechWell.com
Twitter: @Software_Maniac

Publisher
TechWell Corporation

President/CEO
Wayne Middleton

Director of Publishing
Heather Shanholtzer

Editorial

Better Software Editor
Ken Whitaker

Online Editors
Josiah Renaudin

Beth Romanik

Production Coordinator
Donna Handforth

Design

Creative Director
Catherine J. Clinger

Advertising

Sales Consultants
Daryll Paiva

Kim Trott

Production Coordinator
Alex Dinney

Marketing

Marketing Manager
Cristy Bird

Marketing Assistant
Tessa Costa

CONTACT US

Editors: editors@bettersoftware.com
Subscriber Services:
info@bettersoftware.com
Phone: 904.278.0524, 888.268.8770
Fax: 904.278.4380
Address:
Better Software magazine
TechWell Corporation
350 Corporate Way, Suite 400
Orange Park, FL 32073

Editor’s Note

FOLLOW US

http://www.TechWell.com
mailto:kwhitaker@TechWell.com
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
https://www.linkedin.com/company/2718416?trk=tyah
https://twitter.com/TechWell
https://plus.google.com/u/0/+Techwell/posts
https://www.facebook.com/TechWellCorp
http://www.TechWell.com

6	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

As senior director of engagement, Rajini Padmanaban leads the engagement and relationship management for some of QA InfoTech's
largest and most strategic accounts. She has more than fourteen years of professional experience, primarily in the software quality
assurance space. Rajini actively advocates software quality assurance through evangelistic activities, including blogging on test
trends, technologies, and best practices and providing insights on software testing to analyst firms such as Gartner and IDC. She
can be reached at rajini.padmanaban@qainfotech.com.

Contributors

For more than twenty years, Doug Szabo has been a software analyst, programmer, and, most recently, a software tester. Having
transitioned from developing software to testing software in 2007, Doug’s current pursuit is intelligent software test automation in
the health care sector. Past projects have involved software for a variety of technologies, including GPS navigation, 3D rendering,
geographic information systems, handheld mobile computing devices, and data analytics. Reach Doug at doug.szabo@gmail.com.

With experience in architecting, building, and deploying APIs, James Higginbotham is an API consultant who enjoys helping busi-
nesses balance great API design and product needs. As a trainer, James enjoys equipping cross-functional teams to integrate their
talents toward building first-class APIs for their product or enterprise systems. He is a frequent speaker at technology events and
conferences. You can contact James at james@launchany.com.

Director of engineering at Microsoft, Ross Smith is a Fellow of the Royal Society for the encouragement of Arts, Manufactures and
Commerce, which aims to enrich society through ideas and action. Ross blogs, is an author of The Practical Guide to Defect Preven-
tion, and holds six patents. He developed 42Projects, which focuses on management innovation, trust, and the application of games
at work. A frequent speaker at the Serious Games Summit and Gamification Summit, Ross works with teams inside and outside
Microsoft on deploying games in the workplace. Contact Ross at rosss@microsoft.com.

The director of quality at ReverbNation, Steve Gibson has a passion for agile development, test automation, and coaching teams in
how quality fits into the agile belief system. Of his seventeen years of testing experience, Steve has spent the past seven years
honing his test automation craft using open source technologies like Cucumber and Selenium. Steve can be reached at
steve@qualitymindset.net.

For the past thirty years, Harry Robinson has developed and tested software at Bell Labs, Hewlett Packard, Microsoft, Google, and
several startups. Harry is a pioneer in advanced software test techniques, especially model-based testing and high-volume automa-
tion. Recently, Harry contributed a chapter, “Exploratory Test Automation: An Example Ahead of Its Time,” to the book Experiences of
Test Automation. Harry holds two patents on test automation techniques. Harry can be reached at harryr@harryrobinson.net.

Leslie Sachs is the coauthor of Configuration Management Best Practices: Practical Methods that Work in the Real World, a New
York state certified school psychologist, and the COO of Yellow Spider Inc. Leslie has more than twenty years of experience in the
psychology field, working in a variety of clinical and business settings. A firm believer in the uniqueness of every individual, Leslie
has recently done advanced training with Mel Levine's “All Kinds of Minds” Institute. Reach her at LeslieASachs@gmail.com.

A long-time freelancer in the tech industry, Josiah Renaudin is now a web content producer and writer for TechWell,
StickyMinds.com, and Better Software magazine. He also writes for popular video game journalism websites like GameSpot, IGN,
and Paste Magazine, where he writes reviews, interviews, and long-form features. Josiah has been immersed in games since he
was young, but more than anything, he enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

Agile methodologist, practitioner, and coach Bob Galen helps guide companies and teams in their pragmatic adoption and organi-
zational shift toward Scrum and other agile methods and practices. Bob is the president/principal consultant a RGCG LLC and and
agile evangelist at Velocity Partners. Bob is a Certified Scrum Coach, Certified Scrum Product Owner, and active member of the
Agile Alliance and Scrum Alliance. Bob’s book Scrum Product Ownership—Balancing Value from the Inside Out addresses the gap
in holistic quality strategies in agile-focused organizations. He can be contacted at bob@rgalen.com.

Bob Aiello is a consultant and software engineer specializing in software process improvement, including software configuration
and release management. He has more than twenty-five years of experience as a technical manager at top New York City financial
services firms, where he held company-wide responsibility for configuration management. Bob is vice chair of the IEEE 828 Stan-
dards Working Group on CM Planning and a member of the IEEE Software and Systems Engineering Standards Committee (S2ESC)
Management Board. Contact Bob at Bob.Aiello@ieee.org or visit cmbestpractices.com.

http://www.TechWell.com
mailto:rajini.padmanaban@qainfotech.com
mailto:doug.szabo@gmail.com
mailto:james@launchany.com
mailto:rosss@microsoft.com
mailto:steve@qualitymindset.net
mailto:harryr@harryrobinson.net
mailto:LeslieASachs@gmail.com
mailto:jrenaudin@techwell.com
mailto:bob@rgalen.com
mailto:Bob.Aiello@ieee.org
http://www.cmbestpractices.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 7

Assessing Your DevOps Environment
Successfully assessing and improving DevOps require that

you understand your existing practices, identify what needs
to be improved, and then choose the right initiatives to assign
resources and organizational focus. When we conduct assess-
ments, we meet with a wide array of stakeholders from product
and development managers to testers and operations engineers,
and we ask them to explain what they feel is being done well
and what needs to be improved. DevOps encompasses configu-
ration management practices such as source code management,
build and release engineering, automated environment manage-
ment, along with release coordination and change control—all
practices fundamental to an effective DevOps transformation.
You may discover that some teams have well-defined auto-

mated build and deploy procedures
but need help with basic source code
management procedures such as
baselining code with tags or merging
code correctly on branches. This
may indicate that they will struggle
with advanced practices, such as fea-
ture toggles, too.

In our experience, customers use
continuous delivery and contin-
uous deployment interchangeably
and insist that these practices be
given a high priority even though
basic functions such as source code

management, build and release engineering, or even effec-
tive change control may be more urgent. Teams implement
continuous integration and deploy the code to a test environ-
ment, calling this practice continuous deployment. And this
can be very misleading. Actually continuous deployment im-
plies that changes are deployed all the way to production and
sometimes this may actually not be desirable. For example,
banks that bypass change control may find themselves in
violation of federal regulatory requirements. Make sure that
your assessment identifies key practices that are required in
your industry, especially when mandated by federal law.

How good is your source code management? During an as-
sessment, we often learn that teams need help with source code

DevOps has become a compelling enterprise computing
practice, bringing the promise of fast and reliable applica-
tion deployments—from small bug fixes to major feature en-
hancements. The focus of DevOps is to improve the communi-
cation and collaboration of key groups, including development,
quality assurance, and operations. Technology managers at all
levels in an organization are insisting on DevOps with all its
promise and excitement. DevOps requires applying effective
principles and practices that usually take substantial effort to
implement successfully. This article will help you understand
how to assess your existing practices leading to effective and
scalable DevOps.

Getting the Terminology Right
The first step to understanding

and applying DevOps is making sure
you are using the right terminology.
Some managers inaccurately use
terms like continuous delivery when
they are really describing continuous
integration. The difference is that
continuous integration combines
code from two or more developers,
through an automated process that
deploys to a test region. Continuous
delivery refers to always having
your baseline potentially ready to
be deployed, often actually deliv-
ering changes to production, but hiding them from end-users
through a technique called feature-toggle. Some managers have
taken to using DevOps terms to mean completely unrelated
concepts and that makes it hard to deliver a consistent set of
practices throughout the organization.

If you want your DevOps transformation to be successful,
start by delivering training so that everyone has a common un-
derstanding of DevOps principles and practices. It is also a best
practice to begin by assessing your existing practices so that
you know exactly what needs to be improved. To successfully
implement DevOps, you must first assess your existing prac-
tices and then create a roadmap to improve your key functions
thereby enabling your team to deliver fast and reliable releases.

Technically Speaking

“If you want your DevOps

transformation to be successful,

start by delivering training so

that everyone has a common

understanding of DevOps

principles and practices.”

How to Assess and
Improve DevOps
Transforming your organization to effectively use DevOps isn't easy. To

properly assess your DevOps environment, get the terminology right.

by Bob Aiello and Leslie Sachs | Bob.Aiello@ieee.org and LeslieSachs@gmail.com

http://www.TechWell.com
mailto:Bob.Aiello@ieee.org
mailto:LeslieSachs@gmail.com

8	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

that systems are about to crash. Monitoring memory allows en-
gineers to fix the problem before there is customer impact.

Each step of your application build, package, and deploy-
ment should be fully automated and traceable which is a
common compliance and audit requirement. DevOps will fail
without comprehensive automated application testing. DevOps
should enable your organization to deploy code very quickly—
even for large systems—on a daily or even hourly basis. Ro-
bust, comprehensive automated testing is required to avoid

inefficient manual tests that slow down
DevOps functions.

Suggested Improvements
Since you do not want to fix things

that are not broken, you first need to
assess your existing best practices and
reach consensus on what can be im-
proved. Understanding what is working
well and what needs to be fixed helps
to identify a list of tasks that may form
the basis of your roadmap to DevOps
implementation. We usually recommend
starting with a few changes, which helps
the team realize that things can actually
improve. An added benefit is that your
organizational culture should also im-
prove. Focus on specific key initiatives
such as ensuring that all broken builds
found by the continuous integration
server are investigated rather than ig-
nored.

Our focus is on getting deployment
procedures documented, reviewed, and
fully automated. Agile principles also
help drive the DevOps transformation
itself by taking an iterative approach
to identifying exactly what needs to
be improved. As we learn from agile
principles, you should be prepared to
manage change in your own processes
while striving for continuous improve-
ment and operational excellence. {end}

Technically Speaking

management practices. We always ask teams if they can prove
with certainty that the right code is running in production,
which is known as a physical configuration audit. Another key
benchmark is whether or not they can easily identify unauthor-
ized changes whether from human error or malicious intent.

Monitoring the environment is another key DevOps func-
tion, without which organizations often fail to recognize serious
incidents are about to occur. For example, systems running low
on memory may trigger messages that alert the operations team

ISTQB Software Tester Certification has agile,
advanced and experts paths that can show you
the way, giving you recognition that sets you apart.

If you are ready to take the next step in your
career, choose your software testing career path
now at www.astqb.org/map.

Get to the next level in your
software testing career.

Agile
Advanced

Expert

The Map to

your Career Success

JUNE 5–10, 2016
LAS VEGAS, NV
CAESARS PALACE

LEARN MORE

DevOps and the Culture of
High-Performing Software

Organizations
Jez Humble

Humble, O’Reilly, & Associates

The Power of an Agile
Mindset

Linda Rising
Independent Consultant

How to Do Kick-Ass
Software Development

Sven Peters
Atlassian

The Internet of Things:
Through the Mobile Lens

Steven Winter
Trizic

KEYNOTES ANNOUNCED!

bscwest.techwell.com

Agile Dev West topic areas:
• Agile Implementation
• Kanban
• Agile Testing
• Agile Techniques
• Scrum
• Agile Requirements
• Agile Leadership
• Agile for the Enterprise

Better Software West topic areas:
• Leading Projects and Teams
• Buisness Analysis & Requirements
• Cloud Computing
• Going Mobile
• Software Quality
• Design & Code
• Development Tools
• Testing

DevOps West topic areas:
• Enterprise DevOps
• Project Management
• Continuous Integration
• Tools for DevOps
• Process Improvement

http://www.TechWell.com
http://www.ASTQB.org/map
https://well.tc/3i54

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 9

JUNE 5–10, 2016
LAS VEGAS, NV
CAESARS PALACE

LEARN MORE

DevOps and the Culture of
High-Performing Software

Organizations
Jez Humble

Humble, O’Reilly, & Associates

The Power of an Agile
Mindset

Linda Rising
Independent Consultant

How to Do Kick-Ass
Software Development

Sven Peters
Atlassian

The Internet of Things:
Through the Mobile Lens

Steven Winter
Trizic

KEYNOTES ANNOUNCED!

bscwest.techwell.com

Agile Dev West topic areas:
• Agile Implementation
• Kanban
• Agile Testing
• Agile Techniques
• Scrum
• Agile Requirements
• Agile Leadership
• Agile for the Enterprise

Better Software West topic areas:
• Leading Projects and Teams
• Buisness Analysis & Requirements
• Cloud Computing
• Going Mobile
• Software Quality
• Design & Code
• Development Tools
• Testing

DevOps West topic areas:
• Enterprise DevOps
• Project Management
• Continuous Integration
• Tools for DevOps
• Process Improvement

http://www.TechWell.com
https://well.tc/3i54

10	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

“What is the UX for IoT? Is it all going to be

based on mobile? Are these things going

to be self-configuring? Obviously, the more

work you push onto the user, the better.”

“The hardest part of getting

your device working is getting

it set up, getting it configured.

Whether it's connecting to Wi-Fi

or whatever that happens to be,

that experience is your first touch

point with your user.”

For the full interview, visit
https://well.tc/IWAE18-1

Interviewed by: Josiah Renaudin

Email: jrenaudin@techwell.com

Kevin Rohling
Years in Industry: 6

Email: kevin@kevinrohling.com

“Your oven is pretty easy to figure out, and you

know how to open your fridge. You don't expect

things in your house to be difficult to use, and

that’s why these new connected devices have an

adjustment period for users.”

“At the end of the day, what do consumers

want? They want things that just freaking work,

and they want it to work as easily as the things

that they have in their house do right now.”

“You hear a lot of

buzz on media

outlets about

a lot of really

interesting things

happening… but

you also hear

about companies

that end up

going under

before they

actually ship a

product.”

“What's differentiating about this

next wave [of IoT] is that we're

getting to the point where the

technology and our own learning

around user experience are

allowing us to build things that

are genuinely useful.”

“At the end of the day,

you want users to have

to put in as little work as

possible.”
At the end of the day,

you want users to

have to put in as little

work as possible.

Interview With an Expert

Maybe you can’t do a one-fingered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workflows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrificing coverage.

A U T O M A T E D T E S T I N G

H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

http://www.TechWell.com
http://stickyminds.com
https://well.tc/IWAE18-1
mailto:jrenaudin@techwell.com
mailto:kevin@kevinrohling.com
http://www.saucelabs.com/signup/trial?utm_medium=BSMQ215
http://www.stickyminds.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 11

Maybe you can’t do a one-fingered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workflows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrificing coverage.

A U T O M A T E D T E S T I N G

H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

http://www.TechWell.com
http://www.saucelabs.com/signup/trial?utm_medium=BSMQ215

12	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 13

B
rowse any technology news website and you will
likely read about another product promoting an
open web-based API. Companies are making huge
investments to expose APIs to both internal and

public software developers, resulting in higher conversion rates
and increased revenue. Web APIs can be used strategically to
extend the ecosystem of your enterprise app by enabling inte-
gration with other apps across the enterprise.

Unlike other aspects of software development, APIs at
their heart are social and collaborative. They will be shared
with other developers, often outside the product team. This
means great developer experience is important, as public
developers using your API will not have access to your
source code, design documents, and database diagrams.

To create a great developer experience, we need to
follow some basic guidelines. Each guideline will help shape
the direction of your API and perhaps change the way you
think about web APIs as a whole.

Guideline 1: Take an API-First Approach
Great APIs strive to make complex problems simple and

accessible for developers. They expose technical capabilities
and enable collaboration between humans and machines.
Yet, most APIs solve a specific problem within an existing
application. As a result, the API design is specific to the ap-
plication and difficult to reuse as future opportunities arise.

Taking an API-first design approach encourages teams
to think beyond a specific application. APIs become first-
class products within the organization rather than inte-
grated solutions.

APIs can even be viewed as products themselves, with
the focus shifting from an internal to an external perspec-
tive. We begin to think more about the solution the API
could make available to outside developers. This results in
better API design and documentation.

For example, companies like Twilio (voice and SMS) and
SendGrid (outbound email) have productized their exper-
tise through their APIs. Best Buy developed an open API
to allow developers to access their product catalogs and
customer reviews, resulting in increased sales. Even the US
federal and state governments are releasing public APIs to
share more than eight thousand data sets via the data.gov
developer portal.

While most of these APIs were designed as products
from the beginning, many APIs that were once private are
being released as public APIs. Organizations such as The
New York Times, Thomson Reuters, Brigham Young Uni-
versity, and Uber now provide open APIs for public devel-
opers. This means great API design and an API-first ap-
proach matters—even if your API is currently used only for
internal application development.

Guideline 2: Design Your API from the
Outside In

Modern wisdom says developers should use test-driven
design (TDD). We write automated tests to ensure that our

software is working and to prevent future regression of
bugs. As Tom Preston-Werner writes, “A perfect implemen-
tation of the wrong specification is worthless.” [1]

APIs can be regarded as specifications for how to in-
teract with your software system. Attention to the details of
the API specifications is important for external developers.
Otherwise, poor API design will result in inconsistent re-
sponses, diverging error formats, and chatty APIs that re-
quire large numbers of HTTP requests.

To prevent these issues from creeping into your API de-
sign, adopting an outside-in approach requires modeling
the API up front with full documentation.

API modeling: The goal of API modeling is to fully un-
derstand and validate the needs of your developers and
the end-users, like a UI wireframe. But unlike a wireframe,
which focuses on the end-user interaction, API modeling
focuses on both developer and end-user goals. Sometimes
these goals are the same, but often they are not. API mod-
eling ensures that both sets of goals are met before de-
signing and developing your API. Details on API modeling
techniques can be found in the book A Practical Approach
to API Design. [2]

Documentation-driven design: Documentation-driven
design is the discipline of writing documentation as part
of API design. Using this approach, teams are able to view
their design from an outside perspective. The focus is on
the API specification, rather than behind-the-scenes details
such as database design. The result is complete API docu-
mentation, written up front rather than as an afterthought.

Writing the readme file up front also adds value, as this
may be the first experience for developers new to your API.
It focuses beyond the specification, on topics such as the
API solution, code examples to get started, and links to fur-
ther resources.

Guideline 3: Write Great Documentation
Because developers won’t have access to your source

code, a well-documented API is crucial to developers under-
standing how to use your API.

Many teams have technical writers who produce beau-
tiful PDF-based documentation. However, PDF or Word
documentation can get stale and cause developer confusion.
In addition, these formats do not allow for direct API in-
teraction. HTML-based documentation is optimal because
developers will have access to the latest updates and can
interact with live APIs before a developer writes a single
line of code.

Tools such as Swagger, RAML, Blueprint, and I/O Docs
provide assistance in documenting APIs. They can also give
machine-readable descriptions of your APIs for tool auto-
mation. Many of these tools offer interactive capabilities,
which allow developers, testers, and technical managers to
explore an API from their browsers—no coding required.

Great APIs need well-written documentation, produced
thoughtfully by technical writers. Inline code comments
often aren’t sufficient, as the focus of inline comments is

http://www.TechWell.com

14	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

on providing understanding for developers with access to
the codebase, rather than developers outside the company.
Seek out skilled technical writers who understand how to
construct complete, understandable API documentation.
And don’t forget to provide your team with candid feed-
back regarding the experience of the developer attempting
to use the API.

Guideline 4: Create an Intuitive, Consistent
Design

As developers use your API, they will come to expect the
same experience across all API endpoints. API consistency
creates predictability, resulting in a great developer experi-
ence. Here are some tips for ensuring a consistent API de-
sign:

Avoid abbreviations and jargon: These can confuse de-
velopers not familiar with the specific problem domain. For
example, use the term “volume” even if the term “power”
or “gain” is more familiar to audio engineers.

Use consistent names for resources: Some terms may be
interchangeable within your team, but when designing an
API, it can lead to confusion. For example, use “accounts”
(or “users”) consistently throughout the documentation.
Avoid mixing the two names unless they mean something
different.

Reuse common field names: Refrain from interchanging
field names across responses that mean the same thing. For
example, don’t use fullName for one API endpoint and
firstName with lastName for another.

Create URL consistency: Avoid one-off URLs such as /
user/current when /user would suffice. If you choose to use
REST constraints, pluralize resource collections (e.g., /users
and /users/1234) and keep singular resources singular (e.g.,
/user for the current user).

Use HTTP content negotiation: If your API will sup-
port multiple content types, such as JSON and XML, use
HTTP content negotiation to allow your clients to request
the content type desired. This is accomplished by using the
Accept header and returning the content type of responses
using the Content-Type header.

Consider creating a simple style guide to act as a check-
list for consistency during the API design process. Investing
time in a style guide will save time in the long run.

Guideline 5: Design for Security Up Front
Too often, security is an afterthought when building

software. However, nearly every API will provide access to
sensitive data or internal business systems and may share
user data. Upfront security considerations prevent poor
API design changes that make the API more difficult to use.
There are three security concerns that will impact API de-
sign:

Protecting data in motion: Most API endpoints will
transmit sensitive data. Therefore, teams must secure all
data in motion. By using TLS with HTTP, all sensitive in-
formation is protected. This includes authentication cre-

dentials and any transmitted data in HTTP headers and
request/response bodies.

Preventing data leakage: APIs often begin as an internal
solution for a web or mobile application. Over time, they
expand to partner integration or open APIs for public de-
velopers. It is during this shift from internal to external
usage that data leaks are most likely to happen.

As an example, the Tinder API put users of the popular
platform at risk through data leakage. Its mobile applica-
tions did not display an individual’s exact location coor-
dinates, but the API returned specific locations within the
response payload. This meant any developer had access to
an individual’s location because the data was not properly
scrubbed for external consumption. [3]

To prevent data leakage, design your APIs as if you were
releasing the API to the public—even if you don’t plan
to do so. Add proper authorization for API consumers to
grant or revoke access to specific data fields and endpoints
of the API.

Authentication/authorization support: APIs often need
to know the identity of the API consumer. This identity may
be a specific application developer or an end-user known
by the API. There are three common methods to provide
identity with an API request:

Password-based authentication: The API consumer sends
a username and password, often encoded as Base64 within the
Authorization header of each request. When combined with
TLS, the credentials are less susceptible to compromise. How-
ever, if the password changes, API clients will stop working
until updated to use the new password.

Key-based authentication: The API consumer sends a gen-
erated API key to identify the application or user making the
request. Options for sending the key include using a URL query
parameter, using a POST parameter, or via a request header.
API keys are better than passwords because they remain the
same, even if passwords have been changed.

Token-based authorization: API tokens, unlike API keys,
are temporary credentials that must be refreshed after some pe-
riod of time. Some token-based authorization techniques are
also capable of supporting external data access. This includes
access to a specific user account on another system, commonly
called delegated access. OAuth 2.0 is a common protocol for
token-based authorization workflows.

I recommend that developers use a key-based or token-
based approach and that they not reinvent the wheel by de-
signing their own authentication or authorization schemes.

Guideline 6: Share Code Examples
While documentation describes what you can do with an

API, code examples offer insight into how to use it. Code
examples can come in a variety of forms—from a few lines
to complete working applications. The amount of code to
show depends on your audience.

Teams should provide short, concise code examples
that demonstrate how to perform a basic task with the

http://www.TechWell.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 15

API. These should eliminate the need for the developer to
write code to get started. Instead, offer examples that sup-
port simple modifications to parameters for better under-
standing. Figure 1 shows how Stripe offers a Ruby-based
code example to register a new credit card on its service.

Notice how easy it is for developers to quickly copy and
paste the code example and try it out. The faster developers
can be up and running, the better TTFHW (time to first
hello world). API providers like Stripe excel at targeting
this metric to just less than five minutes.

As developers become more familiar with your API,
they will likely seek out additional code examples. These
examples should demonstrate more complex workflows
and advanced scenarios. Providing complete demo apps are
helpful and can jumpstart a project even faster.

Guideline 7: Provide Helper Libraries
Helper libraries remove the need for developers to write

raw HTTP request/response code to consume your API.
These libraries, also known as software developments kits
(SDKs), focus on extending your API to specific program-
ming languages, like the previous Stripe example in Ruby.
While API providers are not required to offer helper li-
braries in multiple languages, the helper libraries do en-
courage quick adoption. They remove the need to write
code for handling the HTTP details for your API.

When deciding which programming languages to target,
consider your audience. If you intend to target mobile de-
velopers, consider offering helper libraries for iOS and
Android platforms. JavaScript is a great choice for those
building rich web applications. If your target developers
are building server-side applications, consider Java, Python,
PHP, Ruby, .Net, and JavaScript.

It is important to note that each helper library should
have complete documentation and follow each language’s
programming idioms. This prevents a library written in
Ruby from looking like it was built for a Java developer.
This may require hiring outside expertise or using a SDK
generation tool such as Swagger code generators or API-
MATIC.

Figure 1: Code example to access a Stripe API endpoint

Click here to read more at StickyMinds.com.
n	 References

Putting It All Together
Designing a great web API involves more than just con-

necting a database to the web. It requires thoughtful con-
sideration of how developers plan to use the API. By ap-
plying these seven guidelines, you will be able to create a
well-designed, well-documented API, which should result in
a great developer experience for both internal and external
developers. {end}

james@launchany.com

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-195
mailto:james@launchany.com

16	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

Mobile and IoT
Wins! Now What?

 Jason Arbon,
appdiff.com

Smartphones now outnumber
tablets and PCs combined. Mobile
developers and testers make
more money than their old-school
counterparts. Now that mobile
has won the race, a new set of
questions arises. How has mobile
changed—and how does it continue
to change—software technology
and the economy? What does this
mean to you personally? How does
mobile affect technology choices,
company strategies, and your
career? Jason Arbon shares how
to capitalize on the mobile win.
Mobile forced a reinvention of how
we design, build, and test software.
How can these lessons from mobile
be applied to web and legacy apps?
How about to new IoT apps? And
to new apps-as-services? Join
Jason for a peek into the future—to
the day when an app is just an
app, on all platforms, and no one
cares about mobile-specific issues
anymore... READ MORE ONLINE

10,000 Years in Your
Pocket: The Deep

History of Your
Mobile Device

James Dempsey,
 Tapas Software

We live in amazing times with
amazing technology all around us.
And mobile technology, delivered
in iPhones and Android devices, is
possibly the most amazing of all.
While we designers, developers,
and testers strive to make fantastic
mobile apps and products, we
often spend our efforts fixing
the things that are wrong with
the mobile experience. Taking a
page from recent work in the field
of positive psychology, James
Dempsey wants us to pause and
focus on the positive. Join James
to appreciate the deep history
of science, technology, and even
religion that has led us from
communicating with fire and smoke
to these wonderful little devices
that enhance—and frustrate—us
in our daily living. Using calendars,
language... READ MORE ONLINE

The First Wave of
IoT—Blood in

the Water
Kevin Rohling,

Emberlight
In the past two or three years the
consumer market has seen the
idea of the Internet of Things (IoT)
go from a prediction to reality.
The first wave of IoT products
was largely fueled by the parallel
innovation of crowdfunding, which
allowed makers and early stage
ideas to get off the ground without
traditional funding sources. Many
feel that the promised innovations
from IoT have not yet been realized.
Almost weekly another crowdfunded
startup announces it’s closing
its doors without ever shipping
a product. Products that do ship
often offer a poor user experience
and are notoriously buggy and
insecure. In fact, a recent
article—Why Is My Smart Home
So {omission} Dumb?—expresses
many consumers’ opinions about
IoT devices. Drawing on his
personal... READ MORE ONLINE

Balancing New Tools
and Technologies

vs. Risk
Ellen Shapiro,

Vokal
Your engineering team wants
to dive deeply into the newest
programming tool or next
generation technology for a
mission critical project. How do you
balance the promised rewards of
a new language, software tool, or
hardware technology with the risks
of unstable software, hardware
that does not work as promised,
or new tools that are abandoned?
Ellen Shapiro describes how
the iOS and Android teams at
Vokal approach all the new tools
and technologies they evaluate.
Discussing manufacturer-built and
supported languages like Swift,
cutting-edge projects like JetBrains’
JVM language Kotlin, Functional
Reactive Programming, and the
Realm database, Ellen shares
how Vokal decides to pursue and
test new technologies—and the
consequences of those decisions.
Once a new... READ MORE ONLINE

Get Double the Content for the Price of 1 Registration at the
Collocated Mobile Dev + Test and IoT Dev + Test Conferences

Keynotes by International Experts

MobileDevTest.TechWell.com | IoTDevTest.TechWell.com

APRIL 17–22, 2016 | SAN DIEGO, CA

http://www.TechWell.com
https://well.tc/3i5k

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 17

Mobile and IoT
Wins! Now What?

 Jason Arbon,
appdiff.com

Smartphones now outnumber
tablets and PCs combined. Mobile
developers and testers make
more money than their old-school
counterparts. Now that mobile
has won the race, a new set of
questions arises. How has mobile
changed—and how does it continue
to change—software technology
and the economy? What does this
mean to you personally? How does
mobile affect technology choices,
company strategies, and your
career? Jason Arbon shares how
to capitalize on the mobile win.
Mobile forced a reinvention of how
we design, build, and test software.
How can these lessons from mobile
be applied to web and legacy apps?
How about to new IoT apps? And
to new apps-as-services? Join
Jason for a peek into the future—to
the day when an app is just an
app, on all platforms, and no one
cares about mobile-specific issues
anymore... READ MORE ONLINE

10,000 Years in Your
Pocket: The Deep

History of Your
Mobile Device

James Dempsey,
 Tapas Software

We live in amazing times with
amazing technology all around us.
And mobile technology, delivered
in iPhones and Android devices, is
possibly the most amazing of all.
While we designers, developers,
and testers strive to make fantastic
mobile apps and products, we
often spend our efforts fixing
the things that are wrong with
the mobile experience. Taking a
page from recent work in the field
of positive psychology, James
Dempsey wants us to pause and
focus on the positive. Join James
to appreciate the deep history
of science, technology, and even
religion that has led us from
communicating with fire and smoke
to these wonderful little devices
that enhance—and frustrate—us
in our daily living. Using calendars,
language... READ MORE ONLINE

The First Wave of
IoT—Blood in

the Water
Kevin Rohling,

Emberlight
In the past two or three years the
consumer market has seen the
idea of the Internet of Things (IoT)
go from a prediction to reality.
The first wave of IoT products
was largely fueled by the parallel
innovation of crowdfunding, which
allowed makers and early stage
ideas to get off the ground without
traditional funding sources. Many
feel that the promised innovations
from IoT have not yet been realized.
Almost weekly another crowdfunded
startup announces it’s closing
its doors without ever shipping
a product. Products that do ship
often offer a poor user experience
and are notoriously buggy and
insecure. In fact, a recent
article—Why Is My Smart Home
So {omission} Dumb?—expresses
many consumers’ opinions about
IoT devices. Drawing on his
personal... READ MORE ONLINE

Balancing New Tools
and Technologies

vs. Risk
Ellen Shapiro,

Vokal
Your engineering team wants
to dive deeply into the newest
programming tool or next
generation technology for a
mission critical project. How do you
balance the promised rewards of
a new language, software tool, or
hardware technology with the risks
of unstable software, hardware
that does not work as promised,
or new tools that are abandoned?
Ellen Shapiro describes how
the iOS and Android teams at
Vokal approach all the new tools
and technologies they evaluate.
Discussing manufacturer-built and
supported languages like Swift,
cutting-edge projects like JetBrains’
JVM language Kotlin, Functional
Reactive Programming, and the
Realm database, Ellen shares
how Vokal decides to pursue and
test new technologies—and the
consequences of those decisions.
Once a new... READ MORE ONLINE

Get Double the Content for the Price of 1 Registration at the
Collocated Mobile Dev + Test and IoT Dev + Test Conferences

Keynotes by International Experts

MobileDevTest.TechWell.com | IoTDevTest.TechWell.com

APRIL 17–22, 2016 | SAN DIEGO, CA

Tutorials go in-depth with these full- and half-day tutorials

Swift Programming: From the Ground Up
James Dempsey, Tapas Software

Android Development Introduction:
A Hands-On Workshop
Ken Kousen, Kousen IT, Inc.

Build Universal Apps for the Windows
Platform
Mike Benkovich, Imagine Technologies, Inc.

Develop Your Mobile App Test and
Quality Strategy
Jason Arbon, appdiff.com

Advanced Android Development
Ken Kousen, Kousen IT, Inc.

Use Selenium to Test Mobile Web Apps
in the Cloud
Brian Hicks, Coveros

Security Testing Mobile Applications
Cliff Berg, Coveros

Testing Web Services and the APIs
behind Mobile Apps
Marc van’t Veer, Polteq

Super Rad Brainstorming
Jaimee Newberry, SWINGSET, Inc.

Mobile App Project Kick Off: Get It Right
the First Time
Jaimee Newberry, SWINGSET, Inc.

Internet of Things: From Prototype to
Production
Marc Adams, M2M DataSmart Corporation
Eric King, IoT Smart Labs

Use Mobile/IoT Big Data Analytics to
Improve Development and Testing
Jon Hagar, Grand Software Testing

iOS and Swift Quick Start: The
Fundamental Pillars of iOS Development
James Dempsey, Tapas Software

Prototyping Wearable Devices Using
Android
Lance Gleason, Polyglot Programming Inc.

Top Dev-Ops-Testing Patterns for Mobile
and IoT Software
Jon Hagar, Grand Software Testing

APRIL 17–22, 2016
SAN DIEGO, CA

{ }“TUTORIALS AND SESSIONS
WERE GREAT.. .AND HAVING IT
IN SAN DIEGO WAS PERFECT!”
—Sandra Nagel, Senior Quality Assurance Engineer, CoStar Group

http://www.TechWell.com
https://well.tc/3i5k
https://well.tc/3i5k

18	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

Usability vs. Security: Find the Right
Balance in Mobile Apps

Can Your Mobile Infrastructure Survive
1 Million Concurrent Users?

Building Connected and Disconnected
Mobile Applications

Gradle for Android Developers

Build Smarter Mobile Apps with Real-
Time Relevance

Scalable and Collaborative iOS UI Test
Automation in Swift

Get Started with Google Fit and Its API

Use the Modern Cloud to Build Mobile
Apps

Uber’s Fascinating World of Inter-App
Communications

How to Find Vulnerabilities and Bugs in
Mobile Applications

How to Build and Integrate a
Framework for Testing Mobile SDKs

Shift Left Mobile Application Testing

Test Infrastructure for Native and
Hybrid iOS and Android Applications

Integrate On-Device Test Automation
into the Dev-Release Pipeline

Implement Combinatorial Test Patterns
for Better Mobile and IoT Testing

Innovations in Mobile Testing:
Expanding Your Test Plan

APRIL 17–22, 2016 | SAN DIEGO, CA

MobileDevTest.TechWell.com
To Register Call 888.268.8770

Concurrent
Sessions

Mobile Testing TopicsMobile Development Topics

{ }“ I LEARNED A TON, MET
GREAT PEOPLE, GREAT

PRESENTATIONS IN EXPO
OF AVAILABLE PRODUCTS

AND SOLUTIONS WE
COULD USE.”

—Chris Mosconi, Under Armour Connected Fitness

“I THOUGHT MOBILE
DEV + TEST WAS WELL

RUN WITH GOOD
SPEAKERS IN A NICE

LOCATION, THE SPEAKERS
WERE VERY WILLING TO

ANSWER QUESTIONS.”
—Catherine Casab, Complete Genomics, Inc.

Turning Smartphones and
Smartwatches into Hotel Keys

Guerrilla Test & QA: The Mobile of the
Internet of All the Things!

Wearables: Testing the Human
Experience

The Internet of Things in Action: Anki’s
OVERDRIVE Racing Game

Bring Team Interaction into the Living
Room

Bending Roku to Your Testing Needs

Apple Watch, Wearables, and Mobile
Data—with IBM MobileFirst

IoT Integrity: A Guide to Robust
Endpoint Testing

The 4th Industrial Revolution and IoT
Predictions: A Software Perspective

IoT Scalable Deployments with M2M
Cellular Networks

Rapid Application Development for
Raspberry Pi

Making IoT Enterprise Development
Simpler

Hardware Solutions to Start—and Fast-
Track—IoT Development

Future Perspective: Cloud Connectivity
in an IoT World

Prototype the Internet of Things with
Javascript

IoTDevTest.TechWell.com
To Register Call 888.268.8770

Concurrent
Sessions

IoT Testing TopicsIoT Development Topics

• Development managers

• IT directors & CTOs

• Mobile designers

• Project managers & leads

• QA managers & analysts

• Software architects

• Software developers &
engineers

• Software & test managers

• Test practitioners &
engineers

Who Should Attend
Mobile Dev + Test & IoT Dev + Test

APRIL 17–22, 2016 | SAN DIEGO, CA

http://www.TechWell.com
https://well.tc/3i5k
https://well.tc/3i5k

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 19

Usability vs. Security: Find the Right
Balance in Mobile Apps

Can Your Mobile Infrastructure Survive
1 Million Concurrent Users?

Building Connected and Disconnected
Mobile Applications

Gradle for Android Developers

Build Smarter Mobile Apps with Real-
Time Relevance

Scalable and Collaborative iOS UI Test
Automation in Swift

Get Started with Google Fit and Its API

Use the Modern Cloud to Build Mobile
Apps

Uber’s Fascinating World of Inter-App
Communications

How to Find Vulnerabilities and Bugs in
Mobile Applications

How to Build and Integrate a
Framework for Testing Mobile SDKs

Shift Left Mobile Application Testing

Test Infrastructure for Native and
Hybrid iOS and Android Applications

Integrate On-Device Test Automation
into the Dev-Release Pipeline

Implement Combinatorial Test Patterns
for Better Mobile and IoT Testing

Innovations in Mobile Testing:
Expanding Your Test Plan

APRIL 17–22, 2016 | SAN DIEGO, CA

MobileDevTest.TechWell.com
To Register Call 888.268.8770

Concurrent
Sessions

Mobile Testing TopicsMobile Development Topics

{ }“ I LEARNED A TON, MET
GREAT PEOPLE, GREAT

PRESENTATIONS IN EXPO
OF AVAILABLE PRODUCTS

AND SOLUTIONS WE
COULD USE.”

—Chris Mosconi, Under Armour Connected Fitness

“I THOUGHT MOBILE
DEV + TEST WAS WELL

RUN WITH GOOD
SPEAKERS IN A NICE

LOCATION, THE SPEAKERS
WERE VERY WILLING TO

ANSWER QUESTIONS.”
—Catherine Casab, Complete Genomics, Inc.

Turning Smartphones and
Smartwatches into Hotel Keys

Guerrilla Test & QA: The Mobile of the
Internet of All the Things!

Wearables: Testing the Human
Experience

The Internet of Things in Action: Anki’s
OVERDRIVE Racing Game

Bring Team Interaction into the Living
Room

Bending Roku to Your Testing Needs

Apple Watch, Wearables, and Mobile
Data—with IBM MobileFirst

IoT Integrity: A Guide to Robust
Endpoint Testing

The 4th Industrial Revolution and IoT
Predictions: A Software Perspective

IoT Scalable Deployments with M2M
Cellular Networks

Rapid Application Development for
Raspberry Pi

Making IoT Enterprise Development
Simpler

Hardware Solutions to Start—and Fast-
Track—IoT Development

Future Perspective: Cloud Connectivity
in an IoT World

Prototype the Internet of Things with
Javascript

IoTDevTest.TechWell.com
To Register Call 888.268.8770

Concurrent
Sessions

IoT Testing TopicsIoT Development Topics

• Development managers

• IT directors & CTOs

• Mobile designers

• Project managers & leads

• QA managers & analysts

• Software architects

• Software developers &
engineers

• Software & test managers

• Test practitioners &
engineers

Who Should Attend
Mobile Dev + Test & IoT Dev + Test

APRIL 17–22, 2016 | SAN DIEGO, CA

http://www.TechWell.com
https://well.tc/3i5k
https://well.tc/3i5k

20	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 21

A
few years ago, I performed agile-focused coaching
and training for an organization. From the outside
looking in, it appeared to be an experienced agile or-
ganization. It was a global financial firm that deliv-

ered their IT projects via highly distributed teams. They seemed
to be fairly committed and rigorous in their application of agile
methods: They had internal coaches in place, had implemented
Scrum, and had been leveraging extreme programming (XP)
technical practices for a couple of years. A wide variety of tools
were in place for application lifecycle management (ALM),
software development, and software testing support.

Too Narrow a Focus
I noticed that the firm had committed to behavior-driven

development (BDD) leveraging Cucumber, an open source tool
that runs automated acceptance tests. Teams were creating
thousands of BDD automated tests while developing their soft-
ware. From the teams’ perspective, there was incredible energy
and enthusiasm. Literally everyone contributed tests, and they
measured test coverage daily.

These tests were executed as part of their continuous
integration environment, so visible indicators of coverage and
counts were everywhere. I could tell that everyone was focused
on increasing the number of automated tests. There was a unity
in team goals and focus.

However, a few days into my coaching, I was invited to a
product backlog refinement session where a team was writing

and developing user stories. I expected to be an observer, but
I quickly realized that the team did not know how to write a
solid user story. In fact, they could barely write one at all. After
this shortfall became clear, they asked me to deliver an ad hoc
user story writing class. Afterward, the team was incredibly ap-
preciative, and everyone seemed to understand the important
role stories play in developing BDD-based acceptance tests.

It became obvious over the next several days that the orga-
nization was at two levels when it came to their agile quality
and testing practices. Everyone was either overcommitted—
as in the example of BDD and writing automated Cucumber
tests—or undercommitted—as in the struggle to construct
basic user stories. The organization lacked balance across most
of the agile practices. They also didn’t realize that it is the inter-
play across these practices that drives the effectiveness of agile
testing and quality.

To help them improve, I prepared the three pillars of agile
quality and testing model to illustrate the balance that is crit-
ical across practices. Figure 1 shows the types of activity and
focus within each pillar.

The Three Pillars of Agile Quality and
Testing

The three pillars form the basis of a balanced quality plan.
Let’s explore each pillar in more detail.

Development & Test Automation: This pillar represents
the technology side of quality and testing. It is not focused on

Three	Pillars	of	Agile	Quality	and	Tes5ng	
Development & Test

Automation

•  Pyramid-based strategy:

(Unit + Cucumber +
Selenium)

•  Continuous integration

•  Attack technical
infrastructure in the
backlog

•  Visual feedback—
dashboards

•  Actively practice ATDD
and BDD

Software Testing

•  Risk-based testing:
functional & nonfunctional

•  Test planning @ release &
sprint levels

•  Exploratory testing

•  Standards—checklists,
templates, repositories

•  Balance across manual,
exploratory & automation

Cross-Functional
Team Practices

•  Team-based pairing

•  Stop-the-line mindset

•  Code reviews & standards

•  Active done-ness

•  Aggressive refactoring of
technical debt

•  User stories, “Three
Amigos” conversations

•  Whole team ownership of quality
•  Knowing the right thing to build; building it right
•  Agile-centric metrics
•  Center of excellence or community of practice
•  Strategic balance across three pillars:

assessment, recalibration, and continuous improvement

Figure 1: High-level view of the three pillars of agile quality and testing

http://www.TechWell.com

22	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

Another component of the three pillars framework is a
thread that permeates through the pillars and the foundation.
It embraces the core idea that each agile, self-directed team has
a basic responsibility to build the right things (customer value)
and to build them properly (design, construction integrity, and
quality).

Crosscutting Concerns
Beyond the individual pillars, the real value of the three pil-

lars framework resides in connecting crosscutting concerns. In
the earlier example of the team struggling with user stories, the
results would have been better if they had made the following
cross-pillar connections:

•	 Pillar one implies a balance in your automation strat-
egies, so the BDD work should have been offset by a
focus on unit test and UI-based automation. It also im-
plies that acceptance tests would have been connected to
the customer via the user story, as-is common practice.

•	 In pillar two, there are implied standards for software
testing. In this case, there would be norms for story
writing and acceptance criteria. I would also look for
some lifecycle examples of well-written stories that led
to automation. This would have served to connect pillar
one and two.

•	 Placing an emphasis on pillar three would have pre-
vented the customer collaboration from being dropped.
Independent of the automation, the team would be in-
volved in three amigos conversations that strove to elicit
functional value from customer and team collaboration.
It would also have emphasized having well-defined sto-
ries before writing BDD scripts.

The three pillars are not a guarantee of integrated thinking
when implementing quality and testing practices in agile con-
texts. But they are a strong reminder of gluing crosscutting
concerns.

Moving Forward
There are three key takeaways for an organization to adopt

the three pillars of agile quality and testing.
•	 Quality and testing is a whole-team strategy.
•	 Quality and testing practices intersect across technology,

testing, and soft skills.
•	 A holistic model is needed to create more crosscutting

connections for your quality and testing strategies.

Use a balanced, three-pillar approach to effectively trans-
form your organization’s agile quality initiatives. {end}

bob@rgalen.com

testing and testers. Activities include tooling, execution of au-
tomated tests, continuous integration, XP technical practices,
and support for ALM collaboration tools. It emphasizes Mike
Cohn’s agile test automation pyramid as the strategy for devel-
oping automation in most agile contexts. [2]

Often, the technical aspects are where organizations gravi-
tate first, due to our affinity for tools that can help us solve
technical challenges. An important way to think about this
pillar is that it is foundational, i.e., the other two pillars are
built on top of this tooling.

While this pillar includes testing, tooling, and automation, it
inherently includes all tooling related to product development
across an agile organization. It provides much of the glue in
cross-connecting tools and automation that leads to overall
work efficiency and improved quality.

Software Testing: This pillar focuses on the testing pro-
fession. A large part of that focus is toward developing solid
testing practices. It relies on a team’s past testing experience,
skills, techniques, and use of tools. This is where agile teams
move from a superficial view of agile software testing (test-
driven development, acceptance test-driven development, and
developer-based testing) toward a more holistic view of quality.

Software testing embraces exploratory, functional, and non-
functional testing. This pillar emphasizes exploratory testing
because it’s an underutilized technique that provides excep-
tional value within agile contexts. Because agile teams often
forget about nonfunctional testing, this pillar provides a gentle
reminder to constantly consider all areas of testing.

In addition to broad test reporting, this is where testing
strategy, planning, and governance activities are performed.
By ignoring traditional testing with all of its process focus and
typical lack of value, the software testing pillar should provide
a framework for effective professional testing, broadly and
deeply applied within agile contexts.

Cross-Functional Team Practices: Finally, this pillar fo-
cuses on cross-team collaboration, team-based standards,
quality attitudes, and building things properly. Of the three
pillars, consider the soft skills area that provides guidance for
how each team should operate.

This pillar encompasses traditional code and document
reviews that should be highly valued and practiced. Activities
include the pairing of team members, formal architecture re-
views, design reviews, code reviews, and test case reviews. In
addition, the best testing teams insist on rigorous inspection as
established by the team’s definition of done.

As part of understanding what doneness really means,
cross-team physical constraints, conventions, and agreements
need to be established with total team commitment.

Foundational Practices
Beneath the three pillars are some foundational principles

and practices. For example, it is crucial that quality and testing
become everyone’s job—not just the job of testers. I find too
many agile teams relegate the ownership of quality and testing
to the QA department. Continuously coaching the adoption of
whole-team quality ownership should be an ongoing focus.

Click here to read more at StickyMinds.com.
n	 References

Forrester recognized
Parasoft for the
strongest current
o
ering for Functional
Test Automation

Source: Forrester Research, Inc. Unauthorized reproduction or distribution prohibited.

The top award-winning
Service Virtualization technology

Download the Forrester Research and Service Virtualization Guide:
www.parasoft.com/bettersoftware_SV

Parasoft Service Virtualization

http://www.TechWell.com
mailto:bob@rgalen.com
http://www.stickyminds.com/sticky-note/references-196
http://www.Parasoft.com/bettersoftware_SV

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 23

Forrester recognized
Parasoft for the
strongest current
o
ering for Functional
Test Automation

Source: Forrester Research, Inc. Unauthorized reproduction or distribution prohibited.

The top award-winning
Service Virtualization technology

Download the Forrester Research and Service Virtualization Guide:
www.parasoft.com/bettersoftware_SV

Parasoft Service Virtualization

http://www.TechWell.com
http://www.Parasoft.com/bettersoftware_SV

24	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

Testing Training Weeks

DEV OPS

AGILE SOFTWARE
DEVELOPMENT

TEST
MANAGEMENT

SOFTWARE
TESTING

MOBILE DEV &
TESTING

SOFTWARE
SECURITY

Featuring up to 16 specialized classes, SQE Training’s Testing Training Weeks offer

software professionals the opportunity to maximize their skills training by building a

customized week of instruction. Courses are offered for QA, test, and other software

professionals across the development life cycle and include topics such as agile,

DevOps, mobile, test automation, test management, and more.

Software Testing Training Week classes are led by leading

subject matter experts, including Rick Craig, Dawn Haynes,

Claire Lohr, Dale Perry, and Rob Sabourin. Attendees

get both one-on-one interaction with instructors and

opportunities to network with software professionals.

SAVE UP TO

$250
WITH EARLY

BIRD PRICING

“Hands on, interactive training
that truly demonstrates how to
be successful with agile.”

—Bobbi Caggianelli, Se2, Fundamentals of Agile
Certification—ICAgile, 2015 Testing Training Week

“The instructor taught very
enthusiastically and informatively.
Very fun learning experience.”

—Mike Wilkinson, IMO, Performance, Load and
Stress Testing, 2015 Testing Training Week

“The information
has provided an
excellent strategy
for growth in our
environment.”

—Sue Maddock, Bravo
Wellness, Essential
Test Management and
Planning, 2015 Testing
Training Week

Maximize the impact of your training by combining courses in the same
location. Combine a full week of training for the largest discount!

TESTING TRAINING WEEKS

2 0 1 6 S C H E D U L E

Green background indicates
courses pre-approved for Project
Management Institute PDUs.

*Not available in Atlanta. °Not available in Dallas.

February 8–12 Atlanta, GA

March 7–11 Boston, MA

April 4–8 San Diego, CA

June 13–17 Chicago, IL

August 22–26 Dallas, TX

September 19–23 Washington, DC

October 17–21 Tampa, FL

November 7–11 San Francisco, CA

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Software Tester Certification—Foundation Level Mastering Test Design

Security Testing
for Test Professionals*°

Integrating Test with a DevOps
Approach*

DevOps Test
Integration
Workshop*

Fundamentals of Agile
Certification—ICAgile

Agile Tester Certification
Agile Test

Automation—
ICAgile

Mobile Application Testing°
Mobile Test
Automation
Workshop°

Essential Test Management
and Planning*°

Measurement &
Metrics for

Test Managers*°

Leadership for
Test Managers*°

Test
Improvement

for Agile*°

Risk-Driven Software Testing*°
Performance, Load,
and Stress Testing*°

A

N D S A V E

CO M B I NE

TRAINING WEEK

sqetraining.com/trainingweek

The more training
you take the
greater the savings!

http://www.TechWell.com
https://well.tc/3iiy
https://well.tc/3iiy

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 25

Testing Training Weeks

DEV OPS

AGILE SOFTWARE
DEVELOPMENT

TEST
MANAGEMENT

SOFTWARE
TESTING

MOBILE DEV &
TESTING

SOFTWARE
SECURITY

Featuring up to 16 specialized classes, SQE Training’s Testing Training Weeks offer

software professionals the opportunity to maximize their skills training by building a

customized week of instruction. Courses are offered for QA, test, and other software

professionals across the development life cycle and include topics such as agile,

DevOps, mobile, test automation, test management, and more.

Software Testing Training Week classes are led by leading

subject matter experts, including Rick Craig, Dawn Haynes,

Claire Lohr, Dale Perry, and Rob Sabourin. Attendees

get both one-on-one interaction with instructors and

opportunities to network with software professionals.

SAVE UP TO

$250
WITH EARLY

BIRD PRICING

“Hands on, interactive training
that truly demonstrates how to
be successful with agile.”

—Bobbi Caggianelli, Se2, Fundamentals of Agile
Certification—ICAgile, 2015 Testing Training Week

“The instructor taught very
enthusiastically and informatively.
Very fun learning experience.”

—Mike Wilkinson, IMO, Performance, Load and
Stress Testing, 2015 Testing Training Week

“The information
has provided an
excellent strategy
for growth in our
environment.”

—Sue Maddock, Bravo
Wellness, Essential
Test Management and
Planning, 2015 Testing
Training Week

Maximize the impact of your training by combining courses in the same
location. Combine a full week of training for the largest discount!

TESTING TRAINING WEEKS

2 0 1 6 S C H E D U L E

Green background indicates
courses pre-approved for Project
Management Institute PDUs.

*Not available in Atlanta. °Not available in Dallas.

February 8–12 Atlanta, GA

March 7–11 Boston, MA

April 4–8 San Diego, CA

June 13–17 Chicago, IL

August 22–26 Dallas, TX

September 19–23 Washington, DC

October 17–21 Tampa, FL

November 7–11 San Francisco, CA

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Software Tester Certification—Foundation Level Mastering Test Design

Security Testing
for Test Professionals*°

Integrating Test with a DevOps
Approach*

DevOps Test
Integration
Workshop*

Fundamentals of Agile
Certification—ICAgile

Agile Tester Certification
Agile Test

Automation—
ICAgile

Mobile Application Testing°
Mobile Test
Automation
Workshop°

Essential Test Management
and Planning*°

Measurement &
Metrics for

Test Managers*°

Leadership for
Test Managers*°

Test
Improvement

for Agile*°

Risk-Driven Software Testing*°
Performance, Load,
and Stress Testing*°

A

N D S A V E

CO M B I NE

TRAINING WEEK

sqetraining.com/trainingweek

The more training
you take the
greater the savings!

http://www.TechWell.com
https://well.tc/3iiy
https://well.tc/3iiy

26	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 27

Siloing
I’ve seen three organizational configurations in which teams

create test automation. The first and most damaging is the
lone-wolf approach. The responsibilities of creating and main-
taining tests fall on a single person, usually the most technical
QA engineer on the team. This individual has additional re-
sponsibilities for manual testing along with everyone else.

The automation tool used in the lone-wolf approach was
likely acquired by management. The third-party tool generates
record-and-replay automation and can be created quickly, but
those tests are generally fragile by nature. They inextricably
bind the user interface (UI) elements to the test logic, thereby
ensuring that any slight change in the UI means cascading test
failures.

Test breakages of this magnitude mean that many tests will
have to be re-recorded, yet there’s not enough time available to
fix them because of other testing responsibilities. As a result,
UI playback tests remain in a failed state. Because of a lack
of confidence in the results, the regression suite eventually will
get mothballed. The organization will come to associate UI test
automation with failure. Convincing the team otherwise will
be an uphill battle.

The next approach is one in which there’s a small, separate
automation team that works apart from other teams. Siloed
teams don’t socialize their best practices with the rest of the
organization. The teams also will find that as their test count
grows, maintenance becomes unsustainable. Instead of devel-
oping new automation, they’re fixing tests and patching the
framework.

They don’t have the bandwidth to innovate or to share their
knowledge and expertise with other teams. Even more dan-
gerous, their separation may lead to a sense of domain own-
ership over all test automation and a subtle unwillingness to
share. The most effective way to get traction with test auto-
mation is to make everyone responsible. In agile, there’s a no-
tion of doneness criteria that defines how work is deemed to
be complete. The entire team agrees to, and is responsible for,
doneness.

One example of a doneness criterion is that teams need to
manually test the features they develop. Testers orchestrate the
testing activities across all team members, including developers.
Weaving test automation into your doneness criteria is a great
way to make everyone responsible for product quality.

Nontechnical testers can help write the front-end of the
tests, while developers or test “automators” write the actual
automation code. The goal is to get the whole team to feel a
sense of ownership. Everyone’s sharing the responsibility for
developing, maintaining, and fixing tests increases efficiency by
removing the personnel bottleneck. It encourages collaboration
and sharing best practices.

Having a unified vision and ubiquitous understanding of
the automation strategy are prerequisites for this team-based
approach.

T
here’s nothing in the Agile Manifesto or its twelve
principles that dictates teams must leverage test au-
tomation to be successful. Yet, if you’ve done any
form of agile or adaptive development, you know

firsthand how important it is. Agile promotes fast feedback
loops. Test automation, when done skillfully, provides exactly
that. Running automated tests repeatedly over time provides a
heartbeat of quality of your application, informing everyone of
your application’s stability as you add or remove features from
your code base.

There is a path to automation nirvana. It leads to your
teams’ building valuable, reliable automation. Unfortunately,
it’s beset on both sides with problems that could turn a valiant
effort into a pile of frustration and wasted effort. Learn how
you can avoid several obstacles that would get in the way of
your achieving test automation.

Absence of Vision
Without a doubt, the most perilous of test automation pit-

falls is an absence of vision. From a coherent vision comes a
detailed roadmap—something tangible your teams can begin
to dissect and understand. Without that shared understanding,
teams often are adrift during a project lifecycle. One team
might have a different strategy than the next, though they may
sit in close proximity. Other teams might be duplicating efforts.
Another might have gone off in the wrong direction entirely.
Worse yet, teams might be building something unmaintainable
that will eventually be neglected or abandoned.

The vision should be simple and state its goals clearly. The
primary goal is to build a regression suite that gives your teams
confidence that bugs will be found when they’re refactoring
the application. Refactoring old code can be very dangerous
without an automation safety net. It can have unforeseen quality
consequences, especially when dealing with crufty code that is
overly complex.

Development teams and their product owners need the peace
of mind that they can ruthlessly refactor the application without
negatively impacting customer experience.

Another important goal is that your automated test suite
should liberate your testers from having to repeatedly execute
regression tests by hand. That freedom will allow your team to
focus on more insightful exploratory testing. If you’ve ever run
a manual regression multiple times, you know it’s a repetitive
activity that eventually dulls the senses and numbs the mind.
Liberated testers are happy testers, and happy testers find
better bugs.

A solid automation strategy should detail your expectations
for unit, functional (service), and UI tests. Because each type
has its own cost and return on investment (ROI), be specific
about the amount of time your teams should devote to each.
Mike Cohn’s automation triangle visually represents the proper
ratio for each type of test. [1]

Do not underestimate the importance of a cohesive, action-
able strategy. It will be your technical guide on a journey that
requires expertise, dedication, and teamwork.

http://www.TechWell.com

28	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

The Silver Bullet
Test automation serves as a black box for nontechnical man-

agers. Their understanding of the subject is limited, and their
free time to investigate solutions is almost nonexistent. There
are products on the market that claim to provide the ultimate
test-automation solution—the silver bullet. The perception is
that nontechnical testers can start using the product immedi-
ately and build a robust automation suite quickly and effort-
lessly. Managers might get a sense that because no specialized
training is necessary, the software’s cost is justified. Marketing
websites for these products claim to remove the complexity of
test automation and replace it with an intuitive user interface.

Make no mistake, test automation is complex. Be wary of
products that claim to dramatically simplify the process of
creating automated tests. As proprietary test count rises, teams
become more tightly coupled to the automation tool. What if
you've built hundreds of tests only to discover the tool doesn't
deliver on its promises? For cost-conscious organizations, discus-
sions around a rip-and-replace change can be difficult due to the
sunk costs involved. Managers concerned about perception are
unlikely to admit failure, and teams are left with no choice but to
continue painting themselves further into a corner.

It takes courageous leadership to admit there are mistakes
in the tool selection process. From a technology standpoint,
choosing a third-party testing tool requires fully adopting their
architecture. Do you want an enhancement? Submit a feature
request and get in line with the rest of the user base. Mean-
while, you're hacking your tests to make them work.

The growing technical debt will lead to widespread test fra-
gility. As fragile tests grow in numbers, the cost of maintaining
them becomes unsustainable. If you decide to switch to another
test tool, there won't be a graceful exit strategy. It's not going
to be as simple as exporting your tests from one tool and im-
porting them into the next.

The Numbers Game
Those unfamiliar with the intrinsic value of test automation

attempt to glean that information from a handful of metrics.
They place focus on the number of tests written and pay at-
tention to the number of bugs the automated tests find. While
those metrics may be interesting, they only tell a small portion
of the story.

Teams without test automation pay a recurring cost each
time the regression suite is run manually. As your codebase
grows, so does your regression suite. As a result, that recur-
ring cost continues to rise. A meaningful metric is “How many
person-hours are we saving each week by running the automa-
tion suite?”

As the team is able to execute more exploratory testing,
they’re presumably finding more bugs. How many bugs are
found using exploratory testing that wouldn’t have been found
if the team were running the regression suite manually? It’s
an interesting question, but it’s impossible to answer. It’s even
more difficult to assign a dollar value that could show ROI.
Automation provides value, but in my experience it’s difficult
to measure.

A team with a reliable safety net is bolder. A product owner
may be more than willing to take chances and allow teams
to be more adventurous with refactoring code. The resulting
refactoring could increase quality. It might even improve the
app’s user experience, which could increase signups and con-
versions. More users could result in more revenue. It’s impos-
sible to determine ROI using this hypothetical situation. It un-
derscores the point that not everything that has value is easily
measurable.

Leaders who focus on the wrong metric incentivize the
wrong thing. If a team calculates a key performance indicator
as total test count, the team will most likely write more tests.
The total test count only indicates the distance traveled since
introducing test automation; it doesn’t tell you how much
closer you are to your destination.

And a high test count doesn’t equal better coverage; it just
means the team has found a way to game the system.

An example of a meaningful test automation metric is the
percentage of the manual regression suite that has been auto-
mated. That gives the team an understanding of progress. It
also answers the question of how much more effort is required
to completely automate manual regression tests.

Not Delivering Value Quickly
Automation is worthless without a properly architected

framework. The term framework encompasses all the support
code that helps make your tests valuable. Developing a proper
framework architecture takes time. It’s an adaptive process that
evolves with the needs of your team. There are always enhance-
ments to code, components to update, and refactoring to per-
form.

Due to the pace of software development, it’s imperative
that the teams writing test automation deliver value as quickly
as possible. If your organization has sprint reviews, demo the
progress you’ve made.

Don’t wait until your test framework is mature to start
writing tests; you can run tests using a walking skeleton of a
framework. From a value perspective, the worst thing you can
do is spend weeks developing a framework without any tests to
go along with it. A framework without tests—no matter how
elegant the architecture—provides little to no value. As a result,
stakeholders might begin to doubt their investment.

Starting out, your focus should be on automating the
manual smoke test. Using a tool like Jenkins, tie the run of
these tests to a deployment of code to your test environment.
Your next goal should be to automate the full manual regres-
sion suite, starting with the high-value components.Features
such as signup, conversion, login, billing, and payments are
high-value targets and need to be thoroughly tested.

After adopting an automation strategy, commit to delivering
at least a handful of tests at the end of your first sprint. Maxi-
mize transparency by showing your test results on an informa-
tion radiator (like a TV mounted on a wall) located somewhere
near the teams.

At regular intervals, reflect on your progress and make
course corrections to increase the value of your test suite.

http://www.TechWell.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 29

Missing the Value Proposition
The goal of any team’s automation effort is to create tests

that are valuable. Valuable tests are stable, fast, properly fo-
cused, and easily maintained. These type of tests are written
by teams that have been automating tests for a long time.
Over time, teams gain an understanding of what should be
automated and what should not. Experienced test teams view
automation as a scalpel, not a hammer. They’re careful about
adding tests to the suite due to increased maintenance costs
and extended overall execution time.

When assessing new features to automate, successful teams
ask themselves, “Is the juice worth the squeeze?” Is the test
being automated actually better left as a manual test? Is the au-
tomation too complex and time-consuming to write given the
limited time we have in a sprint? Is the feature being developed
already saturated with automation? Does the automation’s ex-
ecution rely on the timing of some external moving piece that
we cannot control? If the answer to any of these questions is
yes, pick something else to automate.

Successful teams are quick to delete tests that don’t provide
value. They’re even quicker to delete tests that fail randomly
for no obvious reason. Those tests have a high maintenance
cost. Observers of the information radiators might see the tests
staying in a failing state a disproportionate amount of time.
Eventually your organization will grow to distrust your auto-
mated tests and will ultimately discount whatever value they
provide as a whole.

Test Automation: A Success
Test automation, just like software development, is not easy.

There are significant costs involved. There are many potential
wrong turns and false starts. Know that with each valuable au-
tomated test you write, your teams become incrementally more
liberated.

Most importantly, don’t forget to empower your teams.
Allow them to self-organize around a vision by providing them
a clear strategy. Give them the freedom to explore new tech-
nology and decide for themselves which automation tools they
want to embrace. Being part of the decision-making process
means they’ll be more invested in their own success.

Your team might just find the million-dollar bug that would
otherwise have remained hidden. How’s that for ROI? {end}

steve@qualitymindset.net

Click here to read more at StickyMinds.com.
n	 References

NEWSLETTERS FOR EVERY NEED!

Want the latest and greatest content

delivered to your inbox every week? We

have a newsletter for you!

•	AgileConnection To Go covers all

things agile.

•	CMCrossroads To Go is a weekly look

at featured configuration management

content.

•	DevOps To Go delivers new and

relevent DevOps content from

CMCrossroads.

•	StickyMinds To Go sends you a weekly

listing of all the new testing articles

added to StickyMinds.

•	And, last but not least, TechWell

Insights features the latest stories

from conference speakers, SQE Training

partners, and other industry voices.

Visit StickyMinds.com, AgileConnection.com,

CMCrossroads.com, or TechWell.com to

sign up for our weekly newsletters.

http://www.TechWell.com
mailto:steve@qualitymindset.net
http://www.stickyminds.com/sticky-note/references-197
http://www.StickyMinds.com
http://www.AgileConnection.com
http://www.CMCrossroads.com
http://www.TechWell.com

30	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 31

1.	 Test program A systematically walks through all whole
numbers from 0 to 1 billion

2.	 Test program B randomly samples floating-point num-
bers between 0 and 1 billion

Test Program A
Because we have only a billion whole numbers to test, we can

simply walk through the list. A program based on the pseudo-
code in figure 1 is straightforward to implement and finishes in
about ten seconds on a typical computer.

Test Program B
Most programming languages support sixteen digits of pre-

cision, so there are about ten quintillion floating-point values
between 0 and 1 billion. That’s way too many to walk through.
Figure 2 shows how to randomly sample values throughout
the input range. Because there is no hard stopping point to our
input generation, we will let the program run for as long as we
don’t have anything more important for our computer to do. If
randomized inputs make you uneasy, take comfort in knowing
that a a typical computer can test tens of billions of square roots
per day, which is great coverage, no matter how you look at it.

What did we learn from testing the square root function?
•	 The test programs took only a few minutes to design

and write but provided outstanding test coverage be-
cause the computer did the grunt work for us for free.

•	 Generating billions of test cases relieves us of the burden
of trying to guess a specific value that might cause the
function to show an error.

•	 We do not store test cases; we generate them as
needed. This means we don’t maintain a big inventory
of static tests.

•	 We can steer the testing in new directions as required.

Example 2: Testing a Sorting Routine
Now that we’ve seen the basics of high-volume testing, let’s

see how it fares in a real-world example.
In 2004, a library of sorting routines called Nsort appeared

H
ow many tests can you create and execute in an
eight-hour workday? Five? Ten? Twenty-five? In
a single day, your computer can generate and
run tens of billions of tests. That's nine orders

of magnitude more testing than humanly possible, all for the
cost of electricity to keep the machine going. That’s power.
That's leverage. And that’s why you should have a computer
do your testing.

Four Steps to High-Volume Test
Automation

We use an approach we call Behavior/Inputs/Outputs/
Steering (BIOS) for creating our high-volume automated tests:

1.	 Describe the desired behavior of the system under test.
What is the system supposed to do?

2.	 Choose how to generate inputs. How can we mechani-
cally generate input values?

3.	 Design a way for the computer to verify system outputs.
How can we mechanically verify results?

4.	 Steer the test generation toward areas you want to
test. How can we focus the testing on areas we think
are important?

Example 1: Testing a Square Root Function
Let’s apply the BIOS approach to testing a simple square

root function.

Step 1: Behavior: What is the system supposed to do?
The square root of a number is a non-negative value that,

when multiplied by itself, gives the number. For example, the
square root of 16 is 4.

The input domain for this particular function is all floating-
point numbers from 0 to 1 billion.

Step 2: Inputs: How can we mechanically generate
input values?

From those floating-point numbers, our test program selects
two different sets of inputs:

1.	 Proceed systematically through a subset of values (such
as 0, 1, 2, 3, …)

2.	 Choose sample values throughout the range

Step 3: Outputs: How can we mechanically verify results?
Because a square root is a non-negative number that, when

multiplied by itself, gives the input value, our test program veri-
fies two outcomes:

1.	 The output is greater than or equal to zero
2.	 Squaring the output produces a number very close to

the input value (allowing for computer precision)

Step 4: Steering: How can we focus the testing on areas
we think are important?

Our highest priority for these tests will be whole numbers, fol-
lowed by other floating-point inputs. For the moment, we don’t
care about invalid inputs such as negative numbers or non-numeric
strings. Based on our BIOS steps, we design two test programs:

Figure 1: Pseudocode to systematically test whole numbers from 0 to 1
billion

Figure 2: Pseudocode to test floating-point numbers between 0 and 1 billion

http://www.TechWell.com

32	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

on the web. [1] The library was well received and was eventually
recommended in the book Windows Developer Power Tools. [2]

In 2013, we wondered whether a simple high-volume ap-
proach could find useful bugs in these published routines. We
tried out high-volume testing on the fifteen sorting routines
in the Nsort library, as well as a related implementation from
another website. We revisit that experience here, following the
four BIOS steps.

Step 1: Behavior: What is the system supposed to do?
Given a set of elements such as {5, 2, 6, 3, 1, 4}, a sorting

routine should return the same elements arranged in order (e.g.,
{1, 2, 3, 4, 5, 6}).

Step 2: Inputs: How can we mechanically generate input
values?

We can generate sets of various sizes by starting with an or-
dered set (e.g., {1, 2, 3, 4, 5, 6}) and shuffling that set into a
random order, such as {5, 2, 6, 3, 1, 4}.

Step 3: Outputs: How can we mechanically verify
results?

Our verification step leverages the fact that shuffling a set is
easier than sorting it. When the shuffled set created in step 2 is
handed to a sort routine, the resulting set should be identical to
the original, ordered set.

Step 4: Steering: How can we focus the testing on areas
we think are important?

For this example, we are interested in sets of different sizes.
We will systematically increment set size from one element to
five thousand elements. At each set size, we will perform several
shuffles before moving on. We are not currently interested in du-
plicate elements, and we will limit the sort to increasing order.

Test Program C
Figure 3 shows pseudocode for testing the sort routines.

Small sets sort quickly, and it is possible to generate all permuta-
tions. Large sets take longer to sort and have many more permu-
tations, so the number of shuffles tested will be limited.

As we kicked off the test runs for the sixteen different sort
routines, we wondered whether such a simple approach could
find useful bugs. We were soon pleasantly surprised to find sig-
nificant bugs in four of the routines, as shown in Table 1.

Why You Should Think and Let Your
Computer Test

Most test automation today is stuck in the slow lane, with
computers rigidly following scripts handcrafted by humans.
High-volume automation breaks that mindset, allowing com-
puters and humans to exploit their different strengths. Human in-
genuity and computer horsepower can produce cheap, powerful
testing that needs to be the next step for the software industry.

Isaac Asimov sounded a similar note thirty years ago in his
essay “Intelligences Together” [3]:

“Computers … are extraordinarily good in some ways. They
possess capacious memories, have virtually instant and unfailing
recall, and demonstrate the ability to carry through vast num-
bers of repetitive arithmetical operations without weariness or
error…

“The human specialty … is the ability to see problems as
a whole, to grasp solutions through intuition or insight; to see
new combinations; to be able to make extraordinarily percep-
tive and creative guesses.

“Each variety of intelligence has its advantages and, in combi-
nation, human intelligence and computer intelligence—each filling
in the gaps and compensating for the weaknesses of the other—
can advance far more rapidly than either one could alone.”

Asimov’s insight rings true in software testing. No tester can
execute a billion test cases by hand, and no computer can think
up good test cases by itself. But testers and computers working
together form a very powerful team.

We invite you to try out this style of testing yourself. A pro-
gram to test the ShearSort routine is available for download. [4]

Figure 3: Pseudocode to test a sorting routine

Table 1: Summary of bugs found by automated high-volume testing of sorting routines

http://www.TechWell.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 33

Drop the file contents into a Visual Studio Console project and
see for yourself how easy and effective this style of testing can
be. {end}

harryr@harryrobinson.net
doug.szabo@gmail.com

Click here to read more at StickyMinds.com.
n	 References

Wanted! A Few Great Writers!

I am looking for authors interested

in getting their thoughts published

in Better Software, a leading online

magazine focused in the software

development/IT industry. If you are

interested in writing articles on one of

the following topics, please contact me

directly:

•	  Testing

•	  Agile methodology

•	  Project and people management

•	  DevOps

•	  Configuration management

I'm looking forward to hearing from

you!

Ken Whitaker

Editor, Better Software magazine

kwhitaker@TechWell.com

http://www.TechWell.com
mailto:harryr@harryrobinson.net
mailto:doug.szabo@gmail.com
http://www.stickyminds.com/sticky-note/references-198
mailto:kwhitaker@techwell.com

34	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

TechWell Insights

Featuring fresh news and insightful stories about topics that are important to you, TechWell Insights on TechWell.com is the

place to go for what is happening in the software industry today. TechWell Insights’ passionate industry professionals curate

new stories every weekday to keep you up to date on the latest in development, testing, business analysis, project manage-

ment, agile, DevOps, and more. The following is a sample of some of the great content you’ll find. Visit TechWell.com to read

more TechWell Insights.

DevOps Begins with Developers
By Adam Auerbach
The DevOps movement is driving changes to our organiza-
tional structures and amount of automation, and accelerating
the delivery of high-quality features to our customers. While
all this is awesome, there is a ton of work required to make
it happen, with a high change curve to overcome. Typically it
involves changing methodologies, organizational design, and
technologies. But, perhaps the most critical change is to the
way the developer works.

Going from waterfall to agile is a change for all team mem-
bers because it asks you to communicate and work closer as a
group. Agile asks everyone to be good team members and start
providing more transparency. This can be a little painful for ev-
eryone, but for a developer who enjoys the heads-down work
of writing code, this is just the beginning of the challenges.

Keep reading http://well.tc/3wd7.

A Tester’s Guide to Dealing with
Scrummerfall
By Bob Galen
If you’ve been a tester on an agile team, you’ve probably expe-
rienced “Scrummerfall” behavior—a cross between Scrum and
waterfall.

You can actually tell in sprint planning. If the developers are
planning larger tasks that take nearly the entire sprint to com-
plete, then you’re probably in Scrummerfall. You’ll hear lots of
grousing about the complexity of their work and how it can’t
be broken down any further.

There isn’t really any collaboration. Developers grab their
stories and tasks in the beginning of the sprint, and the tes-
ters grab theirs. After that, it’s every man for himself. If you’re
lucky, you’ll get something to test when the tasks are 80 per-
cent complete. If you’re unlucky, you’ll need to wait until the
very end, which usually butts up against the end of the sprint.
The developers consider their part done, then they throw the
work over for testing.

Keep reading at http://well.tc/3wd2.

Important Questions to Ask Yourself before
Committing to Agile
By Josiah Renaudin
Agile isn’t a process that can be instituted into your team or
organization overnight. This iterative, test-as-you-go method-
ology is something that requires dedication in order to effec-
tively and successfully enact it, and this sort of fundamental
shift can be frightening.

Will my team succeed under agile? Is it worth the time in-
vestment to find out? Is agile even right for my company? A
head full of indecision is a common occurrence as you inch
closer and closer toward a resolution, so in order to lessen this
fear and push forward with a clearer mind, you need to ask
yourself a few important questions.

Keep reading at http://well.tc/3wd6.

“What Is Code?“ How I Explain What I Do
By Michael Sowers
You're at a party and someone asks you what you do. You an-
swer that you’re a developer, or you’re a software tester. “What
is that?” the person asks, and you begin what is usually a much
longer answer than the listener can bear. Soon, the person inter-
rupts and says, “Hey, I’m thirsty. Let’s get a drink!” Anything to
get you to stop all the technobabble.

The work we perform is complicated by the objects (mod-
ules, methods, applications, systems) that we work on. Yet,
given the ubiquitous nature of software and our passion for
our profession, it’s easy for us to conclude that everyone un-
derstands (or should understand) software. However, using our
software engineering community lingo to explain what we do
gets us “deer in the headlights” looks quickly!

I recently read the Bloomberg article “What Is Code?” It's
a long but good article that uses examples and interaction to
describe what code is and how it works.

Keep reading at http://well.tc/3wdu.

The Challenge of Saying “I Don’t Know”
By Naomi Karten
While on a flight, my seatmate asked me what I was reading. I
told her, “I don’t know,” and chuckled because it was the truth.
I was reading a book titled I Don’t Know: In Praise of Admit-
ting Ignorance (Except When You Shouldn’t). What struck me in
reading the book is how, according to research, even young chil-
dren can’t “shake the idea that admitting not knowing is bad.”
Something in our culture or upbringing conveys the message
that it’s not OK to reveal we don’t know something.

Of course, sometimes the reason for this resistance is ob-
vious. When a friend spouts a reference that everyone else
seems to know, admitting that you don’t can be embarrassing.
And when management asks why the project is late, saying you
don’t know can be a career-limiting response.

The fear of consequences is a powerful motivator, so we
pretend we do know or strive to detract others from realizing
that we don’t.

Keep reading at http://well.tc/3wdb.

Convenient, Cost Effective Training by Industry Experts
Live Virtual Package Includes:
• Easy course access: You attend training right from your computer, and communication is handled by a phone conference bridge

utilizing Cisco’s WebEx technology. That means you can access your training course quickly and easily and participate freely.

• Live, expert instruction: See and hear your instructor presenting the course materials and answering your questions in real-time.

• Valuable course materials: Our live virtual training uses the same valuable course materials as our classroom training.
Students will have direct access to the course materials.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide students with hands-on exercises, group activities, and breakout sessions.

• Real-time communication: Communicate real-time directly with the instructor. Ask questions, provide comments, and
participate in the class discussions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than three hours per day. This schedule makes it
easy for you to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live virtual courses are limited to the same small class
sizes as our instructor-led training. This provides you with the opportunity
for personal interaction with the instructor.

ATTEND LIVE,
INSTRUCTOR-LED
CLASSES VIA YOUR
COMPUTER.

Live Virtual Courses:

 » Agile Tester Certification
 » Fundamentals of Agile Certification—ICAgile
 » Testing Under Pressure
 » Performance, Load, and Stress Testing
 » Get Requirements Right the First Time
 » Essential Test Management and Planning
 » Finding Ambiguities in Requirements
 » Mastering Test Automation
 » Agile Test Automation—ICAgile
 » Generating Great Testing Ideas
 » Configuration Management Best Practices
 » Mobile Application Testing
 » and More

www.sqetraining.com

http://www.TechWell.com
http://well.tc/3wd7
http://well.tc/3wd2
http://well.tc/3wd6
http://well.tc/3wdu
http://well.tc/3wdb
http://well.tc/3iaz

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 35

Convenient, Cost Effective Training by Industry Experts
Live Virtual Package Includes:
• Easy course access: You attend training right from your computer, and communication is handled by a phone conference bridge

utilizing Cisco’s WebEx technology. That means you can access your training course quickly and easily and participate freely.

• Live, expert instruction: See and hear your instructor presenting the course materials and answering your questions in real-time.

• Valuable course materials: Our live virtual training uses the same valuable course materials as our classroom training.
Students will have direct access to the course materials.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide students with hands-on exercises, group activities, and breakout sessions.

• Real-time communication: Communicate real-time directly with the instructor. Ask questions, provide comments, and
participate in the class discussions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than three hours per day. This schedule makes it
easy for you to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live virtual courses are limited to the same small class
sizes as our instructor-led training. This provides you with the opportunity
for personal interaction with the instructor.

ATTEND LIVE,
INSTRUCTOR-LED
CLASSES VIA YOUR
COMPUTER.

Live Virtual Courses:

 » Agile Tester Certification
 » Fundamentals of Agile Certification—ICAgile
 » Testing Under Pressure
 » Performance, Load, and Stress Testing
 » Get Requirements Right the First Time
 » Essential Test Management and Planning
 » Finding Ambiguities in Requirements
 » Mastering Test Automation
 » Agile Test Automation—ICAgile
 » Generating Great Testing Ideas
 » Configuration Management Best Practices
 » Mobile Application Testing
 » and More

www.sqetraining.com

http://www.TechWell.com
http://well.tc/3iaz

36	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

The Last Word

If games are being leveraged to bring more users in to
evaluate a product and provide feedback, simply awarding a
badge for an accomplishment will not bring sustainable re-
sults around product quality. When used appropriately, game
mechanics can improve user engagement, software quality, and
engineering processes. An example is when a communication
application is tested via a game to see who communicates with
the highest number and greatest diversity of people.

Structured and
Unstructured Data

Structured data is highly orga-
nized data that resides in fixed fields
in a record, file or database. This is
typically data found in relational da-
tabases, with normalized tables that
can be searched and joined easily.
This leads to important issues about
structured data: what fields and how
it is stored, such as data type (date,
numeric, string) and restrictions on
the data (number of characters). Un-
structured data is data with little or

no degree of organization that does not reside in a traditional
row-column database. It is hard to compile or draw conclu-
sions from unstructured data. Unstructured data often include
text and multimedia content, such as emails, word processing
documents, photos, videos, and webpages.

Solid engineering practices and user experience methods
rely firmly on structured data. Engineering teams look to per-
formance lab data, defect density, code coverage, and static
analysis tool results that are organized to describe software’s
quality. Structured online service telemetry data allows large-
scale sites to tune user experience, target advertising, encourage
friend referrals, and keep users engaged.

The challenge is that user behavior—the activity or task
that comes next—tends to be unstructured. If your test case is
“add a contact, then immediately make a call,” you can’t direct
a Skype user to do this in order to serve your quality goals.
User behavior is unpredictable. Likewise, software developers
cannot instruct their beta users to install a new version and try
new features that generate telemetry data to refine the service.

Many dynamic changes have taken place in the world of soft-
ware development in the past several years. The rise of the In-
ternet and mobile devices—along with the competitive fervor
of iterative development—has dramatically changed the world
of software development. Engineering processes are being al-
tered in new and exciting ways to meet an exploding demand
for software products and services.

We want to explore how the incorporation of game me-
chanics, or gamification, can help improve software quality
and the user experience.

Data Everywhere
While the concept of software

quality and user experience seems
random and unstructured, there
have been many efforts to define ap-
proaches for modeling and assessing
these concepts. For example, the
original ISO/IEC 9126 software en-
gineering product quality standard
defined a structured model for soft-
ware quality and user experience.

The challenge has been around
how to balance unstructured user behavior with structured
data that comes from an engineering process. Traditionally, dy-
namic user behavior has been evaluated with inputs from us-
ability study observations or ad hoc user feedback. Today, soft-
ware and services generate telemetry data that more accurately
represents what users actually do. This telemetry supports
post-usage analysis, and if it’s sufficiently real-time, it can be
used to tune the user experience, target advertising, and even
suggest friends on social media.

Gamification
In the past few years, the term gamification has sprung up

to describe the application of game mechanics to non-game
situations. Gamification has had a checkered history, with
many game developers disliking the term because games have
not been effectively built or have often been applied very hap-
hazardly—without mapping outcomes to quality goals. Others
feel that companies have misapplied gamification techniques to
achieve short-term gains without regard for their users.

Playing Games to Improve
Software
Gamification applies game mechanics to non-game situations and

improves user engagement, quality, and engineering processes.

by Ross Smith and Rajini Padmanaban | rosss@microsoft.com and rajini.padmanaban@qainfotech.com

“When a user voluntarily enters

the magic circle of a software

experience, game mechanics can

be applied to direct unstructured

future behavior.”

http://www.TechWell.com
mailto:rosss@microsoft.com
mailto:rajini.padmanaban@qainfotech.com

	 www.TechWell.com	 WINTER 2016	 BETTER SOFTWARE 	 37

Conclusion
Gamification and the use of structured data have a strong

connection. Structured data is critical to assessing all phases of
software development, release, and user engagement. Agile and
iterative development processes require big data to inform deci-
sions about where to invest. To know what to build or improve
on to keep users engaged, services look at structured data from
A/B testing, deployment rings, and experiments. The challenge
is that user behavior is unstructured. Service providers and de-
velopment teams can’t tell users what to do next.

However, games and play offer an alternative. A game is fun
because it is voluntary and outside our normal world. When
players enter the magic circle of play, they have a new level of
engagement and will follow rules to be successful. When we
bring together the world of play and the world of software en-
gineering, we can leverage game mechanics, gamification, and
solid game design. This magic circle thinking provides a unique
framework for software developers, online service providers,
and customers to generate structured data from unstructured
behavior in a way that can help improve the quality of the user
experience.

Delivering a wonderful, intuitive, and engaging experience
to our users is really what building great software is all about.
In a highly competitive world, it is important to build an edge
(and even some unexpected magic) into our software that can
shape the industry for the coming years. Gamified data collec-
tion can help us provide those magical experiences. {end}

Games and Play
In his book Homo Ludens, Dutch philosopher Johan Huiz-

inga talks about the “magic circle of play.” [1] This is a place
outside the ordinary world that is entered voluntarily with new
rules that turn normal activity into something playful. In his
book The Grasshopper, Bernard Suits presents a great example
using the game of golf. [2] The goal of golf is to start at the
tee and put the ball in the hole for eighteen holes. Outside the
magic circle, the easiest way to meet this goal is to pick up the
ball, walk from the tee, and drop it in the hole. But inside the
magic circle, players add artificial obstacles: They wear plaid
pants and use golf clubs to hit the ball from a tee. With new
rules, golf becomes fun—and for some, even addictive.

How Gamification Relates to Structured Data
When a user voluntarily enters the magic circle of a soft-

ware experience, game mechanics can be applied to direct un-
structured future behavior. Games have rules that can guide a
user’s unstructured behavior toward the activity that generates
structured data. This data is then used to improve software
quality or provide a more engaging user experience.

Let’s say, a word building game is used to test for valida-
tions of text that a user would provide in a form. When left
without any rules, you may not be able to bring structure to the
data that is coming in. However, if your game has rules around
how many times a certain character can be entered, what kinds
of capitalization to use, or what special characters are allowed,
the user would structure his inputs based on the rules to be
able to proceed further with his play. This will make the data
more structured and more fun for the user who is mapping his
inputs to game rules. This is magic circle thinking!

The Last Word

index to advertisers

Click here to read more at StickyMinds.com.
n	 References

Better Software (ISSN: 1553-1929) is published four times

per year: January, April, July, and October. Print copies can

be purchased from MagCloud (http://www.magcloud.com/

user/bettersoftware). Entire contents © 2016 by TechWell

Corporation, (350 Corporate Way, Suite 400, Orange Park,

FL 32073), unless otherwise noted on specific articles.

The opinions expressed within the articles and contents

herein do not necessarily express those of the publisher

(TechWell Corporation). All rights reserved. No material

in this publication may be reproduced in any form without

permission. Reprints of individual articles available. Call

904.278.0524 for details.

Display Advertising
advertisingsales@TechWell.com

All Other Inquiries
info@bettersoftware.com

Agile Dev, Better Software & DevOps West	 http://adc-bsc-west.techwell.com	 9

ASTQB	 http://www.astqb.org/map	 8

Mobile Dev + Test & IoT Dev + Test	 http://mobile-iot-devtest.techwell.com	 16

Parasoft	 http://www.parasoft.com/bettersoftware_SV	 23

Ranorex	 http://www.ranorex.com	 2

Sauce Labs	 http://saucelabs.com	 11

SOASTA	 http://soasta.io/cloudtestnow	 Back cover

SQE Live Virtual Training	 http://www.sqetraining.com/training/delivery-options/live-virtual	 35

SQE Training	 http://www.sqetraining.com/trainingweek	 24

STAREAST 2016	 http://stareast.techwell.com	 Inside front cover

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-199
http://www.magcloud.com/user/bettersoftware
http://www.magcloud.com/user/bettersoftware
mailto:advertisingsales@TechWell.com
mailto:info@bettersoftware.com
http://adc-bsc-west.techwell.com
http://www.astqb.org/map
http://mobile-iot-devtest.techwell.com
http://www.parasoft.com/bettersoftware_SV
http://www.ranorex.com
http://saucelabs.com
http://soasta.io/cloudtestnow
http://www.sqetraining.com/training/delivery-options/live-virtual
http://www.sqetraining.com/trainingweek
http://stareast.techwell.com

38	 BETTER SOFTWARE	 WINTER 2016	 www.TechWell.com

http://www.TechWell.com
http://soasta.io/cloudtestnow

	SQE Training Logo:
	SQE Logo:
	StickyMinds:
	com logo: Off

